PROJEKTÉRTÉKELÉSI ALAPOK
|
|
- Jakab Király
- 9 évvel ezelőtt
- Látták:
Átírás
1 Eegeikai gazdasága MKEE. gyakola PROJEKTÉRTÉKELÉSI ALAPOK A gyakola célja, hogy a hallgaók A. megismejék az alapveő közgazdaságai muaóka; B. egyszeű pojekéékelési számíásoka udjaak elvégezi. A. KÖZGAZDASÁGTANI ALAPFOGALMAK Ameyibe a havi kamaláb =,5 %/hó, az mekkoa éves effekív kamalábak felel meg? A évleges éves kamaláb (k): % hó %,5 8 hó év év Az effekív éves kamalábak ugyaaz az időszaka számío végééke kell adia, mi a havi kamalábak. A ké esebe a peiódusok száma eléő. Éves viszoylaba, havi viszoylaba peiódus eseé azoos a vizsgál időszak. Havi kamaozás eseé: Éves kamaozás eseé: Mivel eljesülie kell a Az egyele megoldása: C C C C év, eff C C álladó, ahol és, ahol és hó év feléelek, így l l év, eff év év, eff,5 hó f év, eff év, eff hó,956 9,56 % / év év NOMINÁL ÉS REÁLKAMAT Ha a sabiliási beé éves EBKM-je 5,5 %, az MNB iflációs előejelzése %. Mekkoa a váhaó eálkamaláb? i,55,,%,
2 Eegeikai gazdasága MKEE. gyakola MODERN PÉNZÜGY ALAPJAI Mode pézügy alapelvei Jeleéék Jövőéék ) Egységyi mai péz éékesebb, mi egységyi jövőbe esedékes péz. Ez az elve a péz időéékéek elveké is szokák emlegei. ) Egységyi bizos péz éékesebb, mi egységyi kockázaos péz. Valamely későbbi időpoba váhaó pézek egy koábbi (álalába jele) időpoba évéyes ééke. Valamely (álalába jele) időpobeli pézek későbbi időpoba évéyes ééke. Felkamaolás Diszkoálás Diszkoáa Ahol: FV PV Ahol: PV DF FV PV ( ) jövőbeli éék, évek száma (kamalábidő), kezdő pézösszeg, éves kamaláb. jeleéék. PV FV /( ) Egy befekeési leheőséggel év múlva e-o ealizálhauk. Meyi édemes fizei ezé a leheőségé ma, ha legalább 9%-os hozamo váuk el a pézüké cseébe? PV FV 655 ( ) (,9) Ahol a őke aleaíva kölsége (haszoáldozaa), vagyis az azoos kockázaú másik legjobb befekeés váhaó hozama (például bakbeé, hasoló üzle). Egy m-os, ö éves időáva voakozó befekeési leheőség az ígéi számuka, hogy éves szie százalékos hozamo ealizálhauk. Mekkoa összege kapuk az 5. év végé? FV PV ( ) (,) 5 76
3 Eegeikai gazdasága MKEE. gyakola B. PROJEKTÉRTÉKELÉSI MUTATÓK NETTÓ JELENÉRTÉK Egy beuházás isza haszá a eó jeleéékkel ( Ne Pese Value) udjuk kiszámoli vesszük mide év bevéelei és áfodíásai és diszkoáljuk a. időpillaaa (vagyis közös méékegysége hozzuk): C C C ( ) ( ) C ( )... C C ( ) Ha a eó jeleéék agyobb, mi ulla, akko édemes megvalósíai a pojeke. Mibe fekessük pézüke? A edelkezése álló pézük millió, melye ha igalaba fekeük egy év múlva millió -é el udjuk adi a lakás. Az állampapí hozama 5%. Számoljuk ki a befekeés hozamá! C C, 4 millió ( ),5 Vagyis megéi befekei, mivel az igala vásálással agyobb haszo éük el, miha állampapíba fekeük vola. Az előző éékelés azoba áyalja az, hogy az állampapí és az igalapiac kockázaa em azoos, így egy hasoló kockázaú befekeés kell aleaíva kölségké figyelembe veük. Ez legye %! C C, 9 millió ( ), Vagyis megéi befekei, de má kisebb haszo éük el. A befekeés hozama: Pofi Hozam Befekeés ( ) % Ha a hozam magasabb, mi az aleaíva kölség, akko édemes megvalósíai a beuházás!
4 Eegeikai gazdasága MKEE. gyakola ANNUITÁS Speciális pézáamlások jeleééke: öökjáadék: évee fix összegű jáadék végele hosszúságú idő keeszül C C C C PV... ( ) ( ) ( ) auiás (=évjáadék): olya véges időszakig aó pézáam, amely álladó jáadékaggal bí az auiás em más, mi ké öökjáadék külöbsége egy. évől iduló és egy -dik évől iduló öökjáadék külöbsége PV C C ( ) C C AF(, ) ( ) ahol AF az auiás fako. Meyi é ma az a befekeési leheőség, ami éve keeszül, évi e-o bizosí, ha az álaluk elvá hozam %? PV C 6 eze ( ),, (,) Egy széleőmű éve keeszül évi MWh villamos eegiá emel, a emel villamos eegiá /kwh áo bizosa udja éékesíei a beuházó. A hasoló kockázaú befekeésék hozama %. Meyié vásáolák meg maximum a széleőműve? Az éves álladó bevéelek jeleééke auiáské is felfoghaó. Akko édemes megvásáoli az eőműve, ha a eó jeleééke legalább. B C ( ) C MWh / kwh millió AF ( ),, (,) 8,54 4
5 Eegeikai gazdasága MKEE. gyakola Az egyelee megoldva: B 55, 4 millió BELSŐ MEGTÉRÜLÉSI RÁTA A belső megéülési áa az a diszkoáa, amely melle a eó jeleéék éppe zéus. Megadja a vizsgál pojek egységyi őkéjéek egységyi időe eső övekedésé, a pojek álagos hozamá. C C C C C... C ( IRR ) ( IRR ) ( IRR ) ( IRR ) Egy gépegység beuházási kölsége millió, a gépegység működeéséhez köheő pézáam az első évbe 7 millió, a második évbe 6 millió. Mekkoa a pojek belső megéülési áája? Ha az állampapí hozama 5% megéi-e beuházi a gépbe? C 7 6 C ( IRR ) IRR ( IRR ) A másodfokú egyelee megoldva: IRR=%. Az állampapíhoz képes megéi beuházi a gépbe. Házi felada: Egy yomdaipai fejleszés soá egy új gépe vásáol a ulajdoos. A gép áa,5 m, váhaó éleaama 5 év. A gép üzembe helyezése uá az első évbe évi 7 e-o, a 4. és 5. évbe pedig évi, m plusz haszoa esz sze a ulajdoos. A gép az 5. év végé elomlik és éékeleé válik. A piaci kamaláb a vizsgál 5 év ala álladó, ééke 8%. Jó üzlee csiál-e a ulajdoos? Mi va abba az esebe, ha az első ké évbe ealizál, m-o, majd az uolsó évbe pedig évekéi 7 e-o? Megéi-e akko a beuházás, ha a áé csak a második év végé kifizei a gépe? Ö éves észlefizeési leheőség eseé, milye ölesző észle eseé lesz yeeséges a fejleszés (azoos bevéelek melle)? a) alapesebe: b) ha az első ké évbe ealizál,-, m plusz bevéel: 5
6 Eegeikai gazdasága MKEE. gyakola c) a gép fizeése a. év végé: a) ullszaldós beuházás, ö éves öleszés eseé: Nyeeséges beuházás: > Haáesebe: 6
PROJEKTÉRTÉKELÉSI ALAPOK
Eegeikai gazdasága MKEE. gyakola PROJEKTÉRTÉKELÉSI ALAPOK A gyakola célja, hogy a hallgaók A. megismejék az alapveő közgazdaságai muaóka; B. egyszeű pojekéékelési számíásoka udjaak elvégezi. A. KÖZGAZDASÁGTANI
Finanszírozás, garanciák
29..9. Fiaszíozás, gaaciák D. Fakas Szilvesze egyeemi doces SZE Gazdálkodásudomáyi Taszék fakassz@sze.hu hp://d.fakasszilvesze.hu/ Fiaszíozás émaköei. A péz idıééke, jövıéék és jeleéék, speciális pézáamlások
GYAKORLÓ FELADATOK 5. Beruházások
1. felada Egymás kölcsööse kizáró beruházások közöi válaszás. Ké külöböző ípusú gépe szerezheük be egyazo művele elvégzésére. A ké egymás kölcsööse kizáró projek pézáramlásai ($) a kövekező ábláza muaja:
A pénzügyi számítások alapjai I. Szakirodalom. Az előadás témakörei
A pézügyi számítások alapjai I. Miskolci Egyetem Gazdaságtudomáyi Ka Pézügyi Taszék Galbács Péte doktoadusz Szakiodalom VIGVÁRI Adás [004]: Pézügy(edsze)ta. Budapest: KJK-KERSZÖV. BREALEY, Richad A. MYERS,
Ingatlanbefektetések elemzése
Igalabefekeések elemzése Elıadás Igalavagyo-érékelı és közveíı Szakképzés, Igalakezelı Szakképzés A-V. modul Cash flow modell (ıkekölségveés): Leheséges eljes bevéel - Kihaszálalaságból eredı veszeség
Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja
Bevezetés A Pézügyta feladatgyűjteméy a Pézügyta tatágy gyakolataihoz készült példatá első észe. Az oktatási segédlet a pézügyi számítások világába vezeti be az olvasót. Bá az oktatási segédletbe sok képlet
A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:
A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,
A pénz időértéke. Vállalati pénzügyek III.-IV. előadások. A pénz időértéke (Time Value of Money)
Vállalati pénzügyek III.-IV. előadások A pénz időértéke A pénz időértéke (Time Value of Money) Egységnyi mai pénz értékesebb, mint egységnyi jövőbeli pénz. A mai pénz befektethető, kamatot eredményez A
( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten?
Feladaok 1. Egy beé névleges kamalába évi 20%, melyhez negyedévenkéni kamajóváírás arozik. Mekkora hozamo jelen ez éves szinen? 21,5% a) A névleges kamalába időarányosan szokák számíani, ehá úgy veszik,
A lizing cash flow elemzés tökéletesen versenyz és tökéletlen piaci környezetben valamint inflációs gazdaságban
1 ZSUPANEKNÉ DR. PALÁNYI ILDIKÓ A lizig cash flow elemzés ökéleese verseyz és ökélele piaci köryezebe valami iflációs gazdaságba Az elmúl évekbe gyakra alálkozhauk a hazai irodalomba és a gyakorlaba is
Elméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia
Elmélei közgazdaságan I. Alafogalmak és Mikroökonómia A korláozo iacok elmélee (folyaás) Az oligoólisa iaci szerkeze formái Homogén ermék ökélees összejászás Az oligool vállalaok vagy megegyeznek az árban
A pénz tartva tenyész, költögetve vész!
VÁLLALAT ÉNZÜGYEK. A KÖTVÉNYEK ÉRTÉKELÉSE (4 óra) Összeállíoa: Naár Jáos okl. üzemgazdász, okl. közgazdász-aár A péz arva eyész, kölögeve vész! Dugoics Adrás: Magyar példa beszédek és jeles modások 8 Kövéy:
Beruházási lehetőségek tőke-költségvetési és kockázati elemzése
Beruházási és fiaszírozási döések Levelező 3. kozuláció Beruházási leheőségek őke-kölségveési és kockázai elemzése Tőkekölségveési kérdések, elemzések 1. rész 1 Beruházási proekek érékelése A B proek proek
Portfólióelmélet. Portfólió fogalma. Friedman portfólió-elmélete. A befektetés három jellemzője. A kockázat általános értelmezése (Kindler József)
ofólió fogalma ofólióelméle Ké zóeede Lai zó oae hodai, vii Fólió ügy, ia Olaz zó icéek ézácája ofólió ág éelmezée vagyoágyak özeége ofólió zűk éelmezée külöböző, őzdé jegyze éékaíok özeége Fiedma ofólió-elmélee
SPORTPÉNZÜGYEK. r m. A pénz időértéke.
SPORTPÉNZÜGYEK A péz időétéke. A ai pézösszeg azét étékesebb, it egy későbbi időpotba esedékes pézösszeg, et a befektető eek évé jövedelee, kaata tehet szet Kaat: A péz áa Haszálója azét fizet, et a pézt
4. Fejezet BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE Beruházási pénzáramok értékelése Infláció hatása a beruházási projektekre
. Fejeze Pénzáramok (euróban) 0. év. év. év. év. év. év 0 000 9000 900 0 000 000 000 BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE... Saikus beruházás gazdaságossági számíások: Neó pénzáramok álaga ARR = Kezdõ pénzáram
Tartalom. Speciális pénzáramlások. Feladatmegoldás, jelenértékszámítások 2010.10.19. 8. hét. Speciális pénzáramlások. Örökjáradék:
Feladatmegoldás, jelenértékszámítások 8. hét 2010.10.26. 1 Tartalom Speciális pénzáramlások Örökjáradék: Olyan végtelen számú tagból álló pénzáramlás, amelynek minden eleme megegyezik. Növekvő örökjáradék:
Képletgyûjtemény. Dr. Horváth Zsuzsanna. Pénzügy I. A vállalkozások általános pénzügyei Pénzügy II. Vállalkozásfinanszírozás. címû tankönyveihez
Képlegyûjeméy Dr. Horváh Zsuzsaa Pézügy I. A vállalkozások álaláos pézügyei Pézügy II. Vállalkozásfiaszírozás címû aköyveihez a PM pézügyi-számvieli és vállalkozási ügyiézõ szakképesíése számára Nemzei
GYAKORLÓ FELADATOK 1. A pénz időértéke I. rész (megoldott) Fizetés egy év múlva
. Jelenérték (PV, NPV), jövő érték (FV) Számítsa ki az alábbi pénzáramok jelen és jövőértékét. Az A,B,C ajánlatok három külön esetet jelentenek. 0% kamatlábat használjon minden lejáratra. Jövőértéket a.
Gazdasági Információs Rendszerek
Gazdasági Információs Rendszerek 1. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 A pénz időértéke Mit jelent a pénz időértéke? Egy forint (dollár, euró, stb.) ma
ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK
F3 Bev. az elektroikába E, Kísérleti Fizika Taszék ANALÓG-IGITÁLIS ÉS IGITÁLIS-ANALÓG ÁTALAKÍTÓK Az A és A átalakítók feladata az aalóg és digitális áramkörök közötti kapcsolat megvalósítása. A folytoos
Ú Á Ü É ő ö ó ó ő Ü ö Ó ő ú ó ö ő ú ű ű ö ú ö ó ü ö ő öü ő Ú ö Ü ű ó ü ű ő ö ő óü ó ó ő Á Á ó ó Ü ó ó ü Ü ö Á ő ő ó ö ó ü ő ö ó ö ő ó ú ú ó ő ó ó ú ü Ú Á Á É Ü É Ú ü Á É ő ü ÉÉ É Ü ó Ö ó ó ö ö ő óü ó ü
Vezetéki termikus védelmi funkció
Budapes, 016. auguszus Bevezeés A vezeéki ermikus védelmi fukció alapveőe a három miavéeleze fázisáramo méri. Kiszámolja az effekív érékeke, és a hőmérsékle számíásá a fázisáramok effekív érékére alapozza.
Á É ő é ü ö á á ö é á é ö á á é ő á á ő á á á ő á ő é á é ő ö ó é ő é é á ó á á á á ó á á ö ö é á é Ó É á á ő á á ú ü ö á á á á é á á á á é é ő á á á á é ü á á ő ú á é á á ü ö á á á á é é á á á á ő á ő
Pénzügyi ismeretek. Dülk Marcell 2012/2013/2
Pénzügyi ismeetek Dülk Macell 2012/2013/2 Rövid ismetető Dülk Macell, dulk@finance.bme.hu, QA337 Jegyzetek, diák Számonkéés Miől lesz szó? Nettó jelenéték fogalma és számítása Pénzáamlások becslése Tőkeköltség
Erőmű-beruházások értékelése a liberalizált piacon
AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.3 2.5 Erőmű-beruházások érékelése a liberalizál piacon Tárgyszavak: erőmű-beruházás; piaci ár; kockáza; üzelőanyagár; belső kama. Az elmúl évek kaliforniai apaszalaai az
Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú
É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í
ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö
É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á
ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő
ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
Bruttó kereslet Nettó kereslet (1) 5. elıadás: Vétel és eladás indulókészlettel; Intertemporális választások. Indulókészlet
(C http://kgt.be.hu/ 5. elıadás: Vétel és eladás idulókészlettel; Itetepoális választások uttó keeslet ettó keeslet ( uttó keeslet: ait a fogyasztó téylegese elfogyaszt (hazavisz a piacól ( ( Jele:, vagy,
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
A figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
HosszútávúBefektetések Döntései
VállalatgadaságtaII. HossútávúBefektetések Dötései Előadó: Koma Tímea Tatárgyfelelős: Dr. Illés B. Csaba 27. November 9. A hossútávúbefektetések sajátosságai Rövidebb időre sóló befektetés hossabb időtávra
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
A TŐKE KÖLTSÉGE. 7. Fejezet. 7.1. Források tőkeköltsége. 7.1.2 Saját tőke költsége. 7.1.1. Hitel típusú források tőkeköltsége DIV DIV
7. Fejezet A TŐKE KÖLTSÉGE 7.1.2 Saját tőke költsége D =hitel tőkeköltsége. i =névleges kamatláb, kötvény esetén n. P n =a kötvény névétéke. =a kötvény áfolyama. P 0 Hitel típusú foások tőkeköltsége, (T
Sorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
Villamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
Vállalati pénzügyek előadás Beruházási döntések
Vállalati pénzügyek 1 5-6. előadás Beruházási döntések Beruházás Tárgyi eszközök beszerzésére, létesítésére fordított tőkekiadás Hosszú élettartamú eszközök keletkezése A beruházások jellemzői A beruházások
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
É Á Á Á Ö Á Á Á É É Á Á É É Á Á Á ő ő É É Á Á ő ú ő ö ú Á ú ő ü ő ö ő ö É Á É É Ú ú É Á Á Á Á Ú Ü É É Ü Ú É É Ö ú ü ű Á É É É Á Ú É É É É öú É É Á É Á ÁÉ ú Ú ö ü Á ő ő ő Ú ö É Á Á ő Ü É É Á Á Ó É É Ú ú
Mérések, hibák. 11. mérés. 1. Bevezető
11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i
Feladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
VI.Kombinatorika. Permutációk, variációk, kombinációk
VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti
Tiszta és kevert stratégiák
sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,
Tőkeköltségvetési kérdések, elemzések
Tőkekölségveési kérdések, elemzések Fő émakörök 7. Az egymás kölcsööse kizáró proekek őke-kölségveési elemzése 8. Kockázai elemzés a őke-kölségveésbe 9. Porfolió modellek a őke-kölségveési döésekbe 1 7.1.
Ü Á Á ó Ü É É Ó Á É ó ó á ó á É á é é ö é é ó é é á á á úé í ú é ö é ó á á á í é ö í á á Ö é é á é ó é é é é ó é ü í í á á á ö é á é é é é é ó é Ü ő á é í ó ó ö ü í á á í ü á á ó á íí ó á ó ő á é é ö ö
n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!
KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:
Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal
5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve
ó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó
ü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í
É ű Ö ű ű Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű Ó ű ű É ű ű ű ű ű Ö ű ű ű Ó ű Á Á ű ű ű Á Ü Ű ű ű ű Ő Á Á Á ű Á Á É É Á Á Á ű ű ű Á É Á Á ű Á ű Á Á ű ű ű ű ű ű ű ű ű ű ű ű Á Á É ű Á ű É ű Ü ű É É É
Ó ő Ó ő ú ő ö ü Ó ő ö ő ü ő ö ő ü ö ö ő ö ü ú ö ő ü ú É ő ő ő ö ő ü ö Ó ő Á ő Á ú ü ő ú ú Ó ő Ó ő Á ő ő ő Ó ő Á ő ö ő ü ö ő ő ő ú ő Á ő ő ő Á ő ö ö ő ü ü ö ö ü ő É ő ő Á ő Á Ö ü ú ö Á ü ö ö ő ö ö ú ö ő
Képlékenyalakítás elméleti alapjai. Feszültségi állapot. Dr. Krállics György
Képlékeyalakíás elmélei alapjai Feszülségi állapo Dr. Krállics György krallics@eik.bme.hu Az előadás sorá megismerjük: A érfogai és felülei erőke, a feszülség ezor. A feszülség ezor főérékei és főiráyai;
PROJEKTÉRTÉKELÉSI MÓDSZEREK
PROJEKTÉRTÉKELÉSI MÓDSZEREK A gyakorlat célja, hogy a hallgatók projektértékelési számításokat tudjanak végezni. DÖNTÉSI MÓDSZEREK ÁTTEKINTÉSE 1. Vizsgálja meg a következő projektek pénzáramlásainak gazdasági
Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö
Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É
ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö
Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü
Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel
Á É É Á Á Á ő ő ő ő É Ó Á Á Á ő Á Ú Ú ő É Á ő Á ő Á ő ő Á É ő Á ő Á É Á É Á Á É É ű ő ű É Ú ő Á Ú Ó Á Á Ó ő Á É ő Á Ó É Ó É Ó Ú Á Á Á Ü ű ő É Á É ő Á ő ő É É É É Á Á É Á Á Á É É ű É Á Á ő É É Á Á Á Á ű
Geometriai Optika. ultraibolya. látható fény. 300 THz 400 THz 750 THz. 800 nm 400 nm 100 nm
Geomeiai Opia Láhaó éy: az eleomágeses hullámaomáy egy esey észe adio hullám mico hullám (cm) láhaó éy iavöös ulaibolya Röge sugázás (0-0 m) (Hz) 300 Hz 400 Hz 750 Hz λ 800 m 400 m 00 m A láhaó éy speuma:
ML/GL (164)
ML/GL (164) + 375 17 309-9999 + 375 29 603-9999 + 375 33 603-9999 + 375 25 603-9999 A2513203131 2321 1519 35% A164320591380 3976 2771 30% A1643206113 3554 2477 30% A1643202431 889 582 35% A2519801164 352
PÉNZÜGYI ESZKÖZÖK. 2. Fejezet. 2.1. Kötvény 0,05) C t PV = 360 Ha az ár 970,56 euró, vagy az alatt marad, érdemes befektetni. 2.1.1.
Fejeze ÉNZÜGYI ESZKÖZÖK IRR = =,9 IRR =,9% 78 F Diszkon kincsárjegy A D96 jelű diszkon kincsárjegy névéréke euró, lejáraa 8 nap A befekeő elvár hozamráája 6% Meddig érdemes a kincsárjegy aukción liciálni?
Számítások. *Előadásanyagban nem szerepel. Kamat idővel egyenesen arányos. 1.3. Példa - Kamatos kamat egész évekre éven belül egyszerű kamat
Számítások.Kamatszámítás..Péda - Kamatos kamat Számítsuk ki a visszafizetedő összeget az aábbi kostrukció eseté (kamatos kamatta számova), ha 2005.0.0-é köcsö adtuk 200.000 Ft- ot, 205.2.3-é kapjuk vissza
LINEÁRIS TRANSZFORMÁCIÓ
16..8. LINEÁRIS TRANSZFORMÁCIÓ (MÁTRIX) SAJÁTÉRTÉKE, SAJÁTVEKTORA BSc. Maemaika II. BGRMAHNND, BGRMAHNNC LINEÁRIS TRANSZFORMÁCIÓ Egy A: R R függvéy lieáris raszformációak evezük, ha eljesülek az alábbi
Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
A pénz időértéke. Kifejezi a pénz hozamát ill. lehetővé teszi a különböző időpontokban rendelkezésre álló pénzek összeadhatóságát.
A pénzeszközökben bekövetkezett változás kimutatása a változást előidéző vállalati tevékenység szerinti bontásban cash flow (PÉNZÁRAMLÁS) kimutatás A tényleges pénzmozgások figyelembe vétele 1. Szokásos
Az új építőipari termelőiár-index részletes módszertani leírása
Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató
30 MB. Adat és Információvédelmi Mesteriskola KÁLMÁN MIKLÓS ÉS RÁCZ JÓZSEF PROJEKTMENEDZSERI ÉS PROJEKTELLENŐRI FELADATOK PROJEKTEK ELŐKÉSZÍTÉSE
Adat és Információvédelmi Mesteriskola PROJEKTEK ELŐKÉSZÍTÉSE 30 MB KÁLMÁN MIKLÓS ÉS RÁCZ JÓZSEF PROJEKTMENEDZSERI ÉS PROJEKTELLENŐRI FELADATOK 19.10.2018 Adat és Információvédelmi Mesteriskola 1 PROJEKTEK
Helyettesítéses-permutációs iteratív rejtjelezők
Helyeesíéses-peruációs ieraív rejjelezők I. Shao-i elv: kofúzió/diffúzió Erős iverálhaó raszforáció előállíhaó egyszerű, köye aalizálhaó és ipleeálhaó, de öagába gyege raszforációk sokszori egyás uái alkalazásával.
OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
Váltakozóáramú hajtások Dr. TARNIK István 2006
AUTOMATIZÁLT VILLAMOS HAJTÁSOK Válakozóáramú hajások Pollack Mihály Műszaki Kar Villamos Hálózaok Taszék Dr. TARNIK Isvá doces Válakozó áramú hajások 1. Aszikro gépek elvi felépíése. 1.1. Az aszikro gépek
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i
Sok sikert és jó tanulást kívánok! Előszó
Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a
Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév
Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,
Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
BEFEKTETÉSI POLITIKA TARTALMI KIVONATA
BEFEKTETÉS POLTKA TARTALM KVONATA haályos: 2016.06.02-ől A Pénzár befekeési evékenységének célja a Pénzár agjai álal illeve javára eljesíe befizeések, ezen belül pedig elsősorban a pénzáragok egyéni számláin
6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok
6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás
GAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
É í Á ó í Ó ú í Éó ö ű í ő ó ő í ő ő Á ó í ó í í í ó ö ű ő ő ó ő ő í ű ö í ö í ú É Á É É ó Á Í Á Á ő Í í Ö ő ű ö ó í ő ő ü ö ö ő ü ó ö í ó ü í ő ó í ö ó Í ö ö üí í ö í ó ö ő ó í í í ű ó ó üí ő ó ő ü Á
á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí
é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü
A határokon átnyúló egyesülések adóvonatkozásai és azok hatásai a vállalat beruházásainak értékére
2010. KILENCEDIK ÉVFOLYAM 3. SZÁM 267 CSOMÓS BALÁZS A haároko áyúló egyesülések adóvoakozásai és azok haásai a vállala beruházásaiak érékére Egy emzeközi cégcsopor ásrukurálása vagy egy M&A-razakció sorá
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.
Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
A fény diszperziója. Spektroszkóp, spektrum
A éy diszpeziója. Speoszóp, speum Iodalom [3]: 5, 69 Newo, 666 Tiszább, élesebb szíépe ad a öveező eledezés A speum szíe ovább má em boaó. A speum szíee úja egyesíve eé éy apu. Sziváváy Newo Woolsope-i
2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya
II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve
Portfóliókezelési szabályzat
A szabályza ípusa: A szabályza jóváhagyója: A szabályza haályba lépeője: Működési Igazgaóság Igazgaóság elnöke Porfóliókezelési szabályza Szabályza száma: 9/015 erziószám: 1.7 Budapes, 015. auguszus 7.
Társaságok pénzügyei kollokvium
udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont