Három erő egyensúlya kéttámaszú tartó
|
|
- Erzsébet Kelemenné
- 6 évvel ezelőtt
- Látták:
Átírás
1 dott: z 1. ábr szerinti kéttámszú trtó. Három erő egyensúy kéttámszú trtó 1. ábr Keresett: ~ rekcióerők vektor, szerkesztésse és számításs, z ábbi dtok esetén ; ~ speciáis esetek tgás. dtok: F = 10,0 kn; tg α = 5/1; = 13,00 m; = 9,50 m. Megodás:.) Szerkesztés 1.) Feveszünk egy rjzi erőmértéket; itt: 1 cm 1 kn..) kmzzuk 3 erő egyensúyánk grfikus fetéteeit, zz: ~ z erők htásvoni egy pontbn metsződnek; ~ z erőkre rjzot vektorháromszög foytonos nyíérteemme záródik. z eredmény. ábrán szeméhető. 3.) rekcióerők ngyság és irány, szerkesztés / mérés pján: = 4,3 cm x 1 kn / cm = 4,3 kn; φ = 49. B = 7,4 cm x 1 kn / cm = 7,4 kn; φ B = 113.
2 . ábr b.) Számítás szerkesztés eredményeinek fehsznáásáv: grfo - nitikus módszer vektorábr pján szinusz - tétee: sin sin sin F sin 90 cos sin 90 vgy sin F. cos Hsonón kpjuk, hogy B sin90 F sin 90 zz cos cos cos cos B F ; mjd ( 1 ) és ( ) - bő:,, ( 1 ) ( )
3 3 sin B. cos ( 3 ) Most htározzuk meg ( ) összefüggés jobb odán áó trigonometrikus kifejezés értékét, másként!. ábr pján: M, cos ( 4 ) M cos. ( 5 ) ( 4 ) és ( 5 ) szerint: cos cos innen cos. cos, ( 6 ) ( 7 ) Ezután ( ) és ( 7 ) - te: B F. ( 8 ) Továbbá ( 3 ) és ( 8 ) - c: sin F. ( 9 ) cos Most htározzuk meg φ - t, vgy vmey szögfüggvényét! ( 7 ) - bő: cos sin sin cos cos tg sin cos, cos cos ho fehsznátunk egy ismert trigonometrii zonosságot is. z utosó egyenet átrendezéséve: cos tg. ( 10 ) sin 1 Most z 1 tg cos trigonometrii összefüggésse és ( 10 ) - ze: cos 1 1 ; cos sin ( 11 )
4 4 mjd ( 9 ) és ( 11 ) - gye: F sin 1 F sin cos. cos sin gyökje tti kifejezést átkítv: sin cos sin cos cos cos 1. z imént ismét fehsznátunk egy ismert trigonometrii zonosságot. Ezután ( 1 ) és ( 13 ) képetekke: F cos 1 F 1 cos. ( 13 ) ( 1 ) ( 14 / 1 ) Tehát: F 1 cos. ( 14 ) Utóbbi összefüggést kicsit átírv: F F F cos F ; ( 15 ) fehsznáv ( 8 ) - t is: F F B cos B, ( 16 ) mi cosinus - téte megjeenési formáj, vektorábr szerint is. számszerű eredmények: ~ ( 8 ) képette: 9,50 m B F 10 kn 7,308 kn; 13,00 m kerekítve:
5 5 B 7,31 kn. ~ z ismert összefüggések szerint: 1 1 cos 0,931; 1 tg sin tg cos 0, 931 0, Mjd ( 16 ) - t: ,3080, 931 7,308 kn 4,300 kn; tehát 4,30 kn. ~ ( 10 ) szerint: 13,00 cos 0,931 9,50 tg 1,1579; sin 0,3846 innen: rctg 1, ,18 ; kerekítve: 49,. ~ Ezután. ábráró eovshtón: 5 B rctg 90, 6 11, 6 ; 1 kerekítve: B 11,6. szerkesztésse és számításs kpott eredmények egyezése megnyugttó. Megjegyzések: M1. z rctg 5/1 =,6 kijeentés némi mgyráztr szoru: zsebszámoógép DEG üzemmódbn rögtön fokbn jezi ki z rctg - értéket. M. Vegyük észre, hogy z eddigiek során szób sem kerütek forgtónyomtékok!
6 6 ~ ( 8 ) képet át megfogmzott összefüggés kmt d forgtónyomték fogmánk bevezetésére és forgtónyomtéki egyensúyi kijeentés értemezésére. Ehhez írjuk át ( 8 ) egyenetet z ábbi kb: B F B F B F 0 B F 0 0. ( ) forgtónyomték ngyság = erő x erőkr d. Fizik! ; forgtónyomték forgásérteme: szbdon vászthtó; egyen pozítív forgásérteem z ór járásáv eentétes. Jeöés: z MF F ( b ) képet jeentése: z F erő ponton átmenő, rjz síkjár merőeges forgástengeyre vett forgtónyomtékát megkpjuk, h z F erőngyságot szorozzuk z F htásvonánk z -tó számított ( merőeges ) távoságáv, mjd e szorztot eőjee átjuk e, nnk megfeeően, hogy szóbn forgó forgtónyomték forgásérteme egyezik ( + ), vgy eentétes ( ) fevett pozitív forgásérteemme. Ezek szerint z ( ) egyenetben szerepő többi forgtónyomték értéke: MB B; M 0 0. ( c ) z ( ), ( b ), ( c ) képetekke írhtó, hogy M F M B M 0, ( d ) vgy tömören: 3 Mi 0. ( e ) i1 z ( e ) egyensúyi egyenet jeentése: egyensúy esetén merev testre htó összes erő tetszőeges forgástengeyre vett forgtónyomtékink gebri ( eőjeheyes ) összege: zérus. ~ Fevethető, hogy vjon nem véeten - e z ( e ) egyenet feépése. Ennek tisztázásár végezzünk eenőrzést, hogy fenná - e p. 3 P Mi 0 ( f ) i1 egyenőség!. ábr jeöéseive: B k B F 0 k 0. ( g ) Rendezve: k B B. k ( h ) Ismét. ábr szerint: k B t sin sin. k t sin 90 cos ( i )
7 7 ( h ) és ( i ) - ve : sin B, cos mi éppen ( 3 ) - t dj. Ez zt jeenti, hogy nyomtéki egyensúyi egyenet P pontr is tejesü. De emékszünk: ugynez z M metszéspontr is fenná, hiszen enné forgástengey - vásztásná mindegyik erő krj zérus. Látjuk tehát, hogy z ( e ) egyenet nem véetenü át eő. ~ Átábn is bizonyíthtó, hogy h zárt vektorpoigon zz esetén nyomtéki egyensúyi egyenet -- n i1 P i n Fi 0, mint itt i1 M 0 -- sík egyeten P pontjár tejesü, kkor bármey más pontjár is tejesü. [Ugynis: h z erőrendszer eredő erője zérusvektor, kkor eredő nyomték még nem fetétenü z, minthogy z eredő erőpár is ehet; de mive z eredő erőpár nyomték sík bármey pontjár, mint forgástengeyre ugynz, ezért h egy pontr zérus, kkor bármey más pontr is zérus.] Látjuk, hogy ez viszonyg nem tú bonyout fedt is jó ehetőséget dott nyomtékok, i. nyomtékok egyensúyi fetétei egyenetének bevezetéséhez. Ez zért is fontos épés, mert nem metsződő hnem párhuzmos htásvonú erők esetén ényegesen egyszerűbb z egyensúy biztosítás nyomtéki egyensúyi fetéte kmzásáv, mint néküe. c.) Speciáis esetek tgás Most vizsgájuk meg, hogy eddigi képeteink segítségéve miyen egyéb információkhoz juthtunk, kéttámszú trtók körében! Más szvkk: speciáis eseteket keresünk. fedt bemenő geometrii prméterei közü - t és α - t vátozttjuk, mjd vátozásuk htásit vizsgájuk, rekció - erőkre nézve, rögzített F és meett. I. α = 0, = vátozó esete Ekkor trtó vízszintes, úgy, hogy B támsz z támsztó jobbr táhtó. ( z eenkező esetet érdekteennek tekintjük.) ~ rekcióerők ngyság, ( 8 ) és ( 14 ) képetek szerint:
8 8 B F, ( I / 1) F 1 F 1 F 1. ( I / ) ~ rekcióerők irány: B ( I / 3 ) ( 10 ) képette: cos tg. sin Itt három - eset küönböztethető meg. 1.) 1 1 ; ekkor 0 meett: tg ; 0 ebbő következik, hogy ) 1 1 ; ekkor 0 meett: tg ; 0 ebbő következik, hogy ) ; ekkor 0 meett: tg ; 0 0 ebbő következik, hogy ( I / 4 ) ( I / 5 ) : htároztn eset. ( I / 6 ) 3 z I / 1, I /, I / 3 speciáis eseteket 3. ábr szeméteti.
9 9 I. / 1. eset: 1 B F, B 90 ; F 1 1, 90. I. /. eset: 1 B F, B 90 ; F 1 ; 90.. I. / 3. eset: 1 B = F, B 90 ; = 0, ábr II: α = 90, = vátozó esete Ekkor trtó függőeges, úgy, hogy B támsz z támsz feett táhtó. rekció - erők ngyság: ( 8 ) és ( 14 ) képetek szerint B F, ( II / 1 ) F 1. ( II / ) rekció - erők irány: B ( II / 3 )
10 10 ( 10 ) összefüggésse most tg ( II / 4 ) dódik. Itt két - esetet veszünk közeebbrő is szemügyre. 1.) 0, 0: ekkor ( II / 1 ) szerint: B 0; ( II / 5 ) ( II / ) szerint: F; ( II / 6 ) ( II / 4 ) szerint: tg, zz 90. ( II / 7 ).) = ; ekkor: ( II / 1 ) szerint: B F; ( II / 8 ) ( II / ) szerint: F; ( II / 9 ) ( II / 4 ) szerint: tg 1, zz 45. ( II / 10 ) II. átános, vmint II. / 1. és II. /. speciáis - eseteket 4. ábr szeméteti. B F F 1 B 180 tg = 0 = F 90 = B F F ábr
11 11 Megjegyzések: M1. II. átános eset vázt készítéséné figyeembe vettük, hogy z méret vízszintes, F htásvon pedig függőeges. hhoz, hogy ezt betrthssuk, fe keett venni függőeges rúdr merőeges krt / konzot, mey ekkor is biztosítj trtó és teher kpcsotát. M. II. esetben B támszt kettős görgőve ábrázotuk, hogy vízszintes rekcióerőt mindkét iránybn ki tudj fejteni. M3. Jvsojuk, hogy z Ovsó írj fe z α = 90 eset képeteit, és készítse e mgyrázó ábráját, z eddigiek pján! M4. Jvsojuk, hogy z Ovsó keressen további speciáis eseteket, és végezze e zok vizsgátát! M5. Hsznos ehet megfigyeni. ábráv kpcsotbn is követett ejárást: ~ ( jobb odi ) vektorábr pján összefüggéseket áítottunk fe z erők között d. pédáu z ( 1 ), ( ), ( 3 ) képeteket! ; ~ z ezen összefüggésekben szerepő szögek között ( b odi ) erendezési vázt dtink fehsznáásáv tátunk kpcsotokt d. pédáu ( 4 ), ( 5 ), ( 6 ), ( 7 ), ( 10 ), ( 11 ) képeteket! Jvsojuk, hogy z Ovsó miné több módon igzoj feírt összefüggéseket, i. vezessen e újbbkt, z dott és keresett mennyiségek között! Jó munkát! Sződiget, Összeáított: Ggóczi Gyu mérnöktnár
A befogott tartóvég erőtani vizsgálatához III. rész
A befogott tartóvég erőtani vizsgáatához III. rész Az I. részben a befogott gerendavéget merevnek, a tehereoszást ineáris függvény szerintinek vettük. A II. részben a befogott gerendavéget rugamasan deformáhatónak,
M M b tg c tg, Mókuslesen
Mókusesen A két egyforma magas fiú Ottó és András a sík terepen áó fenyőfa törzsén fefeé mászó mókust figyei oyan messzirő ahonnan nézve a mókus már csak egy pontnak átszik ára ára Amikor a mókus az M
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét
2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:
Tehetetlenségi nyomatékok
Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Függvények közelítése hatványsorral (Taylor-sor) Ha az y(x) függvény Taylor-sorának csupán az elsı két tagját tartjuk meg, akkor az
Füvénye özeítése htványsorr (Tyor-sor z heyen többször deriváhtó y( füvényt z pont örnyezetében jó özeíthetjü z dy( d y( d y( y( y( ( ( (! d! d! d véteen htványsorr. derivát értéét z heyen e számítni.
Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
A késdobálásról. Bevezetés
A késdobáásró Beezetés Már sok ée annak, hogy kést dobátunk, több - keesebb sikerre. Ez tisztán tapasztaati úton működött. Femerütek bizonyos kérdések, ameyekre nem kaptunk áaszt sehon - nan. Ezek pédáu
Két példa lineárisan változó keresztmetszetű rúd húzása
Két péda ineárisan vátozó keresztmetszetű rúd húzása Eőző dogozatnkban meynek címe: Hámos rúd húzása szintén egy vátozó keresztmetszetű, egyenes tengeyű, végein P nagyságú erőve húzott rúd esetét vizs
Castigliano- és Betti-tételek összefoglalása, kidolgozott példa
Castigiano- és Betti-téteek összefogaása, kidogozott péda Készítette: Dr. Kossa Attia kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék Frissítve: 15. január 8. Az aakvátozási energiasűrűség számítása egy
Lineáris egyenletrendszerek
Lieáris egyeetredszere dott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: b H z -ed redű égyzetes mátri reguáris rgj, i det, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius
Néhány egyszerű tétel kontytetőre
Néhány egyszerű tétel kontytetőre ekintsük z ábr szerinti szimmeikus kontytetőt! ábr Az ABC Δ területe: ABC' m,v; ( ) z ABC Δ területe: ABC m ; ( ) z ABC* Δ területe: ABC* m ( 3 ) Az ábr szerint: m,v cos
Ellenırzési nyomvonal
3.sz. meéket Eenırzési nyomvon z Ámháztrtás mőködési rendjérı szóó 217/1998. (XII. 30.) Kormányrendeet 145/B. (2) bekezdése kimondj, hogy z eenırzési nyomvon kötségvetési szerv szervezeti és mőködési szbáyztánk
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Harmonikus rezgőmozgás
Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei
Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás
SZÉCHENYI ISTVÁN EYETEM LKLMZOTT MECHNIK TNSZÉK 4. MECHNIK-STTIK YKORLT (kidolgozt: Trni ábor, mérnöktnár) Érdes testek - súrlódás 4.. Péld. dott: z ábrán láthtó letőn elhelezett test méretei és terhelése.
Sűrűségmérés. 1. Szilárd test sűrűségének mérése
Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél
Minta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
Térbeli pont helyzetének és elmozdulásának meghatározásáról - I.
Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
DEBRECENI EGYETEM Műszaki Kar GYAKORLATI FELADATOK Hajdu Sándor 2009. MŰSZAKI MECHANIKA I.
DERECENI EGYETEM Műszki Kr GYKORLTI ELDTOK Hjdu Sándor 2009. MŰSZKI MECHNIK I. 1 VEKTORLGER...2 2 ERŐK ÖSSZEGZÉSE, ÖSSZETEVŐKRE ONTÁS, NYGI PONTR HTÓ ERŐRENDSZEREK EGYENÉRTÉKŰSÉGE ÉS EGYENSÚLY...2 3 KÖTÖTT
Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
Óravázlatok: Matematika 2. Tartományintegrálok
Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.
Megint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z
Ellenállás mérés hídmódszerrel
1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint
Az integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
Parabola - közelítés. A megoszló terhelés intenzitásának felvételéről. 1. ábra
Paraboa - közeítés A kötéstatikáva aktívan fogakozó Ovasónak az aábbiak ismétésnek tűnhetnek vagy nem Hosszabb tanakoás után úgy öntöttem, hogy a nem tejesen nyivánvaó ogokró éremes ehet szót ejteni Iyennek
Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés
Háromszög egyelő területű szkszr osztás, számítássl és szerkesztéssel Bevezetés Az építészet szkrodlomb elég gykr előfordul címbel feldt, főleg kötőelemek kosztáskor. Ezek lehetek szegek, csvrok, betétek,
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
/0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:
Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
Korpuszbútor hátfalrögzítő facsavarjainak méretezéséről
Koruszbútor hátfarögzítő facsavarjainak méretezésérő Páyám korai szakaszában köze kerütem bútorszerkezetek erőtani számításaihoz is. Az akkoriban feehető egyébként nagyon kisszámú hasznáható szakirodaom
2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat
Gyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
11. évfolyam feladatsorának megoldásai
évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor
Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.
5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:
Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
Vontatás I. 1. ábra. A feladat
Vontatás I. Érdekes, de a mechanikai szakirodaom tanumányozásának évtizedei során aig taákoztam vontatássa kapcsoatos munkákka. Persze, egynéhánnya igen [ 1 ], hiszen ez ekerüheteten pédáu a pótkocsis
Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m
Hegyesszögek szögfüggvényei Feldt: Kovás slád hétvégén kirándulni ment. Az útjuk során egy 0 -os emelkedőhöz értek. Milyen hosszú z emelkedő, h mgsság 45 méter? Megoldás: Rjzoljuk le keletkezett háromszöget!
Kábel-membrán szerkezetek
Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai
DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK
we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így
f (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.
modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot
Végeselem modellezés. Bevezetés 2012.02.20.
Végeselem modellezés Bevezetés 1 21222 Számítógéppel segített szerkezettervezés Szerkezetmegdás, CAD rjzolás dtbevitel módosítás Méretezés, tervezés VEM dtbevitel ellenőrzés Részletek kidolgozás AutoCAD
4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
HÁZI FELADAT megoldási segédlet Relatív kinematika. Két autó. 2. rész
HÁZI FELDT megoldási segédlet Reltí kinemtik Két utó.. rész. Htározzuk meg, hogy milyennek észleli utóbn ülő megfigyelő z utó sebességét és gyorsulását bbn pillntbn, mikor z ábrán ázolt helyzetbe érnek..
Törésmechanika. Statikus törésmechanikai vizsgálatok
Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken
Laplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
A vezeték legmélyebb pontjának meghatározása
A ezeték legméle pontjánk megtározás Elődó: Htiois Alen E 58. Vándorgűlés Szeged,. szeptemer 5. Vízszintes és ferde felfüggesztés - ezeték legméle pontj m / > < B Trtlom. Lángöre és prol függének A C m
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája
8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe
Improprius integrálás
Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, egy. ts.) III. eőadás. Közeítő megodások, energiaevek:.. A tejes otenciáis energia
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
Nyomott oszlopok számítása
zéhenyi István Egyetem zerkezetépítési és Geotehniki Tnszék 5 6.GYAKORLAT yomott oszlopok számítás 1. Külpontosn nyomott oszlop (kiskülpontos nyomás) 1.1 Ellenőrzés normálerő tervezési értékéhez trtozó
GAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Nagy Örs, BBTE, MIK Matematika-informatika szak, IV. év
XI. Erdéyi Tudományos Diákköri Konferencia Matematika szekció Ponceet záródási tétee Szerző Nagy Örs, BBTE, MIK Matematika-informatika szak, IV. év Témavezető Dr. András Sziárd, adjunktus BBTE, MIK, Differenciáegyenetek
ε = = Nyugalmi indukció, a Faraday Lenz-törvény
TÓTH A: Eektromágneses ukció/ Nyugami ukció, a Faraday enz-törvény Az evégzett kíséretek aapján sejthető, hogy egy nyugvó vezető hurokban étrejött ukát áram a mágneses ukcióvektor nagyságának vátozásáva
Szinusz- és koszinusztétel
Szinusz- és koszinusztétel. Htározzuk meg z oldlk rányát, h α 0, β 60. α + β + γ 80 γ 80 α β 80 0 60 90 A szinusztételt felhsználv z oldlk rány: zz : : : sin β : sin 0 : sin 60 : sin 90 : : : : : :. Htározzuk
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, eg. ts.) IV. eőadás. Közeítő megodások, energiaevek:.4. Ritz-módszer,.4.. Lineáris
MARADÉKANOMÁLIA-SZÁMÍTÁS
MARADÉKANOMÁLIASZÁMÍTÁS **'* Kivont STEINER FERENC" okl középiskoli tnárnk Nehézipri Műszki Egyetem Bánymérnöki Krához benyújtott és elfogdott doktori értekezéséből Az értekezés bírálói: Dr csókás János
Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
VI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Kiegészítés a három erő egyensúlyához
1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen
4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!
Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük
1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből
1. Feadatok rugamas és rugamatan ütközések tárgykörébő Impuzustéte, impuzusmegmaradás törvénye 1.1. Feadat: Egy m = 4 kg tömegű kaapács v 0 = 6 m/s sebességge érkezik a szög fejéhez és t = 0,002 s aatt
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 2. FIZ2 modul. Fizika feladatgyűjtemény
Nyugt-mgyrországi Egyetem Geoinformtiki Kr Csordásné Mrton Melind Fiziki példtár 2 FIZ2 modul Fizik feldtgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket szerzői jogról szóló 1999 évi LXXVI törvény
9. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.)
ZÉCHENYI ITVÁN EGYETEM LKLMZOTT MECHNIK TNZÉK 9. MECHNIK-MOZGÁTN GYKOLT (kidogot: Néeth Ire órdó tnár Bojtár Gerge egetei ts. üe Veronik eg. ts.) Tehetetenségi notékok tejesítén energi 9/. fedt: Tehetetenségi
Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
Végeredmények, emelt szintû feladatok részletes megoldása
Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú
KÁROLYHÁZY-FELADATOK AZ EÖTVÖS-VERSENYEN IV. RÉSZ ELEKTROMOS ÁRAM
pen fefedezett égitesten vn-e, ehet-e éet, és z értemes éet-e Ez zonbn küön tudományág, z sztrobioógi fogkozik ezekke kérdésekke Vnnk más módszerek is, meyekke exoboygókt táhtunk, de z emítettek egjeentôsebbek
A torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
A magától becsukódó ajtó működéséről
1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:
Excel. Feladatok 2015.02.13. Geotechnikai numerikus módszerek 2015
05.0.3. Ecel Geotechniki numerikus módszerek 05 Feldtok Szögtámfl ellenőrzése A Ferde, terhelt térszín, szemcsés háttöltés, elcsúszás, nyomtéki ábr Sávlp süllyedésszámítás B Két tljréteg, krkterisztikus
A VI. FEKETE MIHÁLY EMLÉKVERSENY
A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.
Oktatási Hivatal. A 2012/2013. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása. I. kategória
Oktatási Hivata A 2012/2013. tanévi FIZIKA Országos Középiskoai Tanumányi Verseny döntő forduójának megodása I. kategória ELTE Anyagfizikai Tanszék Budapest, 2013 ápriis 13. Forgó hengerekre heyezett rúd
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Fizika A2E, 10. feladatsor
Fizik AE, 10. feltsor Vi György József vigyorgy@gmil.com 1. felt: Niels ohr 1913-bn felállított moellje szerint hirogéntombn középpontbn lév proton ül egy elektron kering, ttól = 5,3 10 11 m távolságbn,
Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük
Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált