Lineáris egyenletrendszerek
|
|
- Etelka Borbélyné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Lieáris egyeetredszere dott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: b H z -ed redű égyzetes mátri reguáris rgj, i det, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius módszer étezi: Diret ejárás, mey z egyeetredszert eemi átításo oy r hozz, ho megodáso özveteü eovshtó Iterációs ejárás, mey dott ezdeti értéebő iiduv özeítő megodáso oy soroztát dj, mey megodásához overgá Mtb progrmb h meg v dv z és b mátri, megodást utsításs számítju i =\b Diret ejáráso Guss eimiáció z egyeetredszert eemi átításo soro fecseréése, egy sor szorzás uátó üöböző számm, egyi sor hozzádás egy mási sorhoz úgyevezett épcsős egyeetredszer jár hozzu feső háromszögmátri: U c, ho U r r r r r r z ejárás - eimiációs épésbe törtéi H eeező esetbe sort cseréü, z együtthtómátri i-edi sorábó ivoju z eső sor i -szeresét i,,,, Vgy mátri b:
2 szorozzu -t - mátrisz i mjd z eső sort vátoztu hgyv z ejárást foyttju többi sorr z evives átításobó dódó és megodás ugy z, meyet visszfeé hdv r c -bő heyettesítésse mid megphtu: i i ii ii i r c r, i=-, -,, Péd Hjtsu végre z dott egyeetredszere Guss-eimiciot! 8 5 Megodás Egyeete megodásor bevett gyort, hogy midét odo zoos műveeteet végzü z iduó eimiációs tábázt övetező ú ibővített együtthtó mátri: B 5 8 * hhoz, hogy z eső oszopb főátó tti eeme etűjee, z eső épésbe *-t szorozzu - mátrisz: / / B / / ** Már cs hrmdi sor másodi eemét e uává vátoztti, ehhez szorozzu **-et - mátrisz:
3 /5 B / Ie zt pju, hogy 8 5, visszheyettesítésse pedig z dódi, hogy 5 75* 95, * 5 Háromszög-ftorizáció LU-febotás z LU ftorizációs módszer evezethető Guss módszerbő, ugyis h Guss módszerbe ismert szorzó e segítségéve megszeresztjü z eemi sóháromszög mátriot: or ho iterációb, Guss módszerre geerát mátri = Tehát U ho U z mátri egyszerű szerezetée öszöhetőe öye iszámíthtó z iverze:
4 és igzohtó, hogy L *** vgyis ***-bő = LU Péd: Htározzu meg z mátri LU-febotását 5 7 Megodás: Kidogozott péd: >> =[ ; -; - -7; ] =
5 >> P=[ ; ; ; ] % P permutáció mátri fecseréi z eső és - edi sort P = >> =P* = >> =[ ;-/ ;-/ ; ] = >> =* =
6 >> =[ ; ; 6667/6667 ; -/6667 ] = - >> =* = >> =[ ; ; ; 59999/9999 ] = >> =* = Visszheyettesítés >> =-/56 = -
7 >> = */9999 = >> =--5*-6667*/6667 = >> =6-*+6*+5*/6 = -5 Péd Hjtsu végre z dott egyeetredszere Guss-eimiciot! 5 5 ; ; ; Megodás: z iduó eimiációs tábázt övetező ú ibővített együtthtó mátri: 5 5 Ie zt pju, hogy
8 visszheyettesítésse pedig z dódi, hogy ; z eőző ejárásbó dódi, hogy mide reguáris mátrir mzhtó z úgyevezett háromszög-, vgy LU-ftorizáció: P=LU, ho U r r r r r és r L, Feső i só háromszögmátri upper i ower trigur mtri, P pedig egy oy permutációs mátri, meye mide soráb és mide oszopáb potos egy eem, többi mid P írj e z sorcseréit Defiíció: Permutáció mátri NN - es : permutáció mátri fecseréi z i - edi és j - edi sort Megjegyzés: P ij em sziguáris, és beáthtó, hogy P P Ee segítségéve egyeetredszer megodását három épésbe írhtju e: P LU : háromszög-ftorizáció végrehjtás Ly Pb : z y meghtáozás U y : z megodás meghtározás visszfeé heyettesítésse ij ij
9 H ieáris egyeetredszer megodásáá b ibővített együtthtó mátrir Gussgoritmust mzzu, z L só háromszögmátriot em hszáju L-t htásos mzhtju or, mior egyszerre több oy ieáris egyeetredszert e megodu, meyee ugyz z együtthtó mátri, de b jobb od üöböző vetoro Egy mátri febotás Mtb progrmm: [L,U]=u y = L\b; = U\y; [L,U,P]=u y = L\P*b; = U\z; ho P mátri permutációs mátri, ie: P=LU Péd: >> = [ 6 ; 5 5; ]; >> b = [ 6]'; >> [L,U] = u; >> y = L\b; >> = U\y = Péd: >> =[ -; 9 -;- - 7]; >> [L,U,P]=u L =
10 U = P = Choesy FELBONTÁ H z mátri szimmetrius és pozitív defiit, or z LU febotás U T U T U L b étezi, tehát ho L só háromszögmátri, meye digoáis eemei pozitív számo em fetéte egyese z iye febotást Choesy febotás hívju Choesy goritmus: tárgyt goritmuso z L mátriot eemrő-eemre számojá i övetező épete pjá: L főátóbei eemeit így számoju: ii i ii i L főátó tti eemeit i j pedig így: ji ij i i j i, j ii z goritmus: H mátri:
11 Péd: Áítsu eő z mátri Choesy-febotását! Megodás: Mive mátri szimmetrius, febotás megvósíthtó Choesy goritmus segítségéve eresett L mátri tehát mátri esz Choesy febotás Mtbb Mtbb övetező épésee odhtju meg Choesy febotás pjá: >> = [ ; ; ]; >> b = [9 8 9] ;
12 >> R = cho R = >> = R\y =
Lineáris egyenletrendszerek
Lieáris egyeetredszere Adott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: A b H z A -ed redű égyzetes mátri reguáris rgj, i deta, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius
A Gauss elimináció ... ... ... ... M [ ]...
A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer
Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é
Lineáris algebrai alapok *
Lieáris geri po * dieziós átri: z soró és oszopó áó ós szátáázt. Jeöés: dieziós etor z soró és oszopó áó átri. Jeöés:, ho i z i-edi oordiát., ho i z i-edi sor -edi eee. dieziós etor z z dieziós etor, eye
különbözõ alappontok, y, y,..., y értékek. : függvény.) ( x)
7 Iterpoácó poomo Legee [ ] (Átá ho [ ] IR üöözõ ppoto IR értée : üggvé ( O Ρ (egee -edoú poomot eresü mere ( ( 7 Téte! Ρ mere Bzoítás meghtározás és z egértemûség zoítás htározt egütthtó módszeréve törté
1. Hibaszámítás Hibaforrások A gépi számok
Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi
é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám
PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1
PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)
19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
II. Lineáris egyenletrendszerek megoldása
Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
1. Fejezet A sorozat fogalmának intuitív megközelítése
SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy
Három erő egyensúlya kéttámaszú tartó
dott: z 1. ábr szerinti kéttámszú trtó. Három erő egyensúy kéttámszú trtó 1. ábr Keresett: ~ rekcióerők vektor, szerkesztésse és számításs, z ábbi dtok esetén ; ~ speciáis esetek tgás. dtok: F = 10,0 kn;
É É Ó É É ő É É Ú É É ő Ú Ú Ó Ü ő É Ü É Ó ő É Ó Ú Ö Ö Ó ő Ó Ú Ú Ó ő Ú Ú É É É É Ü É Ó É É É Ó É Ó É Ú É É É Ó É ő ő ű ő ő ő ő ő ő ő Ú ű Ú ő ő ű ő ő ű ű ő Ú Ü ő Ú Ú ő Ú Ú ő ő ű ő ő ő ő ű ű ő ő Ü ő ű ő ő
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
_. Bevezetés iesztési red, iterpoáió, eemtípuso Végeseem-módszer Mehaiai eadato matematiai modejei Poteiáis eergia áadóértéűségée tétee: Lieárisa rugamas test geometriaiag ehetséges emozduás-aavátozás
( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + +
4 85 Impliit Euler módszer A diszretizáiós elöléseet szálv z impliit Euler módszer l: dott : Motiváió: A derivált özelítésére gr szálu dierei ádost: Felszálv z egeletbe: Ie átredezve vgis eg impliit ormulát
1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b
XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés
24. tétel Kombinatorika. Gráfok.
Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
Szemléletes lineáris algebra - összefoglaló I. mérnökhallgatónak. Segédanyag az NGB_SZ003_2, N_SZ45 és N_SZ14 tárgyakhoz
Szemléletes lieáis lgeb - összefoglló I. méöhllgtó Segédyg z NGB_SZ_, N_SZ5 és N_SZ tágyhoz összeállított: D. Szöéyi Milós főis. doces 8. Ttlom:. Lieáis té. Tájéozódás lieáis tébe Lieáis ombiáció Lieáis
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai
A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi
Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
Á ó Á Ü É Ú Í Á í ó ó ó ó ó ó ö őí ó ó ü ű í ó ő ú ö ő ó ó í ó í ó ó ő í í í Í ó ó ó ö ó ó í ó í ö í ó ű í Íő ó ó ó ő í ó ő í ó ó ő í ö ó ü ö ó í ü í í ű ó ö ó í ó ö ö ö í ő í ó ó É É í ő ő í í ü ö í í
Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú
É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í
ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö
É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á
ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő
ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö
Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö
823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.
Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (
ő ľü ó Ö ľ ő ź ź ő ľ ő ľ ľ ľ ü í ľ ö ő ľ ő ó ő í ľ ü ľ ö ü í ú í ó ú ó ó ú ó ő í í ű ľó ü ľ ö ö ö ó í ü ű Íć ű ö ö ź ę ő ö ü ő ö ő ö ö í ő ü ľ ő ü ö ź ź ó ó ő ü ľ ľ ö źľő ő ő í ó ó Ł ł ü ű ü ú í ü ź ó
ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é
ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6
9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz
Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö
ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö
ő Ö ő ü ő ó Ó Ő ü ü ő Ö ó ó ű ó ó ó ó ő ő ő ó ó ő ő ő ó ő ő ő Ö ő ü Ő Ö ü ő Ö ó ő ü ü ő ő ő ő ő Ö ó ü ő ő ő ü ü ó ó ó ó ü ő ő ő Ő ü í ő ü ő ü í ó ő í ő Ö ő ó Ö ő ó Ó Ö Ö Ű ő ó Ö Ö ő ő ő ó ő ő ó Ó ó ő ő
Lineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
Döntéselmélet, döntéshozatal lehetséges útjai
Dötéselmélet, dötéshoztl lehetséges útji AOK - Rezides képzés Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási
(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.
Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N
ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ
Í Á Ó É é ü ö ö é Ö é ü é ő ő é ő ő é é ő ö ó é ó é é é ő í ő ő ö ö é é í ő ú é ő é ü ö ö é ó é é í é é ő é é ü í ő í é í é ő é ü ö é ő é é í é é í é é ó ő ő é ö é ő é ő í í é ő ő ó ö É ó É Á É Í É ü ú
Hatványozás és négyzetgyök. Másodfokú egyenletek
Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x
Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)
INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu
Vektorok, mátrixok. n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. az i-edik sor j-edik. , ahol b i
Biomtemtik I. (SZIE ÁOTK zoológs szk) Hros Adre - Reiczigel Jeő, ősz Vektorok, mátriok m dimeziós mátri: egy soról és m oszlopól álló számtálázt. m m m Jelölés: A A, hol i z i-edik sor -edik m eleme. dimeziós
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
5 tengelyű robot kinematikai és dinamikai vizsgálata
Kovács E., Füvesi V.: tengeyű robot inematiai és dinamiai vizsgáata, Dotoranduszo Fóruma 7, Gépészmérnöi és Informatiai Kar szecióiadványa, Misoc, Misoci Egyetem, 7, pp.. tengeyű robot inematiai és dinamiai
Olimpiai szakkör, Dobos Sándor 2008/2009
Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly
ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK
ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):
É ú ő ú Ö ő ü ü ú í í ö ő ő ő ü ć í Í ú í ű ü ő ő í ő ő ő ö ő í í ú í ű Ĺ ő í ő ő ú ő Ĺ ő Í í ő Ĺ ú ú í ű Í ü ő ő ę ü í í í í í ö Ĺ ő ö ő í ö ű Í ö ú í ű ő ö ú ú Ö ü ö í ö ű Ü ű ö ú Ö ü ę ę ő ú ü ę ő ö
ő ó ü ö ő ö ö ő ö ó ű ö ő ó ó ü ő ü ö ű ö ő ó ó ő ö ö ó ő ö ö ő ű ö ő ű ö ö ő ő ő ö ö ú ó ö ö ö ő ő ó ő ü ó ó ű ö ö ü ő ü ö ő ü ő ó ű ö ö ö ó ö ö ö ü
ú ő ö ó ő ü ö ó ó ó ö Ö ú ó ó ó ö ő ö ő ö ő ö ú Ö ó ó ű ö ő ó ö ű ö ö ő ö ó ű ö ő ö ő ö ú ü ű ö ő ó ö ő ö ó ö Ó ű ö ő ö ó ü ú ú ö ö ü ü ö ü ú ő Ű ö ő ö ú ó ű ü ő ö ő ü ö ü ő ó ü ú ü ö ö ó Ó ó ó ő ü ö ö
É É É Á Ő É Ű ÖÉ í ö ű ü ö í ö í ö ü ö ö Á Á Í É Ű ö É Á ö í ű ö ü ö ü ű ö ű ö ű ö í ö í ö í í Á Á ö ú ö ö ö ö ü ö ö ű í í ü ö ü í ö í í í ö ö ú ű í í í í Á Á ö ö ö ú ü í í í üü ö í í ü í ö í í í ö ö í
1. példa. 2. példa. értelemszerően. F 2.32. ábra
. péld Htározzu meg z.. árán láthtó tégllp lú eresztmetszet és y tengelyre számított másodrendő nyomtéit! d dy (.) épler szerint y dy y d y 0 0 értelemszerően y. péld Steiner-tétel (.. éplet) llmzásávl
Ú ó Ó Ú É Á Á É Á É Ó Í É Ö Í Ú ő ó ű é ó ó é é ö ö ő Ú ő ó Ú É Á é é é é ő ó ű é ő é ű é ó ű é é ő ó ű é é ö ö é ó é é é é é é é ó ű é é ű é ó é é é é é ú ű é é é ü é é é é ü ó é é é ö é Í ö ú ü ö ö é
É Ö É É Ú ü É Ü É ü Ü ü
É Ö É É Ú ü É Ü É ü Ü ü ü É ü ü ü ü Ü ü Ü Ü ü Ü ü ü ü ü ü ű ű ü ü ű ü ü ü ü ü ü Ü ü ű Ö ü ü Ö ű ü Ö ü ü ü Ö ü ü Ö ü ü Ö ü Öü Ú Ö ü ü Ö Ö ű ü ü ű ü ü Ö ü É ü ü ü É ű ü ü ü ü ü Ö ü ű ü Ö ü ü Ö ű ű ü ü ü
(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---
A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris
Emelt szintő érettségi tételek. 10. tétel Számsorozatok
Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.
Matematika A1 vizsga elméleti kérdések
Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.
é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é
é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü
í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é é ü ö í ü é í é í ó ö ö ö Ó í ó ó ö í ő óá Ü ü ö í ü ü é ő ű é é é é é ü í é é í é é ö
ö É Á É É í ó Á Á É ó É í ű í é é é í é é ő ó é é ü é ó é í é é í É é é í í é ó ú í öó ó ó é ö ó ő é í ó öó é é é ü é í é ó é é é í é é í í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é
ľ ü í í ö ő ő ö Ü Ü í ü ü ő ľ ő ľ Ĺ ľ ę ú ö ľü ö ü ö Ĺ í í í ö ý Á ú í ú í ö ü í í í í ä ľ ú ő ö ö ő ü í ű ö ö ö í ő ľ ő ľ ő ü ű ö ö ľ ú í í í ö í ő ö
ő ľ ľü Í ľ ľ ľ ęô ő ü Ü Ü ľ ľ ľ ľ ö ľü ľ íľ ő ľ ő Ĺ ő í ü ő ö í ü ö ľ ń ú ő ő ü ö ü ę Á Ĺ Ú ő ü í ü Ĺ ő ę ő ľ ö ü Ĺ ű ö ä ö ö ü ü ľ Á ę ľ ő Ĺ ű ö ü ö í ö ęľ ę í ü ť ę ť ö ľü ľ ő í ä ő í đě Ü Ü ý ö ü ö
Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
n természetes szám esetén. Kovács Béla, Szatmárnémeti
osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Á Á É Á Á É ö ó ő ő ó ó ó é ö é ö ú ó ó ó é ö é é ő ö ú é ö ő é é ő é ó É ő ó é Ü ö é ó é é é é é ó óö é ő ő é ó é é é ó óö é é ö é é ő é ű ó é ö é ő ú ö é é ö ö é ő ö ö Í ö é ö ö é ü Í ö é é é ó é é ő
ő Í é ő Ö Á ö ő Í é ő ö é é í é ü é ú é ű Í ú ö é ű í é ő í ő é ő í é ő Í é ő ő Í í í é é é é í ü ő é ú ö é ö í é é é é é ö é ű é é é é é é é é é é ö é ö é é é í é ú é é é é í é é ő é é í é é í í ú é ú
ő ö ó ü ü ó ö é é ó é ü é é ő ö ö Ö ó é é ó ö ó ő ö é ő ö é ő ö é ő ö é ő ó ó ó í é é ü ő í ö ö ö í é ő ü é ö é ő ő é é ó é ó ü ó é ő é é íé í ő é é é
Á ö ö Á É ó ü É ó ö í ü é é ő ö é Ö é ö é é é ő ó ó ö ó ő ó é ó í ö ú ö é é ó é é ő ő ő í ó é ó ő ó é é é ó ó ő ó é ó é é í ő é ü ö Ó ö ü ő ő í é é ó é é ő é ő ő ó é ó ő ó ö ö ő ó é ó ó ő í é ű é í é é
= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em
Függvények közelítése hatványsorral (Taylor-sor) Ha az y(x) függvény Taylor-sorának csupán az elsı két tagját tartjuk meg, akkor az
Füvénye özeítése htványsorr (Tyor-sor z heyen többször deriváhtó y( füvényt z pont örnyezetében jó özeíthetjü z dy( d y( d y( y( y( ( ( (! d! d! d véteen htványsorr. derivát értéét z heyen e számítni.
é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é
ó ü É Í É Á ú Ü Ü é ó é ö ú óé ü é í é éü Á í é ű é í óé é ú ó ü ó é í é é ú ö é é í í ú ő é í ű ó ó é é í é é é í é ű é í é é é é ü ö ú ó ű é é ó é ö ö ő í őí é é ö ó é í é É é őí é í é ű ő é é í óé ű
3.4. gyakorlat. Matematika B1X február 1819.
3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága
1. Házi feladatsor Varga Bonbien, VABPACT.ELTE
. Házi feldtsor Vrg Bonbien, VBPCT.LT. Feldt: feldt szerint z ellipszis istengelye ngytengelye b. Prméterezzü z ellipszist z lábbi módon: x = b cos t zz: y = sin t r(t) = b cos t sin t z ismert éplet szerint
LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0
www.esymths.hu mtek ilágos oll Mosózi Arás LINEÁISAN FÜGGETLEN ÉS LINEÁISAN ÖSSZEFÜGGŐ VEKTOOK esymths.hu DEFINÍCIÓ: A... ektorok lieáris összefüggők, h... úgy is teljesül, hogy oly i Nézzük ezekre péákt!
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
í ő ö í ö ő Ĺ ź í í Ĺ ź ű ź Ĺ ö ü ú ö ő ö í ü ö ü í ú ő ź đ Ü Ĺ ź ź í ö ő ü ő ő ü ü ź í ü í ü ö ü ö Ĺ ź ő Í Ĺ ö ü ź í ö í ö í í ú ö ü í ő ü ő ę ú í í
ő ü ő ü ď ü Ą ő ő đź Ü ü ü ö ü í ő ő ź ő í ü ę ö ü ü ú ő ő ü í ü ź ő ź ő ö ö ü Ü Ą ń ź ę ő ö ü É ü ő ő ö ü ö ü ö ü ö ü ö ü í í ő í ü ő ö ü ú Ĺ ő ď ü ź ď ú ü ö ö ö ü í ö í ü ö í ő ö í ö ő Ĺ ź í í Ĺ ź ű
ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é
Á Ö É Ö Á É Ó Ü É ö í ü é é ö é Ö é ö é é é é é é ú ö é ö í é é é ü é í ö ű ö é í ú ö Á é é é é ö é é é ö é é í é é é ö é é ü é íé é ü é í é í é é é é é ű ú é ü ú é é é ö ö ű é é é é ö é é é é ö é ü ö
Ellenırzési nyomvonal
3.sz. meéket Eenırzési nyomvon z Ámháztrtás mőködési rendjérı szóó 217/1998. (XII. 30.) Kormányrendeet 145/B. (2) bekezdése kimondj, hogy z eenırzési nyomvon kötségvetési szerv szervezeti és mőködési szbáyztánk
ACTA CAROLUS ROBERTUS
ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése
g x ugyanabba az halmazba kerüljön mint különböző módon tehetjük meg. A feladat állítása alapján igazolnunk kell, hogy ( ) n m m
A itűzött feldto megoldási X osztály 47 g ugybb z hlmzb erüljö mit figyelembe veü, hogy ( H -vel jelöljü z elemeie számát, or ezt j A j ülöböző módo tehetjü meg A feldt állítás lpjá igzolu ell, hogy m