Felsőbb Matematika Informatikusoknak D házi feladatok a Sztochasztika 2 részhez 2013 tavasz
|
|
- Ottó Pintér
- 6 évvel ezelőtt
- Látták:
Átírás
1 Felsőbb Matematika Informatikusoknak D hái feladatok a Stochastika réshe tavas Minden héten össesen egy pontot érnek a kitűött feladatok HF: (Beadási határidő: 4) HF Egy kétsemélyes internetes vetélkedő-játékban Pistike ellenfelét véletlenül sorsolják ki, így a ellenfél valósínűséggel kedő, valósínűséggel haladó, valósínűséggel pedig profi les A kisorsolt ellenféllel aután Pistike több menetet is lejátsik A egyes meneteket a kedők ellen valósínűséggel nyeri meg, a haladók ellen, a profik ellen pedig valósínűséggel Ha nem nyer, akkor vesít (döntetlen nincs) Pistike a első két menetet elvesítette a) Mi annak a valósínűsége, hogy a ellenfele profi? b) Milyen (a feladat sövegében ki nem mondott) feltevéssel éltünk a egyes menetek kimenetelét illetően? Megoldás: a) Jelöljük K-val at a eseményt, hogy Pistike ellenfele kedő, H-val at, hogy haladó, P-val at, hogy profi, V -vel pedig at, hogy Pistike a első két menetet elvesíti A Bayes tétel miatt P(P V) = = P(P)P(V P) P(K)P(V K)+P(H)P(V H)+P(P)P(V P) = ( ) + ( 8 ( ) ) ( + 8 ) = 8 8 = 8 6% b) At hasnláltuk ki, hogy a egyes menetek kimenetelei feltételesen függetlenek, feltéve, hogy ki a ellenfél, vagyis pl ( ) P(V K) = P({elsőt elvesíti} K) P({másodikat elvesíti} K) = Figyelem: a egyes menetek kimenetelei csak feltételesen függetlenek, anélkül nem, hisen (bárki kisámolhatja) HF: (Beadási határidő: 4) P(V) P({elsőt elvesíti}) P({másodikat elvesíti}) HF Egy sámítógépes programban egy véletlen, rekurív rutin fut: minden egyes résfolyamat egységnyi időt ves igénybe, ám een felül minden résfolyamat véletlen sámú, önmagával megegyeő al-folyamatot indít A így indított al-folyamatok sáma, vagy lehet, rendre p = p, p = és p = p valósínűséggel, a előményektől függetlenül Kedetben egyetlen gyökér folyamat fut, e alkotja egyedül a nulladik generációt A első generációt a gyökér által (követlenül) indított alfolyamatok alkotják, a második generációt a első generáció tagjai által indítottak, stb Jelölje Z k a k-adik generáció tagjainak a sámát (k =,,,), N pedig a program futása során induló résfolyamatok teljes sámát (vagyis N = k= Z k, ami egyben a program teljes futási ideje is) Válasoljuk meg a alábbi kérdéseket
2 I p = esetén, II p = 6 esetén: a) Mi Z generátorfüggvénye? b) Mennyi Z várható értéke? c) Mennyi a P(Z = ) valósínűség? d) Mennyi a valósínűsége annak, hogy a program előbb-utóbb lefut (vagyis hogy valamelyik generáció már üres)? e) Mennyi N várható értéke? f) Mi N generátorfüggvénye? Megoldás: BOCS, a feladat sajtóhibás Mivel senki se adta be, et csak most vettem ésre Perse a kell, hogy p +p +p = legyen, és e nem stimmel, Eért JAVÍTOTT VÁLTOZAT: p := p Eek után: i Z k elágaó folyamat Egylépéses utódsám-eloslása Ennek generátor-függvénye g() = p + +( p) = p+ +( p), várható P(X = i) p p értéke m = p + +( p) = p I p = -re g() = és m = a) g () = g(g()) = + ( + + ) ( ) b) EZ = m = ( ) 7 c) P(Z = ) = r ahol r = és r k+ = g(r k ) Esetünkben r = g() =, r = g( ) = 7, r 4 = g ( 7 4) 8 d) m <, vagyis a folyamat subkritikus, igy a kihalás (=lefutás) valósínűsége e) m <, vagyis a folyamat subkritikus, igy EN = = m f) N generátorfüggvénye, g N () a g N () = g)g N ()) egyenlet megoldása A átláthatóság kedvéért g N ()-t Y -nal jelölve Y = g(y), vagyis ( Y = + Y + ) 6 Y, ami egy másodfokú egyenlet Y -ra: Et megoldva 6 Y + ( ) Y + = Y = ± ( ) = ± 6 Hogy a két gyök köül a +-os vagy a -os a jó, at ki lehet találni pl abból, hogy = -ben minden generátorfüggvény kell hogy legyen, vagyis = ± 6 = ±, tehát a minusos megoldás a helyes: g N () = 6 II p = -ra g() = és m = 4 a) g () = g(g()) = + ( + + ) ( ) 6 6 6
3 b) EZ = m = ( 4 ) 76 c) P(Z = ) = r ahol r = és r k+ = g(r k ) Esetünkben r = g() =, 6 r = g( ) = 7, r 6 7 = g ( 7 7) 7 d) m >, vagyis a folyamat superkritikus, igy sámolni kell: a kihalás (=lefutás) valósínűsége a = g() egyenlet legkisebb nemnegatív megoldása Esetünkben = 6 + +, ami egy másodfokú egyenlet -re, megoldásai = (mint mindig) és =, vagyis a kihalás (=lefutás) valósínűsége e) m >, vagyis a folyamat superkritikus, igy EN = f) m >, vagyis a folyamat superkritikus így N poitív valósínűséggel végtelen A ilyen elfajult valváltoók generátorfüggvényéről nem beséltünk, úgyhogy inkább hagyjuk HF: (Beadási határidő: ) HF Egy internet-solgáltatónak 6 előfietője van Hétfőn este 8-kor minden előfiető a többiektől független véletlen sávsélesség-igénnyel lép fel, ami Mbit/s-ben mérve egyenletes eloslású a [; 4] intervallumon A solgáltatásban akkor les fennakadás, ha a igények össege túllépi a rendelkeésre álló 8 Mbit/s teljes sávsélességet a) A solgáltató a centrális határeloslás tétel segítségével próbálja megbecsülni annak a valósínűségét, hogy hétfő este 8-kor fennakadás les Legfeljebb mennyit fog a solgáltató tévedni a becsléssel a Berry-Esséen tétel serint? b) Adjunk becslést a fennakadás valósínűségére a Hoeffding-egyenlőtlenség segítségével Megoldás: Legyen X i a i-edik előfiető sávsélesség-igénye Mbit/s-ben mérve (i =,,n), n = 6, és S n = n i= X i a öss sávsélesség igény a) A CHT becslés hibája Berry-Esséen tétel serint legfeljebb Cδ nσ, aholc = 4748, σ a X i -k sórása és δ = E( X i EX i ) Esetünkben X i egyenletes [;4]-en, így m := EX i =, σ = 4 (képletgyűjteményből) és δ = f(x) x m dx = 4 4 x = = Össerakva: a CHT becslés hibája legfeljebb ( 4 ) = % b) A X i val-váltoók alsó és felső korlátjai a i = illetve b i = 4 minden i-re ES n = n m = 7, vagyis t = 8 válastással a Hoeffding-egyenlőtlenség serint ( ) ) t P(S n > ES n +t) exp n i= (b = exp ( 8 e, i a i ) 6 4 vagyis P(S n > 8) 4HF: (Beadási határidő: ) HF 4 A ábrán látható gráf egy diskrét idejű, időben homogén Markov lánc poitív valósínűségű egylépéses átmeneteit mutatja Ostályouk a állapotokat aserint, hogy melyik melyikkel érintkeik! Minden ostályról állapítsuk megy, hogy
4 árt-e vagy nyílt, lényeges-e vagy lényegtelen, vissatérő-e vagy átmeneti, mennyi a periódusa 4 6 ábra Markov lánc gráf-repreentációja (valósínűségek nélkül) Megoldás: A {} ostály nyílt, mert el lehet hagyni, tehát lényegtelen és átmeneti Periódusa (vagyis aperiodikus), mert lépésben vissa lehet térni A {,,4} ostály nyílt, mert el lehet hagyni, tehát lényegtelen és átmeneti Periódusa, mert vissatérni csak páros sok lépésben lehet A {,6} ostály árt, mert el nem lehet elhagyni, tehát (véges méretű ostályról lévén só) lényeges és vissatérő Periódusa (vagyis aperiodikus), mert akárhány lépésben vissa lehet térni HF 4 Egy sámítógépes program négy résfeladatból álló feladatokat old meg Minden időegység végén feljegyeük, hogy hanyadik résfeladaton dolgoik éppen ha pedig éppen üresjáratban vár egy új feladatra, akkor -t vagyis a program a,,,,4 állapotokban lehet A,, és 4 résfeladatokról a program mindig, a előményektől függetlenül valósínűséggel tud egy időegység alatt továbblépni a követkeő résfeladatra (úgy értve, hogy a 4 után a jön), a maradék valósínűséggel ugyanaon dolgoik tovább Ha a program a üresjáratban van, akkor minden időegység alatt valósínűséggel kap feladatot és ugrik a állapotba (a előményektől függetlenül), ellenkeő esetben marad üresjáratban Modelleük a program feljegyett állapotainak soroatát időben homogén Markov lánccal! a) Írjuk fel a P Markov átmenet-mátrixot b) Feltéve, hogy kedetben a program a állapotban van, mi a valósínűsége a 44 megfigyelés-soroatnak? (A kedőállapotot is feljegyeük) c) Feltéve, hogy a kedőállapot a, mi a valósínűsége, hogy időegység múlva a program éppen a -es résfeladaton dolgoik? d) Feltéve, hogy a kedőállapot a, mi a köelítő valósínűsége, hogy időegység után ismét a állapotban van a program? e) Hossú távon a idő hány sáalékát tölti a program üresjáratban? f) A programunk processor-igénye üresjáratban %, a,,, 4 résfeladatok végrehajtása során pedig rendre %, %, % illetve % mennyi a átlagos processor-terhelés hossú távon? Megoldás: 4
5 a) A n idő elteltével felvett állapotot jelöljük X n -nel A állapottér S = {,,,, 4} P sorait és oslopait ilyen sorrendbe írva P = b) P(X X = 44 X = ) = P P P P P P P 4 P 44 P 4 = = 8 64 c) A lehetséges utak a, a és a Eek valósínűségeit a előő pontbeli módon kisámolva és össeadva P(X = X = ) = P P P + P P P + P P P = + + d) A időegység elteltével kialakuló valósínűségeket köelítsük a Markov lánc stacionárius eloslásával! Ehhe a πp = π lineáris egyenletrendsert kell megoldani, ahol a π ötelemű sorvektor tartalmaa a stacionárius eloslást Átrendeés után (P T I)π T =, ahol I a -ös egységmátrixot, pedig a öt nullából álló oslopvektort jelöli A lineáris egyenletrendserek sokásos mátrix-jelölésével Et perse eliminációval oldjuk meg Egy sor kiesik, ahogy kell, és a végén (pl) a marad, hogy vagyis a egyenletrendser egyik megoldása a ( )T vektor A stacionárius eloslás ennek valósínűségi vektorrá normált váltoata (ahol a elemek össege ), vagyis π = ( Végül a feladat kérdésére a válas: ) P(X = X = ) π = e) A Markov láncunk véges állapotterű, irreducibilis és aperiodikus, eért a ergodtétel serint hossú távon a -s állapot bekövetkeési gyakorisága majdnem bitosan tart a stacionárius eloslás serinti valósínűséghe: lim n n #{k : i n és X k = } = π = 6% f) Legyen f : S R a processorigény (sáalékban sámolva) a állapot függvényében:, ha i =, ha i = f(i) =, ha i =,, ha i =, ha i = 4
6 ami helyett elég egy oslopvektort leírni: f = A ergodtétel serint f időátlaga majdnem bitosan tart a stacionárius eloslás serinti sokaságátlagho Sokféle különböő jelöléssel leírva ugyanat: n lim f(x k ) = fdπ = π i f(i) = πf = ( ) π π π π π 4 n n k= S i S = π +π +π +π +π 4 = = = 4 6 6
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
2.2. A z-transzformált
22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Fizika A2E, 5. feladatsor
Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:
Felsőbb Matematika Informatikusoknak D házi feladatok a Sztochasztika 2 részhez 2012 tavasz
Felsőbb Matematika Informatikusoknak D házi feladatok a Sztochasztika részhez tavasz Minden héten összesen egy pontot érnek a kitűzött feladatok..hf: (Beadási határidő:..4.) HF. A Műegyetem hallgatóinak
Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.
. Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Mesterséges Intelligencia 1
Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.
Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése
Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.
CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés
Lineáris programozás 2 Algebrai megoldás
Lineáris progrmoás Algeri megoldás Késítette: Dr. Árhám István A lineáris progrmoási feldtok mátriritmetiki lkji A LP feldtok lgeri megoldás függ feldt típsától. Tekintsük át eeket! Normál feldt A ( )
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007
6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Yule és Galton-Watson folyamatok
Dr. Márkus László Yule és ok 2015. március 9. 1 / 36 Yule és ok Dr. Márkus László 2015. március 9. Yule folyamat Dr. Márkus László Yule és ok 2015. március 9. 2 / 36 A független stacionárius növekmény
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 2. ZH 2014. november 28. A csoport 1. Feladat. (5 pont) Határozza meg a z 1 = 2 + 2i komplex szám trigonometrikus alakját, majd adja meg a z 1 z 2 és z 1 z 2 komplex számok
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
7. feladatsor: Laplace-transzformáció (megoldás)
Matematika Ac gyakorlat Vegyésmérnöki, Biomérnöki, Környeetmérnöki sakok, 017/18 ős 7. feladatsor: Laplace-transformáció (megoldás) 1. A definíció alapján sámoljuk ki a követkeő függvények Laplace-transformáltját.
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
A táblázatkezelő mérnöki alkalmazásai. Számítógépek alkalmazása előadás nov. 24.
A tábláatkeelő mérnöki alkalmaásai Sámítógépek alkalmaása. 7. előadás 003. nov. 4. A előadás témái Felsín- és térfogatsámítás A Visual Basic Modul hasnálata Egyenletmegoldás, sélsőérték sámítás A Solver
2009. májusi matematika érettségi közép szint
I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
FÜGGVÉNYEK x C: 2
FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
konvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.
2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Feladatok Oktatási segédanyag
VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások
Villamosmérnök A 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Kétdimenziós normális összefoglalás Egy kétdimenziós X, Y valószínűségi változó kovariancia mátrixa: VarX CovX, Y CovX, Y VarY
1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza