LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0"

Átírás

1 mtek ilágos oll Mosózi Arás LINEÁISAN FÜGGETLEN ÉS LINEÁISAN ÖSSZEFÜGGŐ VEKTOOK esymths.hu DEFINÍCIÓ: A... ektorok lieáris összefüggők, h... úgy is teljesül, hogy oly i Nézzük ezekre péákt! Vegyük mojuk ektorokt és ézzük meg, hogy ezekek ektorokk lieáris komiáiój mikor lesz ullektor: H miegyik i kkor em meglepő, hogy ullektort kpuk. Az már érekese, hogy h kkor Vgyis úgy is ki tu jöi ullektor, h em mie i, tehát ezek ektorok lieáris összefüggők. Eek ok kereseő, hogy hrmik ektor z első kettő összege, gyis hrmik ektor töi ektor segítségéel előállíthtó, összefügg elük. Ezt téyt eezzük úgy, hogy ektorok lieáris összefüggők. DEFINÍCIÓ: A... ektorok lieáris függetleek, h... sk úgy teljesül, h mie i

2 mtek ilágos oll Mosózi Arás esymths.hu Nézzük meg, mi helyzet ektorokkl: Az, hogy h miegyik ektoról ullát eszük, most is ullektort kpuk em túl meglepő. Ami érekese, hogy ezúttl semmilye más esete em kphtuk ullektort. H pélául z első ektoról em ullát eszük, iztos em kphtuk ullektort. A másoik és hrmik ektor első kooriátáj ugyis ull, ők tehát iseek htássl z első kooriát lkulásár. A másoik és hrmik ektoról így ehetük ármeyit, h z első ektoról em ullát eszük lieáris komiáió első kooriátáj sem lesz ull. Márpeig h ullektort kruk kpi em árt, hogy z első kooriát ull legye. Ugyeez helyzet másoik ektorrl. H em ullát eszük előle, kkor lieáris komiáió másoik kooriátáj em tu ull lei, mert z első és hrmik ektorok iseek htássl másoik kooriát lkulásár. És hsoló helyzet hrmik ektorrl is. Ezek ektorok tehát lieáris függetleek. DEFINÍCIÓ: Egy V ektortére... ektorok geerátor-reszer, h V w ektor előáll w... lk. Vegyük pélául z ektorteret, gyis hétközpi érteleme ett teret. Ee ektortére ektorok geerátor-reszert lkotk, mert segítségükkel mie ektor előáll. H ezekhez ektorokhoz egy új ektort hozzáeszük, kkor ugyúgy geerátor-reszert kpuk, h iszot előlük egyet eleszük, kkor z már em geerátor-reszer. A kérés z, hogy - háy r ektor lehet függetle és háy r ektor lehet geerátorreszer. Erről szól köetkező tálázt.

3 ektorok szám tlálhtó-e eyi ektor úgy, hogy függetle legye - tlálhtó-e eyi ektor úgy, hogy geerátor-reszer legye - ÁZIS=FÜGGETLEN GENEÁTO-ENDSZE - potos három ektor htó meg úgy, hogy zok még éppe függetleek, e már geerálk. A függetle geerátor-reszert eezzük ázisk. Egy ektortér imeziój ázis elemszám. Így jutuk el tuomáyos rr z álláspotr, hogy tér három imeziós. NÉHÁNY IZGALMAS TULAJDONSÁG: H egy függetle reszeről egy gy tö ektort elhgyuk, függetle reszert kpuk (h hozzáeszük ektorokt, ki tuj, mi törtéik) H egy geerátor-reszerhez egy gy tö ektort hozzáeszük, esymths.hu geerátor-reszert kpuk (h eleszük ektorokt, ki tuj, mi törtéik) H -e r függetle ektor, kkor z geerátor-reszer is (mert ázis) H -e r ektoról álló geerátor-reszer, kkor ezek ektorok függetleek is (mert ázis) A ázis mie ektort egyértelműe állít elő, míg -e zok geerátor-reszerek peig, melyek -él tö ektoról állk, mie ektort égtelesokféleképpe LÁSSUNK NÉHÁNY FELADATOT! Legye lieáris függetle, kkor geerátor-reszer, kkor ) H ) H ektorok. Az lái állítások közül melyik igz? is lieáris függetle. is z. lieáris függetle, kkor lieáris függetle, kkor is lieáris függetle. geerátor-reszer, kkor is z. ) H ) H e) H f) H g) H geerátor-reszer, kkor is lieáris függetle. is z. geerátor-reszer, kkor is z. mtek ilágos oll Mosózi Arás

4 ) H lieáris függetle, kkor Nézzük meg, hogy is lieáris függetle. függetleek-e. Vegyük egy lieáris komiáiójukt: H ez sk úgy teljesül, hogy miegyike ull, kkor függetleek, h úgy is lehetséges, hogy em miegyik ull, kkor összefüggők. Vgyis z kérés, hogy meyi. Felotjuk zárójeleket : Aztá összegyűjtjük háy r, háy r és háy r ektor. Miel ez éppe z ektorok lieáris komiáiój és ezek ektorok iszot függetleek, itt egésze iztos, hogy mie együtthtó ull, gyis esymths.hu miegyike ull, gyis Úgy tűik lieáris függetleek. ) H geerátor-reszer, kkor is z. Az ektorok kkor geerátor-reszer, h mie w A kérés z, hogy ugyeez Felotjuk zárójeleket : w előáll-e z lieáris függetle, kkor w előáll: ektorokól is. Nézzük meg: Aztá összegyűjtjük háy r, háy r és háy r ektor. w A jelek szerit w előáll. ) H is lieáris függetle. Ez egésze iztos em igz, mert mtek ilágos oll Mosózi Arás

5 ) H lieáris függetle, kkor is lieáris függetle. Nézzük meg, hogy függetleek-e. Vegyük egy lieáris komiáiójukt: H ez sk úgy teljesül, hogy mikette ull, kkor függetleek, h úgy is lehetséges, hogy z egyik em ull, kkor összefüggők.. Vgyis z kérés, hogy meyi Felotjuk zárójeleket : Aztá összegyűjtjük háy r, háy r és háy r ektor. Miel ez éppe z ektorok lieáris függetleek, itt egésze iztos, hogy mie együtthtó ull, gyis és mi zt jeleti, hogy is függetle. e) H lieáris függetle, kkor is lieáris függetle. esymths.hu Ezúttl lieáris komiáióól iuluk ki. Ezt kée lhogy isszezeti z ektorok lieáris komiáiójár. De éh em árt kisit goolkoi. Vegyük ugyis pélául zt z esetet, mikor ullektor. Ekkor és ezek ektorok függetleek, e egésze iztos összefüggő, mert köztük ullektor. f) H H Miel Az geerátor-reszer, kkor is z. geerátor-reszer, kkor is z. geerátor-reszer, z zt jeleti, hogy ők mie ektort képesek előállíti. ektorokól iszot és előáll, iztos, hogy geerátor reszer. ektorokól legyártjuk és ektorokt, kik utá már miekit előállítk. g) H Előforulht oly eset, mikor geerátor-reszer egye függetle reszer is, gyis ázis, és miel hárm k, imezió három. Ekkor iszot em lehet kételemű geerátorreszer, tehát ilyekor egésze iztos em geerátor-reszer. mtek ilágos oll Mosózi Arás

6 mtek ilágos oll Mosózi Arás 6 ALTEEK esymths.hu Vizsgáljuk meg, hogy W ltere-e -k, h ige, juk meg egy ázist W -e. W Az előző tétel mitt elegeő yit elleőrizi, hogy műeletek em ezetek-e ki. Kezjük z összeássl. Azt ézzük meg, hogy két ilye típusú ektor összege is ilye típusú-e. A jelek szerit em, tehát W em ltér. Vizsgáljuk meg, hogy W ltere-e -ek, h ige, juk meg egy ázist W -e. és W Az előző tétel mitt elegeő most is yit elleőrizi, hogy műeletek em ezetek-e ki. Kezjük z összeássl. Azt ézzük meg, hogy két ilye típusú ektor összege is ilye típusú-e. DEFINÍCIÓ: A V ektortérek W ltere, h V W és W mg is ektortér V -eli műeletekre. TÉTEL: A V ektortérek W ltere, h V -eli műeletek em ezetek ki W -ől.

7 mtek ilágos oll Mosózi Arás Feltok.. Legye -eli ektor. Mely állítások igzk? ) H lieáris függetle, kkor is lieáris függetle. ) H lieáris összefüggő, kkor is lieáris összefüggő. ) H geerátor-reszer, kkor is z. ) H lieáris függetle, kkor is z esymths.hu Nézzük meg először z összegüket: itt z összegük: Aztá jö -szoros: A jelek szerit em, tehát W tehát ltér. A imezió szo meghtó prméterek szám. Két szo meghtó prméter, z egyik z és kkor mitt már em sz, másik peig és kkor mitt már em sz. A imezió tehát kettő, ázist peig úgy kpuk, hogy sz prméterek közül egyet egyek, töit ullák esszük és ezt égijátszuk z összes lehetséges móo. A ázis tehát:

8 mtek ilágos oll Mosózi Arás 8.. Vizsgáljuk meg, hogy V W hlmz ltér-e V -e. H ige, juk meg imezióját és egy ázisát. W.. Vizsgáljuk meg, hogy V W hlmz ltér-e V -e. H ige, juk meg imezióját és egy ázisát. W.. Vizsgáljuk meg, hogy V W hlmz ltér-e V -e. H ige, juk meg imezióját és egy ázisát. W.. Vizsgáljuk meg, hogy V W hlmz ltér-e V -e. H ige, juk meg imezióját és egy ázisát. W.6. Vizsgáljuk meg, hogy V W hlmz ltér-e V -e. H ige, juk meg imezióját és egy ázisát. W

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

MAGYAR NYELVI FELADATLAP a 6. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 6. évfolyamosok számára 6. évfolym AMNy1 feltlp MAGYAR NYELVI FELADATLAP 6. évfolymosok számár 2010. jnuár 22. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr! A feltokt tetszés szerinti sorrenen olhto meg. A

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2008. jnuár 25. MATEMATIKA FELADATLAP 6. évfolymosok számár 2008. jnuár 25. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym AMt2 feltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

Matematika záróvizsga 2001. Név:... osztály:...

Matematika záróvizsga 2001. Név:... osztály:... Mtmtik záróvizs Név:... osztály:... 1. T ki mllő rláiójlt! 5 6 5 ; 3 15, 1, 49 ; 3,1 3 ; 4 5 5 + ; 8. Ír hiányzó mérőszámokt, mértékysékt! 0, 6 h =, 3 m... m =... m 15 hl =... l = =...... m 3, 67 k = 3670...

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára 4. évfolym MNy2 feltlp MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr és helyesírásr! A feltokt tetszés szerinti sorrenen olhto meg. A megolásr

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára 4. évfolym AMNy2 feltlp MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2011. jnuár 27. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr! A feltokt tetszés szerinti sorrenen olhto meg. A

Részletesebben

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2007. feruár 1. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. feruár 1. 15:00 ór M 2 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

Szerelői referencia-útmutató

Szerelői referencia-útmutató Szerelői refereniútmuttó Dikin Altherm - lsony hőmérsékletű split + ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB Szerelői refereni-útmuttó Dikin Altherm - lsony hőmérsékletű split

Részletesebben

Solatube Brighten Up Solatube 160 DS Solatube 290 DS Beépítési Útmutató

Solatube Brighten Up Solatube 160 DS Solatube 290 DS Beépítési Útmutató Soltue Brighten Up Soltue 160 DS Soltue 90 DS Beépítési Útmuttó 1 8 Anygjegyzék * Kupol Ry ender 3000 tehnologiáv l 1. Lökés elleni első kupol (nins minden somgn)* Menny iség 1 8 3 Tetôidom (lpos v gy

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára . évfolym AMt feltlp MATEMATIKA FELADATLAP. évfolymosok számár 0. jnuár. :00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg.

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 2009. jnuár 23. MATEMATIKA FELADATLAP 4. évfolymosok számár 2009. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

Mintafeladatsor. Ismerd fel a szabályt, majd folytasd a sort még két elemmel! Ügyelj a szófajra is! Toldalékos szavakat nem írhatsz!

Mintafeladatsor. Ismerd fel a szabályt, majd folytasd a sort még két elemmel! Ügyelj a szófajra is! Toldalékos szavakat nem írhatsz! MRO Histori Telefon: 06-1/336-1656 E-mil: info@felvesznek.hu Mintfeltsor 1. Ismer fel szályt, mj folyts sort még két elemmel! Ügyelj szófjr is! Tollékos szvkt nem írhtsz! ) rk, rát, rár,...,... ) megolvs,

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2017. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt1 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2013. jnuár 18. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is:

2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is: Grm-Shmitortogonliáió. köetkeő független ektorokól Grm-Shmit móserrel állítson elő ortogonális áist!mj kpott ektorokól állítson elő ortonormált áist!. Normáljk kpott ektorokt: e mert e könne sámolás égett

Részletesebben

150 mm 150 mm. 150 mm

150 mm 150 mm. 150 mm Gyors telepítési útmuttó Strt HL-3140CW / HL-3150CDN HL-3150CDW / HL-3170CDW Először Gyors telepítési útmuttó, mj ezt Termékiztonsági útmuttó okumentumot olvss el helyes eállítás és telepítés érekéen.

Részletesebben

Név:... osztály:... Matematika záróvizsga 2005. 1. Ugyanazon értékek szerepelnek mindhárom oszlopban. Kösd össze az egyenlőket!

Név:... osztály:... Matematika záróvizsga 2005. 1. Ugyanazon értékek szerepelnek mindhárom oszlopban. Kösd össze az egyenlőket! Mtmtik záróvizs 00. Név:... osztály:.... Uynzon értékk szrplnk minhárom oszlopn. Kös össz z ynlőkt! 0, % pl.:., 0 % 0,66 6 8, : 0,8 66 : 6 0,7 8 0 0,6 6 : 0 6, 80 % 66,6% 0 %. T ki rláiójlkt!. 00 k 0,0

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára 8. évfolym AMNy1 fltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár 2010. jnuár 23. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2007. jnuár 26. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

ORSZÁGOS KÉSZSÉG- ÉS KÉPESSÉGMÉRÉS 2008 05515 VÁLTOZAT

ORSZÁGOS KÉSZSÉG- ÉS KÉPESSÉGMÉRÉS 2008 05515 VÁLTOZAT 4. C Í M K E É V F O L Y A M ORSZÁGOS KÉSZSÉG- ÉS KÉPESSÉGMÉRÉS 2008 05515 VÁLTOZAT Csk kkor nyis ki tesztfüzetet, mikor ezt kérik! H vlmit nem tusz megolni, nem j, folyts következő felttl! Okttási Hivtl

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22.

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22. Országos Szkiskoli Közismrti Tnulmányi Vrsny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS II. (rgionális) foruló 2008. fruár 22. Mgolás 1 Országos Szkiskoli Közismrti Irolom Mgyr nylv és hlysírás Tnulmányi

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2006. jnuár 27. MATEMATIKA FELADATLAP 6. évfolymosok számár 2006. jnuár 27. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon

Részletesebben

ᔗ勗 tér ᔗ厗k n ü 2011. c u 04- n k h ó ᔗ厗k n ü Község 2011. c u 04- n megt rtott közmegh llg tásáról Ü h : Község Műᔗ勗elᔗ勗ᔗ勗ésᔗ勗 házáᔗ勗 ᔗ勗 ᔗ勗 tér n nn k: ᔗ勗oᔗ勗ák ᔗ勗ál olgármester eᔗ勗th ᔗ勗stᔗ勗áᔗ勗 l olgármester

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Kombinációs hálózatok egyszerűsítése

Kombinációs hálózatok egyszerűsítése Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl

Részletesebben

ü ü đ ü ť ę Ü ú ü ü ľ ź ľ Ü ö ú Ĺ í í ü ü ö ü í ü ĺ ĺ ű ę ü ü ö ö í ź ö ľ ü ű ö ű ö ö í ĺ ú ü ü ź ź ź ö ö ľ ę ö ź ľ í ć ľ ü ö ű í ü ü ü ź ľ í ľ ľ í í í í ľ ú í ö ö ö ę í í ľ ü ü ę ľ ę í í ü ö ú í ý ü ę

Részletesebben

Matematika záróvizsga Név:... osztály:... =...

Matematika záróvizsga Név:... osztály:... =... Mtmtik záróvizs 004. Név:... osztály:... 1. Számíts ki kijzésk hlyttsítési értékét! = =. + 4 =.... ( : =.... =... 0 1. =.... Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z ynlőséjlt!.

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

n természetes szám esetén. Kovács Béla, Szatmárnémeti

n természetes szám esetén. Kovács Béla, Szatmárnémeti osztály Igzolju, hogy 3 < ármely természetes szám eseté Kovács Bél, Sztmárémeti Az összeg egy tetszőleges tgj: Ezt ővítjü és lítju úgy, hogy felothssu ét tört összegére ) )( ( ) ( ) )( ( ) )( ( ) )( (

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

II. Fejezet Értelmező rendelkezések

II. Fejezet Értelmező rendelkezések SZEGHALOM VÁROS ÖNORMÁNYZATA ÉPVISELŐ-TESTÜLETÉNE 7/202. (VI. 26.) önkormányzti renelete közterületek elnevezéséről, házszámozásról és ezek megjelölésének mójáról Szeghlom Város épviselő-testülete z Alptörvény

Részletesebben

Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4

Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4 Mtmtik záróvizsg Név:... osztály:... 1. T ki mgllő rláiójlt! 15 4 675 ; 180 115, 151, ; 31% 10 3 1000 ; 4 5 5 + ; 8. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!.

Részletesebben

Á Ó Ó Í Í Í Ú É Á Á Í Í Ú Ú Í Í Ő Í Í Í Ú Ú Ú Ú Ú Ű É ÉÉ É Í Í Í Í É Í Í Í É Á É Í Ú Í Í É Í É Í Í Ú Í É Ú Á Ú Ú Í Í Ő É Í Í Í Í Í Í Á Á É Í Ő Ő Ő Ő Í Í Í Í Í Ő Ő Í Í Í Í Í Ö Ú Ú Ú É Ű Í Í Ú Í Í Í Ú É

Részletesebben

FELVÉTELI FELADATOK 6. évfolyamosok számára. M 1 feladatlap. Név:...

FELVÉTELI FELADATOK 6. évfolyamosok számára. M 1 feladatlap. Név:... 2005. jnuár-feruár FELVÉTELI FELADATOK 6. évfolymosok számár M 1 feltlp Név:... Születési év: hó: np: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon végezz!

Részletesebben

Másolás a szkennerüveg használatával. 1 Az eredeti dokumentumot a másolandó oldalával lefelé, a bal felső sarokba helyezze a szkennerüvegre.

Másolás a szkennerüveg használatával. 1 Az eredeti dokumentumot a másolandó oldalával lefelé, a bal felső sarokba helyezze a szkennerüvegre. Gyorstájékozttó Másolás Másoltok készítése Gyorsmásolt készítése 1 Az ereeti okumentumot másolnó ollávl felfelé, rövie élével előre töltse z utomtikus lpgoló, vgy helyezze másolnó ollávl lefelé szkennerüvegre.

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV. L73** Digitális Sorozat M83** Digitális Sorozat

FELHASZNÁLÓI KÉZIKÖNYV. L73** Digitális Sorozat M83** Digitális Sorozat FELHASZNÁLÓI KÉZIKÖNYV L73** Digitális Sorozt M83** Digitális Sorozt Mgyr Trtlom A TV ÜZEMBEHELYEZÉSE Blesetvéelem...4 A készülék elhelyezése, fontos tunivlók...5 A távirányító...7 Az elemek ehelyezése

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

ú ú Í ú ű Ú Ú ú Ú ú ű ű Ú Í ű Ú Ú É ú ű ú ú Ú Ú Í Ú ú Ú ű ú ú ú ú Ő Ú ű ú ú ú ű ű ű ű ú ű ű Í Ú Í Í ú ú ű ű ú ú ú ű ú Ú É ú ú ű ú ú Ú Í Ú Í Á ú ű ú ú ű Ú Ú Ú ú ú ú ú ú ű ű ű Ú É Ú ú ú Ú ú ú ű ú ű ű ú ú

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2006. feruár 2. MATEMATIKA FELADATLAP 6. évfolymosok számár 2006. feruár 2. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon

Részletesebben

ű ú ü ü ü ü ü ü Á ü ú ü Á Á Á É Ö Ö Ö Á É É ü Á ú ű ú Í Á Í Á ű ü ű ü Ö ű ű É ú ű ú Á Á ű ü ú ű ú ü ú ú Ó ü ű ü ü Í ü Í Í Í Ó ú ú ú ú ú ú ü ú Í Ó ű ú ű Á Á ü ü ú É Í Ü ű ü ü Á ü ú Í É ú Ó Ö ú Ó Ó Ó Í ú

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Ú Í Í í í ú Ő ü Ú É í í Ü ű ü ű í í í ű ü ú ü í ű ü ú ü ú ü ü ü ű ü Ú É í ú ü ü ü ú ü ü ú í ü ü ú ü í í ú ű í ú ű ü í í ü í Í í í ü í ú Ü Ú É í í í ü ü ü ú ú ü ü ú ü ü ú ú í í ű ü ü ü ű Á ü ú ű í í ü ü

Részletesebben

Ő Ö é Ü Ö é Ö é ő ü ó ü é é ő ü é ö é ö ó é ő é ő Ő ó ő é ó í ő ő ü é ő ő é ö ö ö ü Ü Ö Ö ö ö ö é ö ö Ö ő é é ő í ü é é ü é ő ö ő ő é ő ö é í é éé ő í ó ő ő ő ö í í ő é ó ó é ó é é Í ü ő Ó ő é é ó ő é

Részletesebben

é é ő é í ő é ő ő é ő é é é ő é ő í ü é é é é í é ő é ő é é í ő é é ő é ü ő ű ő ő é ő é é é é é ő é é é Ú é ő í é é é í ő é ő ő é é é ü ő é é é í ü ő í é é é é ü é ő é é é ü é í é é é ő é é ő é é ő ü é

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára 8. évfolym TMNy2 feltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár tehetséggonozó változt 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr! A feltokt tetszés szerinti sorrenen olhto

Részletesebben

150 mm 150 mm. 150 mm

150 mm 150 mm. 150 mm Gyors telepítési útmuttó Strt MFC-9140CDN / MFC-9330CDW MFC-9340CDW Először Termékiztonsági útmuttó, mj ezt Gyors telepítési útmuttó okumentumot olvss el helyes eállítás és telepítés érekéen. A Gyors telepítési

Részletesebben

Bánk Község Önkormányzata 2653 Bánk, Hősök tere 11. /Fax: 35/342-804, 35/342-806 www.bank-falu.hu e-mail: hivatal@bank-falu.hu

Bánk Község Önkormányzata 2653 Bánk, Hősök tere 11. /Fax: 35/342-804, 35/342-806 www.bank-falu.hu e-mail: hivatal@bank-falu.hu Bánk özség Önkormányzt 2653 Bánk, Hősök tere 11. /Fx: 35/342-804, 35/342-806 www.nk-flu.hu e-mil: hivtl@nk-flu.hu Ikttószám: 159- /2012/B. Tárgy: Bánk község településrenezési terv móosítás HIDTMÉNY Tájékozttjuk

Részletesebben

Í Í É Ó Ö Í Ó Ó ű Í Í Ó ű Ó Ó Ö Ö Ó Ö ű Ó Ó Ö ű ű ű Ö Ö Ó Ó Ó Ö Í Ö Ö Ö É Ó Ó Ö Ó Ő Ö Ó Ő Ö Í Ö ű ű Í Í ű ű É Í ű Í Ö Ö Í Í É Ö Ö Í Ö Ö Ö ű Ö Ö Ö Í ű ű Í Í ű Ő Í Ö Í Í Í Ö É Ö Ö Ű Í Ö Ó Í Í Í Í Í Ö ű Ö

Részletesebben

FELVÉTELI FELADATOK 8. évfolyamosok számára. M 1 feladatlap. Név:...

FELVÉTELI FELADATOK 8. évfolyamosok számára. M 1 feladatlap. Név:... 2005. jnuár-feruár FEVÉTEI FEADATOK 8. évfolymosok számár M 1 feltlp Név:... Születési év: hó: np: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon végezz! Mellékszámításokr

Részletesebben

Á Á É é é ö é Á Á É Ö Á Á Á é é Á Á é é é é ó ü ó ö ö í é é é é ö í é ó é é ö é é é ü í é é ó ú ú ú ö é ó é í é é é í é é é é ó ö é í ó ö é ü é é ö é ó ó ú ú ó é ö ú ú ú ú ú é ó í é í é í ó í ó í ó é ö

Részletesebben

É Ü É ÉÉ Ú ű ű É Á Á Á Á Á Á ű Á Á Á É Ú Ö ű ű É ű É ű Ú ű ű ű ű É Á ű ű Á ű ű ű Ü Ü Ú Ü ű ű ű Ú Ö Ó Ú ű ű ű ű ű ű ű ű ű Ú Ú Ö Á ű ű ű ű Ü ű Ü ű ű Ü ű ű Ü Ú Ú Ö ű Á Á ű ű ű Ú Ü Ü ű ű ű ű Ú Ú Ú ű Ü ű ű

Részletesebben

MAGYAR NYELVI FELADATLAP a 6. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 6. évfolyamosok számára 6. évfolym AMNy1 feltlp MAGYAR NYELVI FELADATLAP 6. évfolymosok számár 2012. jnuár 20. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügyelj küllkr! A feltokt tetszés szerinti sorrenen olhto meg. A

Részletesebben

ö é Ö é ü ö é é ü ü é é ú ö ö é é ö ó ó ó ö é ó ó ó ö é ü ö é Ö é ü é ú ü é é ó ó Á ó é é é é ö ó ó ö ö ö ü ü é é ó é ö é é é ó Á é ó é é é ű ö é é é ó ü é é é ü ű ó é ö é Ö é Ő Ü é é é ö ó ó ó Ö é ó é

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

FELVÉTELI FELADATOK 6. évfolyamosok számára. M 2 feladatlap. Név:...

FELVÉTELI FELADATOK 6. évfolyamosok számára. M 2 feladatlap. Név:... 2005. jnuár-feruár FELVÉTELI FELADATOK 6. évfolymosok számár M 2 feltlp Név:... Születési év: hó: np: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon végezz!

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

ú ľ ľę ľ ú Ż Ż ü ľ ľ ľ ü ú Ö ľ ü ú ľ ö ľ í ű ľ ľ ľ ľ ľ ő ľ ľ ľ ľ í ő ő ľ öľ ö ľ ő ľ ő ľ ö ö ĺ ö ľ ľ ľ ľ ö ľő ő ľ ő ľ ľ Í ő Ź ö ľ ö ľ Í Í í ľ ü ö ľ Í ľ őł ü ľ ü ö ľ ö ľ ľ ę ő ę ĺľ ľü ü ľ ľ ľ ő ľ ő ľ ľ í

Részletesebben

ő Ú ő ő ő ő ő ő ő Ó Ö Ó ő Ó Ö Ó ú őú ő ő ő ő ő ő Á ő ú ő É ő ő Ó ú ő ő ű ő ú Í ő ő ő ú ú ú ú ű Í Ú ű Ö ő ő ő ő Á ő ő ő ő Ú ő ő ő ő ő ő ő Ó Ö Ó ő Ó Ö Ó ú őú ő ő ő ő ő ő Á É ő ő ú ő ő ő ű Ö ű ő ő ú ú ú ú

Részletesebben

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V LINEÁRIS LEKÉPEZÉSEK ÉS TRANSZFORMÁCIÓK A leképezés lineáris leképezésnek neezzük, h ármely elesül, hogy ; ekorokr és R számr Minden lineáris leképezés lhogy így néz ki: Kerφ Imφ meking.hu H kkor lineáris

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

FELVÉTELI FELADATOK 6. osztályosok számára M 2 feladatlap

FELVÉTELI FELADATOK 6. osztályosok számára M 2 feladatlap 2004. jnuár-feruár FELVÉTELI FELADATOK 6. osztályosok számár M 2 feltlp Név:... Születési év: hó: np: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást feltlpon végezz! Mellékszámításokr

Részletesebben

í Í ű í Ú É í ú Í ú í í í ű Á ú ú í ú í ú í í ú í Ú ű Í í í Ú ű í í í í ú ú ú Ú Ú ú ú í Í Ú Ú ű í Ú í í í ú í ú Ú í í Ú í ű Á É Ú í ú ú í É í ú ú í íí í í í ű Ú ű í í í ű í Ú í í í í í í ú í ú Í í ű ű

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése

Részletesebben