Lineáris egyenletrendszerek
|
|
- Réka Budai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Lieáris egyeetredszere Adott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: A b H z A -ed redű égyzetes mátri reguáris rgj, i deta, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius módszer étezi: Diret ejárás, mey z egyeetredszert eemi átításo oy r hozz, ho megodáso özveteü eovshtó Iterációs ejárás, mey dott ezdeti értéebő iiduv özeítő megodáso oy soroztát dj, mey megodásához overgá A Mtb progrmb h meg v dv z A és b mátri, megodást utsításs számítju i =A\b Diret ejáráso Guss eimiáció Az egyeetredszert eemi átításo soro fecseréése, egy sor szorzás uátó üöböző számm, egyi sor hozzádás egy mási sorhoz úgyevezett épcsős egyeetredszer jár hozzu feső háromszögmátri: U c, ho r U r r r r r Az ejárás - eimiációs épésbe törtéi H eeező esetbe sort cseréü, z A együtthtómátri i-edi sorábó ivoju z eső sor i -szeresét i,,,, Vgy mátri b:
2 szorozzu A-t - mátrisz i mjd z eső sort vátoztu hgyv z ejárást foyttju többi sorr Az evives átításobó dódó és megodás ugy z, meyet visszfeé hdv r c -bő heyettesítésse mid megphtu: i i ii ii i r c r, i=-, -,, Péd Hjtsu végre z dott egyeetredszere Guss-eimiciot! 8 5 Megodás Egyeete megodásor bevett gyort, hogy midét odo zoos műveeteet végzü Az iduó eimiációs tábázt övetező ú ibővített együtthtó mátri: B A 5 8 * Ahhoz, hogy z eső oszopb főátó tti eeme etűjee, z eső épésbe *-t szorozzu - mátrisz: / / B A / / ** Már cs hrmdi sor másodi eemét e uává vátoztti, ehhez szorozzu **-et - mátrisz:
3 /5 B A / Ie zt pju, hogy 8 5, visszheyettesítésse pedig z dódi, hogy 5 5* 95, * 5 Háromszög-ftorizáció LU-febotás Az LU ftorizációs módszer evezethető Guss módszerbő, ugyis h Guss módszerbe ismert szorzó e segítségéve megszeresztjü z eemi sóháromszög mátriot: or A A ho A iterációb, Guss módszerre geerát mátri A = A Tehát A A U ho U A Az mátri egyszerű szerezetée öszöhetőe öye iszámíthtó z iverze:
4 és igzohtó, hogy L *** vgyis ***-bő A = LU Péd: Htározzu meg z A mátri LU-febotását 5 A Megodás: Kidogozott péd: >> A=[ ; -; - -; ] A =
5 >> P=[ ; ; ; ] % A P permutáció mátri fecseréi z eső és - edi sort P = >> A=P*A A = >> =[ ;-/ ;-/ ; ] = >> A=*A A =
6 >> =[ ; ; 666/666 ; -/666 ] = - >> A=*A A = >> =[ ; ; ; 59999/9999 ] = >> A=*A A = Visszheyettesítés >> =-/56 = -
7 >> = */9999 = >> =--5*-666*/666 = >> =6-*+6*+5*/6 = -5 Péd Hjtsu végre z dott egyeetredszere Guss-eimiciot! 5 5 ; ; ; Megodás: Az iduó eimiációs tábázt övetező ú ibővített együtthtó mátri: Ie zt pju, hogy
8 5888 visszheyettesítésse pedig z dódi, hogy ; Az eőző ejárásbó dódi, hogy mide reguáris mátrir mzhtó z úgyevezett háromszög-, vgy LU-ftorizáció: PA=LU, ho U r r r r r r és L, Feső i só háromszögmátri upper i ower trigur mtri, P pedig egy oy permutációs mátri, meye mide soráb és mide oszopáb potos egy eem, többi mid P írj e z A sorcseréit Defiíció: Permutáció mátri NN - es : A permutáció mátri fecseréi z i - edi és j - edi sort Megjegyzés: P ij em sziguáris, és beáthtó, hogy P P Ee segítségéve egyeetredszer megodását három épésbe írhtju e: PA LU : A háromszög-ftorizáció végrehjtás Ly Pb : Az y meghtáozás U y : Az megodás meghtározás visszfeé heyettesítésse ij ij
9 H ieáris egyeetredszer megodásáá Ab ibővített együtthtó mátrir Gussgoritmust mzzu, z L só háromszögmátriot em hszáju L-t htásos mzhtju or, mior egyszerre több oy ieáris egyeetredszert e megodu, meyee ugyz z A együtthtó mátri, de b jobb od üöböző vetoro Egy A mátri febotás Mtb progrmm: [L,U]=uA y = L\b; = U\y; [L,U,P]=uA y = L\P*b; = U\z; ho P mátri permutációs mátri, ie: PA=LU Péd: >> A = [ 6 ; 5 5; ]; >> b = [ 6]'; >> [L,U] = ua; >> y = L\b; >> = U\y = Péd: >> A=[ -; 9 -;- - ]; >> [L,U,P]=uA L =
10 U = P = Choesy FELBONTÁ H z A mátri szimmetrius és pozitív defiit, or z LU febotás A U T U T U L b étezi, tehát ho L só háromszögmátri, meye digoáis eemei pozitív számo em fetéte egyese Az iye febotást Choesy febotás hívju Choesy goritmus: A tárgyt goritmuso z L mátriot eemrő-eemre számojá i övetező épete pjá: L főátóbei eemeit így számoju: ii i ii i L főátó tti eemeit i j pedig így: Az goritmus: H A mátri: ji ij i i j i, j ii
11 Péd: Áítsu eő z 6 A mátri Choesy-febotását! Megodás: Mive A mátri szimmetrius, febotás megvósíthtó Choesy goritmus segítségéve A eresett L mátri tehát mátri esz Choesy febotás Mtbb A Mtbb övetező épésee odhtju meg Choesy febotás pjá: >> A = [ ; ; ]; >> b = [9 8 9] ;
12 >> R = choa R = >> = R\y = Iterációs ejáráso Teitsü A b Teitsü z A M N febotást, eor M N b M Nb dódi, mey ieáris egyeetredszere eseté ieáris iteráció fogozu, meye átáb feírhtó Teitsü z M N M b A D L U
13 febotást, ho L só háromszög mátri, D digoáis mátri, U feső háromszög mátri A Mtb progrmb h meg v dv z A és b mátri, febotást övetező utsításs számítju i: >> U = triua, >> L = tria,- >> D = digdiga Jcobi-ejárás Botsu fe A-t övetező módo: M D N L U Így tetszőeges -bó iiduv épezhetjü özeítő megodáso soroztát Koordiátáét írv: D LU D b Tegyü fe, hogy z egyeetredszer együtthtó mátriáb főátóbei eeme midegyie uátó üöböző Eor z i-edi sorb z i ismeretet ifejezhetjü, mibő övetező iterációs formu dódi z iterációs ide: b i=,,, i i i ii i ii =,,, ;, ezdeti értée,, Ezt z ejárást tejesépés ejárás is evezi,, mert z új + vetor vmeyi ompoesét vetor ompoeseibő számítju A Jcobi-ejárás tetszőeges ezdeti vetor eseté or overgá, h: m i i i ii oszopösszeg-fetéte vgy m i i i i ii sorösszeg-fetéte tejesü
14 Péd: Legye Amzzu z A = b ieáris egyeetredszerre Jcobi-iterációt! Megodás Láthtó, hogy z A mátri em átós domiás ii ij, j i j ji Redezzü át z egyeetredszerüet övetező r: Láthtó, hogy z együtthtó mátri digoáis domiás, így z ejárás overges esz Ie Jcobi-iteráció: Iduju e z ezdővetorbó,,, Iteráció 9 85, 9, , 9 Iteráció ii ij
15 9 859,, , Jcobi-iteráció Mtbb A övetező függvéy megdott A mátriú, b jobb odú ieáris egyeetredszer és ezdeti érté megodását áítj eő Jcobi-iterációv miter számú épésbe fuctio = Jcobi_itA,b,, miter D = digdiga; T = D-A; for = :miter = D\T*+b =; ed Az iterációt úgy is evégezhetjü, hogy or is ájo e, h ét egymást övető iteráció már eég öze v egymáshoz fuctio = Jcobi_it_toA,b,,miter,to D = digdiga; T = D - A; for = :miter = D\T*+b; reerr = orm-;
16 if reerr < to bre; ed = ed = ed Guss-iede-ejárás Botsu fe A-t övetező módo: M D L N U Így tetszőeges -bó iiduv épezhetjü özeítő megodáso soroztát Koordiátáét írv: D L U D L b Ez z ejárás yib tér e z eőzőtő, hogy z új + z i-edi ompoes iszámításához már ebbe z iterációs épésbe yert értéeet is fehszáju, és cs z i-é gyobb ompoese esetébe hszáju i-é gyobb ompoesei értéét Az eső ompoest Jcobi ejáráss htározzu meg Formáis: b i=,,, i i i i i ii ii i ii =,,, ;, ezdeti értée,, Ezt egyeéti épése módszerée is evezi, z eőző ejárásá vmive gyorsbb overgá Péd: Legye
17 Amzzu z A = b ieáris egyeetredszerre Guss-iede ejárást! Megodás Láthtó, hogy z A mátri em átós domiás ii ij, j i j ji Redezzü át z egyeetredszerüet övetező r: Láthtó, hogy z együtthtó mátri digoáis domiás, így z ejárás overges esz Ie Guss-eide iteráció:,,, ii ij 9 85, 699, , 9 9 5, 6886, 5 5, Azz Guss-eide itertív ejárás gyorsbb overgá mit Jcobi-iterációt
18 Guss-eide-iteráció Mtbb Az A mátri L és U összetevőjée z eőáításához hszáhtju tri, triu függvéyeet Midettő meghgyj A főátóbei eemeit is A övetező függvéy megdott A mátriú, b jobb odú ieáris egyeetredszer és ezdeti érté megodását áítj eő Guss-eide iterciov miter számú épésbe fuctio = Guss_eide_itA,b,,miter LD = tria; % LU = L + D U = LD - A; for i = :miter = LD\U*+b; ed Az iterációt úgy is evégezhetjü, hogy or is ájo e, h ét egymást övető iteráció már eég öze v egymáshoz fuctio = Guss_eide_it_toA,b,,miter,to LD = tria; % LU = L + D U = LD - A; for = :miter = LD\U*+b; reerr = orm-; if reerr < to ed bre; = ed Kidogozott péd: Végezzü e egy-egy épést Jcobi- és Guss-eide-iteráció z = [; ;; ] vetorró iduv
19 egyeetredszerre! Megodás : Jcobi-iteráció: + = = 5 + = + 8 = Iduju e z Iteráció Iteráció Iteráció =,,, T ezdővetorbó = 6,,, 85 =, 59, 85, 885 = 96, 5, 9, 9 T 5 = 989,,, =, 9998, 9998, 9998 A potos gyöö z =,,, vetor eemei Guss-eide-iteráció: Iduju e z =,,, ezdővetorbó Iteráció 6
20 = = 889 = 6,, 98, Iteráció Iteráció,,, 98 = 96, 5, 9, 9 5,,,
Lineáris egyenletrendszerek
Lieáris egyeetredszere dott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: b H z -ed redű égyzetes mátri reguáris rgj, i det, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius
A Gauss elimináció ... ... ... ... M [ ]...
A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer
különbözõ alappontok, y, y,..., y értékek. : függvény.) ( x)
7 Iterpoácó poomo Legee [ ] (Átá ho [ ] IR üöözõ ppoto IR értée : üggvé ( O Ρ (egee -edoú poomot eresü mere ( ( 7 Téte! Ρ mere Bzoítás meghtározás és z egértemûség zoítás htározt egütthtó módszeréve törté
Lineáris algebrai alapok *
Lieáris geri po * dieziós átri: z soró és oszopó áó ós szátáázt. Jeöés: dieziós etor z soró és oszopó áó átri. Jeöés:, ho i z i-edi oordiát., ho i z i-edi sor -edi eee. dieziós etor z z dieziós etor, eye
1. Hibaszámítás Hibaforrások A gépi számok
Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi
Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é
19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
Numerikus módszerek 3. Lineáris algebrai problémák közelítő megoldása
umerius módsere. Lieáris lgeri prolémá öelítő megoldás Lieáris egeletredsere Diret módsere Iterációs módsere Sátértéfeldto Áltláosított iver Lieáris egeletredsere Lege M dott reguláris mátri, egelet: R
PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1
PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)
É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é
É É É ű É ö á ő ő á ö ő ö ö ú ú ő ö á á á á ő ű ő ő ő á Ű á á á ű ö á á á Ű Á á áú ű á ú ő ü á á ő á á ü ő á á ú ö Á ő á á ő ő á ö á á ű á ü á á ö á á ü ő ü á ö á ö ű á á á ő ű ü á ö á ő á ü á ö ő á ő
é ő é ó á é ő ó í á á é ö é á é í é á á é é ű á é ö ö ö ó é ü ö ö ő é ó é ő á í á é í é é á á é í ű ö é Í é ü ö é ó é ü á ű é á ö á Í é ő é á á ó ő é
É Ö É Á í É Ó Á ö é é ö ö é é é é ó ü ö ü ö ö ő é ó é ó á í í á ó Í é á ö é ü é ó ő ő ő á é á é é í é é í á ö é é í é é á í ú é á á ő í é á é Í é é ü ö ö ő ű á á á ó á Íü é é í é ü ő ö é é ó ó í á á á
ACTA CAROLUS ROBERTUS
ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í
Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í
24. tétel Kombinatorika. Gráfok.
Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció
é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám
Három erő egyensúlya kéttámaszú tartó
dott: z 1. ábr szerinti kéttámszú trtó. Három erő egyensúy kéttámszú trtó 1. ábr Keresett: ~ rekcióerők vektor, szerkesztésse és számításs, z ábbi dtok esetén ; ~ speciáis esetek tgás. dtok: F = 10,0 kn;
( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + +
4 85 Impliit Euler módszer A diszretizáiós elöléseet szálv z impliit Euler módszer l: dott : Motiváió: A derivált özelítésére gr szálu dierei ádost: Felszálv z egeletbe: Ie átredezve vgis eg impliit ormulát
II. Lineáris egyenletrendszerek megoldása
Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek
Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí
é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü
ő ó ü ö ő ö ö ő ö ó ű ö ő ó ó ü ő ü ö ű ö ő ó ó ő ö ö ó ő ö ö ő ű ö ő ű ö ö ő ő ő ö ö ú ó ö ö ö ő ő ó ő ü ó ó ű ö ö ü ő ü ö ő ü ő ó ű ö ö ö ó ö ö ö ü
ú ő ö ó ő ü ö ó ó ó ö Ö ú ó ó ó ö ő ö ő ö ő ö ú Ö ó ó ű ö ő ó ö ű ö ö ő ö ó ű ö ő ö ő ö ú ü ű ö ő ó ö ő ö ó ö Ó ű ö ő ö ó ü ú ú ö ö ü ü ö ü ú ő Ű ö ő ö ú ó ű ü ő ö ő ü ö ü ő ó ü ú ü ö ö ó Ó ó ó ő ü ö ö
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö
Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö
Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
LEGYEN MÁS A SZENVEDÉLYED!
E g y ü t t m z k ö d é s i a j á n l a t L E G Y E N M Á S A S Z E N V E D É L Y E D! 2. E F O P - 1. 8. 9-1 7 P á l y á z a t i t e r v e z e t 3. 0 ( F o r r á s : w w w. p a l y a z a t. g o v. h u
Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü
ú ú ú ú Ö ú ű ú Á ú ú ű ű ú ű ú ú Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü Ó Á Á Á ú ú Ő Ö Ü ú Ü Á ú ú Á Ú ú ú ú É ú Ó Ö É Á ű ú É Ó ű ú ú ű ű ú ű ú ű ű ú ű ű
1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b
XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés
ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é
ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü
Szemléletes lineáris algebra - összefoglaló I. mérnökhallgatónak. Segédanyag az NGB_SZ003_2, N_SZ45 és N_SZ14 tárgyakhoz
Szemléletes lieáis lgeb - összefoglló I. méöhllgtó Segédyg z NGB_SZ_, N_SZ5 és N_SZ tágyhoz összeállított: D. Szöéyi Milós főis. doces 8. Ttlom:. Lieáis té. Tájéozódás lieáis tébe Lieáis ombiáció Lieáis
Metrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö
ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
_. Bevezetés iesztési red, iterpoáió, eemtípuso Végeseem-módszer Mehaiai eadato matematiai modejei Poteiáis eergia áadóértéűségée tétee: Lieárisa rugamas test geometriaiag ehetséges emozduás-aavátozás
É Ö É É Ú ü É Ü É ü Ü ü
É Ö É É Ú ü É Ü É ü Ü ü ü É ü ü ü ü Ü ü Ü Ü ü Ü ü ü ü ü ü ű ű ü ü ű ü ü ü ü ü ü Ü ü ű Ö ü ü Ö ű ü Ö ü ü ü Ö ü ü Ö ü ü Ö ü Öü Ú Ö ü ü Ö Ö ű ü ü ű ü ü Ö ü É ü ü ü É ű ü ü ü ü ü Ö ü ű ü Ö ü ü Ö ű ű ü ü ü
Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
Olimpiai szakkör, Dobos Sándor 2008/2009
Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly
Döntéselmélet, döntéshozatal lehetséges útjai
Dötéselmélet, dötéshoztl lehetséges útji AOK - Rezides képzés Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási
SOROZATOK. Körtesi Péter
SOROZATOK Körtesi Péter. Fejezet. Foglm ismétlése. Ez fejezet soroztoról szól. Ajálju, hogy tuló Sorozto I. szitű pszodót tulmáyozz, melybe főét Számti, Mérti és Hrmoius Hldváyot ismerheti meg. Az lábbib
Emelt szintő érettségi tételek. 10. tétel Számsorozatok
Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.
1. Fejezet A sorozat fogalmának intuitív megközelítése
SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy
5 tengelyű robot kinematikai és dinamikai vizsgálata
Kovács E., Füvesi V.: tengeyű robot inematiai és dinamiai vizsgáata, Dotoranduszo Fóruma 7, Gépészmérnöi és Informatiai Kar szecióiadványa, Misoc, Misoci Egyetem, 7, pp.. tengeyű robot inematiai és dinamiai
A térbeli szabad vektorok V halmaza a vektorok összeadására, és a skalárral való szorzásra vonatkozóan egy háromdimenziós vektorteret alkot.
1. fejezet Vetoro 1.1. Vetorlulus i j jobbsodrású ortoormált bázist, mely egy O ez- A térbeli szbd vetoro V hlmz vetoro összedásár, és slárrl vló szorzásr votozó egy háromdimeziós vetorteret lot. Gyr hszálju
1. Házi feladatsor Varga Bonbien, VABPACT.ELTE
. Házi feldtsor Vrg Bonbien, VBPCT.LT. Feldt: feldt szerint z ellipszis istengelye ngytengelye b. Prméterezzü z ellipszist z lábbi módon: x = b cos t zz: y = sin t r(t) = b cos t sin t z ismert éplet szerint
I. Sorozatok. I.1. Sorozatok megadása
Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,
Lineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
n természetes szám esetén. Kovács Béla, Szatmárnémeti
osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (
g x ugyanabba az halmazba kerüljön mint különböző módon tehetjük meg. A feladat állítása alapján igazolnunk kell, hogy ( ) n m m
A itűzött feldto megoldási X osztály 47 g ugybb z hlmzb erüljö mit figyelembe veü, hogy ( H -vel jelöljü z elemeie számát, or ezt j A j ülöböző módo tehetjü meg A feldt állítás lpjá igzolu ell, hogy m
823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.
Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (
ü ü ű ű ü ü ü Á ű ü ü ü ű Ü
ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü
ö ő í ő ü ö ö í ö ö ö ű ő ö í ü í ö ű í ő ö ö ú ö í ö ö í ö ú ö ő í ö ő Á ű ö
ö ő ü Ö ő ő ő ö í ö Ö ő ü ö ö í ű ö ő ö ö í ö ö ö ő ö ö ő ö ö Ó ö ő ő í ő í ő ő ö ő í ő ü ö ö í ö ö ö ű ő ö í ü í ö ű í ő ö ö ú ö í ö ö í ö ú ö ő í ö ő Á ű ö ö í ő Í í ő ő í í í ö ö ö ú ö í Á í í í í í
Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel
É É Ó É É ő É É Ú É É ő Ú Ú Ó Ü ő É Ü É Ó ő É Ó Ú Ö Ö Ó ő Ó Ú Ú Ó ő Ú Ú É É É É Ü É Ó É É É Ó É Ó É Ú É É É Ó É ő ő ű ő ő ő ő ő ő ő Ú ű Ú ő ő ű ő ő ű ű ő Ú Ü ő Ú Ú ő Ú Ú ő ő ű ő ő ő ő ű ű ő ő Ü ő ű ő ő
Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é
é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é
ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é
ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é
ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ
Í Í Í ű Í ö Ú Ú ö ö É ö ö Í É ö ö ő Á Ö ő ő Ü Í Í É Í Í É Í ö ú ö ú ö Í Á Á Ö Í
ÍÜ ű Í Í Í Í ű Í ö Ú Ú ö ö É ö ö Í É ö ö ő Á Ö ő ő Ü Í Í É Í Í É Í ö ú ö ú ö Í Á Á Ö Í Ú ö Í Á ű Í ö Ü Í Í Í ű Ú Í ő ü Í ö ő É Í É ü ÉÍ ő Ü Ú É Í ő Í ű ü Í É Ü Ü Í Á Á Í Ü Í É Í Í É É É öí Í Í ö ú Í ú
ź Ä ź Ą É ŕ Ž ę ü ä ź ú Á ö ü ü Ł ö ö ź źůě ź ö ü ö ö ü ű ü ü ú ü ź ú ü É ü ú ý ź ü É ü ü ö Ĺ Ó ÉÜ ť Í ŕ ü ú ź đ ú ü ú ź É Ü ö ę źą ź ź ú ź Ĺ Í ź ź ü ö ű ź ź ź ý ý ö ű ú ú É ü Á Á Á ö ö ö ö ź ź ź ö ź Ö
ľ ü í í ö ő ő ö Ü Ü í ü ü ő ľ ő ľ Ĺ ľ ę ú ö ľü ö ü ö Ĺ í í í ö ý Á ú í ú í ö ü í í í í ä ľ ú ő ö ö ő ü í ű ö ö ö í ő ľ ő ľ ő ü ű ö ö ľ ú í í í ö í ő ö
ő ľ ľü Í ľ ľ ľ ęô ő ü Ü Ü ľ ľ ľ ľ ö ľü ľ íľ ő ľ ő Ĺ ő í ü ő ö í ü ö ľ ń ú ő ő ü ö ü ę Á Ĺ Ú ő ü í ü Ĺ ő ę ő ľ ö ü Ĺ ű ö ä ö ö ü ü ľ Á ę ľ ő Ĺ ű ö ü ö í ö ęľ ę í ü ť ę ť ö ľü ľ ő í ä ő í đě Ü Ü ý ö ü ö
É ű ű ú ú ú Ü ú Ö ű ü ü ü
ű ű É ű ű ú ú ú Ü ú Ö ű ü ü ü Ü Ö ü ú ű ű ü ű ú Ú Ú ú ü ú ú ű ú ú ú ű ú ű ú ű ű ű ű ü Ü ú ú ű ü ű ü ű ű Ü É ü ú ű ü ú ü É Ő ű ü Ü ü ü ü ü ű Ü Ü ű ü Ü ü É ü Ü É Í É Ü Ö Ó Ö ú Ö Ú Ú Ü ú ú ú Ü ű ű ü ÉÉ ű
Á É ő é ü ö á á ö é á é ö á á é ő á á ő á á á ő á ő é á é ő ö ó é ő é é á ó á á á á ó á á ö ö é á é Ó É á á ő á á ú ü ö á á á á é á á á á é é ő á á á á é ü á á ő ú á é á á ü ö á á á á é é á á á á ő á ő
é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é
é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü
é é é ó ű é ó ó é é ú ú ó ó ó é ó úá é é ó ű ú é é ű ó ú ö é ó ó é ű é ó é ó é é ü úá ó ó ű ú é ű ó ú ö ó ó é é É ű é é é ó é ö ó ó é é ú ú ó ó ó é ó úá é é ű ú é é ű ó ú é ó ó é ű é ó é ó é é ü úá Á ó
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Á Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é
Á Á Ó É Á Ó É É Á Á ó ó á ú í á á á Á ó ű á ó í ó á á á ú ö űú ö ö ű ö ő á ö ö ú ő á ú ő á ü á á ú ü á ö ú ú á á á ú í á ő ó ő ü á á á á á ó á ó ű á ö ö ü á á á ő ü á ó á á á ö á á ó ö őí á á á áí á á
ľ ú ő ö ü ö ľü ő ľ ő ö ü ú ö ľ í ü ú í ö ľĺ ő ű ľ ö ü ľü ę đí ą ó ő ő ü ú í ľ í í ý đ ę öľ ü í ú í ó í ő ó í ő ő ö ö ú í í ö ö ľü ú í í ľ ľ Ü Ü í í ľ
ő ü ü ľ ő ü Ü Ü ľ ů ľ ü ľ ü íľ ő ő ű ü ő í ľ ľ ü ę ľ ü ľ ü ó ő ö ľü ő ź ő ő ő ö ľ ę ľ ľü ľ ź í ö ľ ő ö í ő ź ö ö ü ź ź ť ő í ľ ó ó ó í ó ő ö ő ü ą ą ó ó ľ ó ó ó í ö í ö ü ó í ó ü ó í ú í ó ő ü ó ő ü ú
Ú Á Ü É ő ö ó ó ő Ü ö Ó ő ú ó ö ő ú ű ű ö ú ö ó ü ö ő öü ő Ú ö Ü ű ó ü ű ő ö ő óü ó ó ő Á Á ó ó Ü ó ó ü Ü ö Á ő ő ó ö ó ü ő ö ó ö ő ó ú ú ó ő ó ó ú ü Ú Á Á É Ü É Ú ü Á É ő ü ÉÉ É Ü ó Ö ó ó ö ö ő óü ó ü
ű ó Ó é é é é ó ő ü é é ü ú é é é é Ú ő ú é é é ú é é é ő Ö é ó é Ö ó é ő é é ü ő é ú é é ő é ü é é é é ó é ü ű é ó é ű é é Ö é ű é ó é é ű é é ó ő é
é ú é ú é ő ő é ú é é ú ő ő ó ú é é é ű é é é é é ó é ú é ő ő é ó é é é é é é é Ó é é Ó ó ő é ó ó é ő ő é é ü ú é é ő é ó é é Ó é ú é ú é é ú é ő é é é ó é é é ú é é é é é ó ű ó Ó é é é é ó ő ü é é ü ú
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai
A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi
Diszkrét matematika KOMBINATORIKA KOMBINATORIKA
A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját
ő ľü ó Ö ľ ő ź ź ő ľ ő ľ ľ ľ ü í ľ ö ő ľ ő ó ő í ľ ü ľ ö ü í ú í ó ú ó ó ú ó ő í í ű ľó ü ľ ö ö ö ó í ü ű Íć ű ö ö ź ę ő ö ü ő ö ő ö ö í ő ü ľ ő ü ö ź ź ó ó ő ü ľ ľ ö źľő ő ő í ó ó Ł ł ü ű ü ú í ü ź ó
ű ü Á
ű ü Á ó é ó ö é é Á é ó í ú Á ő íö ü ö üó é ü ü ú ö ó ü ó ü ó ü ü é í ü Ó ú íí Ó é é Ó ü ó ó ü ó ü ü ü ö ó óü ó ó ó í ü ö ü í ó ü ü É ú ú ü É í É ó ü ó ó ü ü é Á ó Á ó ó é ü ó Á é ü í é ó ö üé ó ó ó ü
44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6
9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz
ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í é ü ő é í ü é ó é é é ő ű ő ü é Ö é é é é ő é Ö é é é é é é é é Ö ü ü é ü é é ó é ü é ü é é ű ü Ő é
ó é é ő ü é ü é é ő é ó ó é Ö é ő ü é é é ó ó ó é é é é é é é é ő é ő ü é ú ü ú í í ü é ú í ü é í í ó é é é ő ő ő é ü ü é í ó é ő ó ó ü é é ű í ó é é í ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í
É ú ő ú Ö ő ü ü ú í í ö ő ő ő ü ć í Í ú í ű ü ő ő í ő ő ő ö ő í í ú í ű Ĺ ő í ő ő ú ő Ĺ ő Í í ő Ĺ ú ú í ű Í ü ő ő ę ü í í í í í ö Ĺ ő ö ő í ö ű Í ö ú í ű ő ö ú ú Ö ü ö í ö ű Ü ű ö ú Ö ü ę ę ő ú ü ę ő ö
ö é é é ö é é í ó á á í é üé é á á á é é á á á é é ő é é í é ő ü á é é é é ó á é ó á ú é á é ü á é é á ó á ü á á á ö é ü á á í é á é ó é ó á é ó é ó ó
é ú á á ő é é ő ü ú é ó á á é ő ü ö á á á ó ó í é á ó ó ó ö á á í ö á í í á á ó á é ü é Ü á á á á á á á é ö ü ö í á ó é ö ü á ö á é é á á ö é í é é é ö é é ó ö á á á é é ö á á ö ö é ő é é ö é ő é é á á
é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é
ó ü É Í É Á ú Ü Ü é ó é ö ú óé ü é í é éü Á í é ű é í óé é ú ó ü ó é í é é ú ö é é í í ú ő é í ű ó ó é é í é é é í é ű é í é é é é ü ö ú ó ű é é ó é ö ö ő í őí é é ö ó é í é É é őí é í é ű ő é é í óé ű
Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú
É Ó Ö É Ü ű ú Ü ÉÚ É ú ú ű ú Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú Ó ú Ü Ü ú ű Ü Ö Ó ú ú ú ú É Ü ú ú Ü Ü Ó Ó É ú ú É É É É Ú Ü Ü ú Ü ú ú É Ő Ő ú É Ó Ó É Ő Ü Ó Ő ú Ó Ó É É ú Ü Ó Ó Ó É ú Ü Ú Ö Ü É ú Ó
ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű
ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű
Ú Ú Ü Ü ű ű ű É Ú É ű
É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű
Ó Ó ú ú ú ú ú É ú
É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É
ü ű í ú ű í É í Ö í ü Ö É í í Ö í É ú ú Ú í
ű í ú ü ü É ü ü ü Ü É í Ü Ü í ü ű í ú ű í É í Ö í ü Ö É í í Ö í É ú ú Ú í í í ú É í í í í í É í í í Ü ű í Ü í ú ű ű í É í í ü ű ű í ú ű í í í í í ü í Ö í ú í ú í ü ű í ú í í í Ü Ü ü ú Ü É É É É É É ú ú
Ó Ó É ü É ü ü
É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó
ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é
Á Ö É Ö Á É Ó Ü É ö í ü é é ö é Ö é ö é é é é é é ú ö é ö í é é é ü é í ö ű ö é í ú ö Á é é é é ö é é é ö é é í é é é ö é é ü é íé é ü é í é í é é é é é ű ú é ü ú é é é ö ö ű é é é é ö é é é é ö é ü ö
ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü
Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü
é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú
é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í
í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é é ü ö í ü é í é í ó ö ö ö Ó í ó ó ö í ő óá Ü ü ö í ü ü é ő ű é é é é é ü í é é í é é ö
ö É Á É É í ó Á Á É ó É í ű í é é é í é é ő ó é é ü é ó é í é é í É é é í í é ó ú í öó ó ó é ö ó ő é í ó öó é é é ü é í é ó é é é í é é í í í ó ö ö í é ű é é é é é é ó é ó ó ü ö í ő í ü ö í é ö ö é í é
Ą ő ć ó ń ć Ĺ ź Ĺ ł ú Ö őł ö ő ü ť ę ę ö ő ę ę ö ö ö ö ę ó Ĺ ö ő ő ő ó ú ö ő ó ö Í ó ö ö ő ł ł ą Ú Ö Á ý
ó ü ú Ö ü ö ö ö ó ö ő ł ő ü ź ö ő őł ü ő ź ę ő ü ó ó ü ő ő ú ü ő ő ö ö É ő Á ú ü ö ó Í ő ő ó ő ö ł ő őł ü ő ú ő ö ö ü ł ü ő ő Ú Ę ő Ú ó ő ü ü ü ő ü ő ő ö ó ő ö ő ú ö ö ö ö ő ó ü ű ń Í źł ó ő ő ź ó ü ü