Rendezettminta-fa [2] [2]
|
|
- Rezső Bognár
- 6 évvel ezelőtt
- Látták:
Átírás
1 Rendezettminta-fa Minden p ponthoz tároljuk a p gyökerű fa belső pontjainak számát (méretét) Adott elem rangja: az elem sorszáma (sorrendben hányadik az adatszekezetben) Adott rangú elem keresése - T[r] Adott elem rangjának meghatározása Egyéb bővítési lehetőségek (pl. intervallumfák) [] 7-77 [] 79-85
2 Példa 6 rang= méret rang=
3 Fapont tárolása első megközelítés, a gyakorlatban nem így tároljuk! struct fapont{!!!int key, v, meret ;!!!fapont bal, jobb, apa ;! } apa key balfiu v meret jobbfiu
4 Adott rangú elem keresése 6 rang méret rmkeres(p,x) {!!r=p.bal.meret+ ;! 35 39!if (x==r) return p ;!!if (x<r) return rmkeres(p.bal,x) ;!!else return rmkeres(p.jobb,x-r) ;! } O(h)
5 Elem rangjának meghatározása rmrang(p) {!!r=p.bal.meret+ ;!!q=p ;!!while (q!=gyoker) {!!!if (q==q.apa.jobb) r+=q.apa.bal.meret+;!!!q=q.apa ;!!}!!return r ;! } O(h)
6 Méret információ fenntartása beszjav(p) {!!while (p!=gyoker) {!!!p=p.apa;!!!p.meret++ ;!!}! } torljav(p) {!!while (p!=gyoker) {!!!p=p.apa;!!!p.meret-- ;!!}! } O(h)
7 Elem rákövetkezője
8 p rákövetkezője p p p O(h)
9 p rákövetkezője fapont kovetkezo(fapont p) {!!! if (p.jobb!=nil) {!!!!! //ha van jobb fiú!!! p=p.jobb ;!!!!!!!! //akkor a jobb részfa!!! while (p.bal!=nil) p=p.bal;!//bal szélső eleme!!! return p;!!! } else {!!!!!!!!!! // ha nincs jobb fiú!!! while (p.apa!=nil) {!!!! // amíg van apa!!!!! if (p.apa.bal==p)!!!! // ha p bal gyerek!!!!!! return p.apa;!!!! // p apja a rákövetkező!!!!! p=p.apa ;!!!!!!! // megyünk felfelé p-vel!!! };!!!! return nil ;!!!!!!! // nincs rákövetkező!!! }! } O(h)
10 Törlés bináris keresőfából p q O(h)
11 void torol(fapont p) {!!! if (p.jobb!=nil) {!!!!!!!!! fapont q=kovetkezo(p) ;!!!!!!!!!!!! p.key=q.key ; p.value=q.value ;!!!!! q.apa.bal=q.jobb ;!!!! q.jobb.apa=q.apa ;!!!! delete q ;! q!! } else {!!!!!!!!!!!!!...!!!!! }! } p O(h)
12 void torol(fapont p) {!!! if (p.jobb!=nil) {!!!!!!!!! fapont q=kovetkezo(p) ;!!!!!!!! p.key=q.key ; p.value=q.value ;!!!! q.apa.bal=q.jobb ;!!!! q.jobb.apa=q.apa ;!!!! delete q ;!!! } else {!!!!!!!!!!!!! if (p.apa.jobb==p) p.apa.jobb=p.bal ;!!!! else p.apa.bal=p.bal ;!!!! p.bal.apa=p.apa ;!!!! delete p ;!!!! }! } p O(h)
13 Elem törlése példa
14 Futási idők elemzése Keresés Beszúrás Mennyi a futási idő? O(h) Törlés
15 Rendezettmintafa Műveletek: bool beszúr(<k> key, <V> value) O(h) fapont keres(<k> x) bool töröl(fapont p) fapont rákövetkező(fapont p) mindetkiir(fapont p) mindenttöröl(fapont p) int elemszám(fapont p) int rang(fapont p) fapont rangkeres(int x) O(h) O(h) O(h) O(n) O(h) O() O(h) O(h)
16
17 Teljes bináris keresőfa h n(h) k
18 n pontot tartalmazó teljes bináris keresőfa magassága h n(h) h h=o(logn)
19 Lehet-e egy bináris keresőfa teljesen kiegyensúlyozott??? n= n=3 n=7 n=? n=4 n=5 n=6? n=8...?
20 Majdnem teljes bináris keresőfa h n(h) k
21 n pontot tartalmazó majdnem teljes bináris keresőfa magassága h n(h) k h=o(logn)
22 Véletlen építésű bináris keresőfa Adott n egymástól különböző kulcs, melyekből bináris keresőfát építünk úgy, hogy a kulcsokat valamilyen sorrendben egymás után beszúrjuk a kezdetben üres fába. Ha itt minden sorrend, vagyis az n kulcsnak mind az n! permutációja egyformán valószínű, akkor a kapott fát véletlen építésű bináris keresőfának nevezzük. Tétel: Egy n különböző kulcsot tartalmazó véletlen építésű bináris keresőfa várható magassága: O(log n). [] 4-44
23 Szúrjuk be rendre az n elemeket n Legrosszabb eset h=n
24 Kiegyensúlyozott bináris keresőfák
25 Hogy lehetne javítani? más sorrendben kell beszúrni: f(i,j) {!! if (i<=j) {!!! f=int((i+j)/) ;!!! beszur(t[f]) ;!!! f(i,f-) ;!!! f(f+,j) ;!! }! }
26 Optimális bináris keresőfa Adott kulcsoknak egy K=(k,...,kn) sorozata Minden ki kulcshoz ismert annak pi előfordulási valószínűsége és Minden di=(ki,ki+) intervallumhoz ismert annak qi előfordulási valószínűsége, hogy arra az intervallumra keresünk, d0= (-,ki), dn= (kn, ) Optimális bináris keresőfa építhető (pl. dinamikus programozás módszerével) Építés: O(n ) [] 34-3
27 De az elemek egyesével is jöhetnek!
28 Hogy lehetne javítani? Mivel az elemek egyesével jönnek Minden beszúrás (és törlés) után rögtön javítani kellene
29 AVL fák
30 Az AVL-fa alatt egy ön-kiegyensúlyozó bináris keresőfát értünk." " Egy AVL-fában bármely csúcspont két részfájának magassága közti különbség legfeljebb egy. Az AVL-fa nevét két feltalálójáról G. M. Adelson-Velsky-ről és E. M. Landis -ról kapta, akik 963 -ban publikálták [4] An algorithm for the organization of information (Egy algoritmus az információ szervezettségéhez) című cikkükben. [3]
31 p pont egyensúlyfaktora egy(p)=h(p.jobb)-h(p.bal) x+-x= P x--(x-)=0 x+-x= x- x- x x+ [] 78
32 Példa h(p)=+max{h(p.jobb),h(p.bal)} egy(p)=h(p.jobb)-h(p.bal) 3 0
33 Példa egy(p)=h(p.jobb)-h(p.bal) h(p)=+max{h(p.jobb),h(p.bal)} 0
34 AVL fa
35 Legkevesebb pontot tartalmazó h mf()= magasságú AVL fa mf(3)=+mf()+mf()=4 mf()= x+-x= P mf(p)=+mf(p.bal)+mf(p.jobb) mf(h)=+mf(n-)+mf(n-) =fib(h)+ x x+ fib(n)=fib(n-)+fib(n-) [] 76
36 []
37 Műveletek []
38 Forgatás 3 3 [] 79-80
39 x Forgatás y x 3 3 void balraforgat(fapont x) {!!! fapont y ;!!! y=x.jobb ;!!! x.jobb=y.bal ;!!! if (x.jobb!=nil) x.jobb.apa=x;!!! y.apa=x.apa;!!! if (y.apa==nil) gyoker=y ;!!! else {!!!! if (x==y.apa.bal) y.apa.bal=y ;!!!! else y.apa.jobb=y ;!!! }!!!!! y.bal=x ;!!! x.apa=y ;! } O() [] 79-8
40 Példa
41 Egy érdekes eset
42
43
44
45 . eset innen törlök α β A 0 B - C γ δ innen törlök α A β B γ C 0 δ α 0 A β 0 B γ C 0 δ α=β=γ=δ
46 . eset α β A - B - C γ δ α A β B γ C δ α 0 A β 0 B γ C δ α=β=(γ+)=δ
47 3. eset α β A B - C γ δ α A β B γ C δ α - A β 0 B γ C 0 δ α=(β+)=γ=δ
48 4. eset A α B 0 B β γ - C δ α 0 A β γ C - δ α=β=γ=(δ+)
49 Összes eset α A -,0, B β - C γ δ α A β B γ -,0, C δ α -,0 A β 0, B γ -,0, C δ α=β=γ=δ α=β=(γ+)=δ α=(β+)=γ=δ α=β=γ=δ α=β=(γ+)=δ α=β=γ=(δ+) α=(β-)=γ=δ fj(p,q) És ezek tükörképei
50 Egyensúlyfaktorok javítása beszúrás α=β α<β α>β α P β α β x 0 - bal: eb(x) jobb: ej(x) 0 beszúrás előtt beszúrás után beszúrás után
51 Fapont tárolása második megközelítés, a gyakorlatban nem így tároljuk! struct fapont{!!!int key, v, egy ;!!!fapont bal, jobb, apa ;! } apa key bal value egy jobb
52 Egyensúlyfaktorok javítása kezdetben p a beszúrt vagy törölt elem while (p!=gyoker && cv) {! x 0 -! q=p.apa ;! eb(x) - 0 -! if (p==q.jobb) {! ej(x) 0!! egyq=++q.egy ;!!! if (egyq==) {!!!! if (p.egy==-) {! törlésnél (testver(p)==-)!!!! jobbraforgat(p) ;!!!! }!!!! balraforgat(q) ;!!!! fj(p,q) ;!!! //egyensúlyfaktorokat rendbetesz!!!! cv=false ;! //kilép!!!!! }!! } else...!!!! // bal eset!! p=p.apa ;! } α β A B q - C γ p δ O(logn)
53 Példa while (p!=gyoker && cv) {!! q=p.apa ;!! if (p==q.jobb) {!!! egyq=++q.egy ;!!! if (egyq==) {!!!! if (p.egy==-) jobbraforgat(p);!!!! balraforgat(q);!!!! cv=false; fj(p,q) ;!!! }!! } else {!!! egyq=--q.egy;!!! if (egyq==-) {!!!! if (p.egy==)!balraforgat(p);!!!! jobbraforgat(q);!!!! cv=false;!!!! fj(p,q) ;!!! }!! }!! p=p.apa;! } q eset p
54 fj(p,q) α A -,0, B β q - C γ p δ α A β q 0, B γ p -,0, C δ α -,0 A β B γ -,0, C δ α=β=γ=δ α=β=(γ+)=δ α=(β+)=γ=δ α=β=γ=δ α=β=(γ+)=δ α=β=γ=(δ+) α=(β-)=γ=δ És ezek tükörképei
Példa 30 14, 22 55,
Piros-Fekete fák 0 Példa 14, 22 55, 77 0 14 55 22 77 Piros-Fekete fák A piros-fekete fa olyan bináris keresőfa, amelynek minden pontja egy extra bit információt tartalmaz, ez a pont színe, amelynek értékei:
Algoritmusok és Adatszerkezetek II. előadás
Algoritmusok és Adatszerkezetek II. előadás Felelős tanszék: Számítógépes algoritmusok és mesterséges intelligencia tanszék Nappali tagozaton: Előadás: heti 2 óra / 3 kredit. Teljesítés módja: Kollokvium.
Algoritmusok és Adatszerkezetek II.
Algoritmusok és Adatszerkezetek II. előadás Felelős tanszék: Számítógépes algoritmusok és mesterséges intelligencia tanszék Nappali tagozaton: Előadás: heti 2 óra / 5 kredit. Teljesítés módja: Kollokvium.
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
7 7, ,22 13,22 13, ,28
Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. előadás I404e-1 H[10-11:30] BE-002-3 minden héten Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 5. Vágható-egyesíthető Halmaz adattípus megvalósítása önszervező
Adatszerkezet - műveletek
Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +
Hierarchikus adatszerkezetek
5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)
Önszervező bináris keresőfák
Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd
A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány
10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.
B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:
6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.
10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia
file:///d:/okt/ad/jegyzet/ad1/b+fa.html
1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes
Keresőfák és nevezetes algoritmusaikat szemléltető program
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Algoritmusok és Alkalmazásaik Tanszék Keresőfák és nevezetes algoritmusaikat szemléltető program Témavezető: Veszprémi Anna Mestertanár Szerző: Ujj László
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
Algoritmusok és adatszerkezetek II.
Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Tuesday, March 6, 12. Hasító táblázatok
Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok
6. előadás. Kiegyensúlyozottság, AVL-fa, piros-fekete fa. Adatszerkezetek és algoritmusok előadás március 6.
6. előadás, AVL-fa, piros-fekete fa Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 6.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen, Charles
ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA
ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA Tétel: Ha a halmazok ábrázolására önszervező bináris keresőfát használunk, akkor minden α 1,...,α m műveletsor, ahol i {1..m}: α i {keres;bovit;torol;vag;egyesit}
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Adatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
Hierarchikus adatszerkezetek
Hierarchikus adatszerkezetek A szekveniális adatszerkezetek általánosítása. Minden adatelemnek pontosan 1 megelőzője van, de akárhány rákövetkezője lehet, kivéve egy speciális elemet. Fa (tree) Hierarchikus
A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:
A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.
félstatikus adatszerkezetek: verem, várakozási sor, hasítótábla dinamikus adatszerkezetek: lineáris lista, fa, hálózat
Listák félstatikus adatszerkezetek: verem, várakozási sor, hasítótábla dinamikus adatszerkezetek: lineáris lista, fa, hálózat A verem LIFO lista (Last In First Out) angolul stack, románul stivă bevitel
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
Táblázatok fontosabb műveletei 1
Táblázatok fontosabb műveletei 1 - - Soros táblázat procedure BESZÚR1(TÁBLA, újelem) - - beszúrás soros táblázatba - - a táblázatot egy rekordokat tartalmazó dinamikus vektorral reprezentáljuk - - a rekordok
Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,
Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Az első kiegyensúlyozott fa algoritmus. Kitalálói: Adelson-Velskii és Landis (1962)
6. előadás AVL fák Az első kiegensúlozott fa algoritmus Kitalálói: Adelson-Velskii és Landis (196) Tulajdonságok Bináris rendezőfa A bal és jobb részfák magassága legfeljebb 1-gel különbözik A részfák
file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html
1 / 6 2018.01.20. 23:23 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes tananyagának
Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)
Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
Információs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
17. A 2-3 fák és B-fák. 2-3 fák
17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak
Rendezések. Összehasonlító rendezések
Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk
... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)
6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban
Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.
Algorimuselméle Keresőfák, piros-fekee fák Kaona Gyula Y. Sámíásudományi és Információelmélei Tansék Budapesi Műsaki és Gadaságudományi Egyeem. előadás Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás
Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában
Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Haladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor
Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
A lista eleme. mutató rész. adat rész. Listaelem létrehozása. Node Deklarálás. Létrehozás. Az elemet nekünk kell bef zni a listába
A lista eleme 0 adat rész mutató rész Listaelem létrehozása p: Node 0 0 3 0 Az elemet nekünk kell bef zni a listába Deklarálás struct Node { int int value; Node* next; next; adattagok Létrehozás Node*
2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Körkörös listák. fej. utolsó. utolsó. fej
Körkörös listák fej utolsó fej utolsó Példa. Kiszámolós játék. Körben áll n gyermek. k-asával kiszámoljuk őket. Minden k-adik kilép a körből. Az nyer, aki utolsónak marad. #include using namespace
Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa
Feladat. Ternáris fa. Típusspecikáció. Reprezentáció. Absztrakt implementáció. Érdi Gerg EAF II. 4/3.
Feladat djuk meg, hogy egy ternáris fa INORDER bejárás szerint sorozatba f zött értékei között mekkora a leghosszabb csupa pozitív számot tartalmazó részsorozat. Ternáris fa Típusspecikáció z alaphalmaz
Adatszerkezetek Hasító táblák. Dr. Iványi Péter
Adatszerkezetek Hasító táblák Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:
Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.
Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák
Térinformatikai adatszerkezetek
Térinformatikai adatszerkezetek 1. Pont Egy többdimenziós pont reprezentálható sokféle módon. A választott reprezentáció függ attól, hogy milyen alkalmazás során akarjuk használni, és milyen típusú műveleteket
Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák
2012. március 27. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Dinamikus adatszerkezetek Önhivatkozó struktúra keresés, beszúrás,
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
Gelle Kitti Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák
Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák Gelle Kitti 2017. 10. 25. Gelle Kitti Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák 2017. 10. 25. 1 / 20 Hasítótáblák T 0 h(k 2)
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 6. Ugrólista (Skiplist) Definíció. Olyan adatszerkezet, amelyre
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Algoritmusok vektorokkal keresések 1
Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
.Net adatstruktúrák. Készítette: Major Péter
.Net adatstruktúrák Készítette: Major Péter Adatstruktúrák általában A.Net-ben számos nyelvvel ellentétben nem kell bajlódnunk a változó hosszúságú tömbök, listák, sorok stb. implementálásával, mert ezek
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet
7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése
Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik
Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=-
Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán
Információs Technológia
Információs Technológia ZH feladatok megoldása (2009.11.26.) Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2009. november 26.
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1
Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek
A feladat lényege egy felhasználói típusnak a zsák típusnak a megvalósítása.
Feladat Készítsen egy egész számokat tartalmazó zsák típust! A zsákot dinamikusan lefoglalt tömb segítségével ábrázolja! Implementálja a szokásos műveleteket (elem betevése, kivétele, üres-e a halmaz,
Bevezetés a programozásba. 12. Előadás: 8 királynő
Bevezetés a programozásba 12. Előadás: 8 királynő A 8 királynő feladat Egy sakktáblára tennénk 8 királynőt, úgy, hogy ne álljon egyik sem ütésben Ez nem triviális feladat, a lehetséges 64*63*62*61*60*59*58*57/8!=4'426'165'368
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből