A művészeti galéria probléma

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A művészeti galéria probléma"

Átírás

1 A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai : Műészti Galéria Probléma Őrzési / Mgilágítási problémák A galéria trét gy síkbli sokszöggl (polygon) modllzük. Fltsszük, ogy z gy gyszrű sokszög, azaz gy önmagát nm mtsző poligonális lánc atárolja és nm tartalmaz lykat. 1 2 A műészti galéria probléma Lgyn P gy gyszrű sokszög és p és q két pont P-bn. Azt mondjk, ogy p és q látják gymást, a P tljs gészbn tartalmazza a pq szakaszt. A műészti galéria probléma: Adott: Egy gyszrű sokszög P. Fladat: Hol és ány pontot (őrt) kll llyzni P-bn, úgy ogy mindn P bli pontot lgalább gy őr lásson. p A műészti galéria probléma Az őrök minimális számának kiszáítása NP-néz. D: Mgmtatjk, ogy n/3 őr lgndő, aol n a csúcsok száma P-bn. Néány stbn n/3 őr szükségs is. (őr: mozgásérzéklő sznzor, kamra, fényforrás, ) : Azon pontok almaza P-bn, mlykt p lát 3 4

2 Sokszögk áromszöglés Egy P sokszög áromszöglés ( -lés) gy planár flosztása P-nk, mlynk csomópontjai P csúcsai, éli gyns szakaszok a csúcspárok között (az élkt átlóknak is nzik), flülti pdig áromszögk. Sokszögk áromszöglés Lmma 1: Mindn n csúcsú gyszrű sokszög P áromszöglésébn pontosan n-2 áromszög an. Biz.: Indkció n szrint. n=3 stén igaz, P gy áromszög. Lgyn n>3. Fltétl, a lmma állítása igaz mindn m<n stén. Először mgmtatjk, ogy P-nk an gy átlója. Eztán alkalmazzk az indkciós fltétlt a két sokszögr, amir z az átló osztja P-t. Lgyn az a csúcsa P-nk, mlynk koordinátái lxikografiksan minimálisak. Lgyn és w a két -l szomszédos csúcs. - Ha az w szakasz tljsgészbn P-bn an, akkor w gy átló. w 5 6 Sokszögk áromszöglés - Ha w nincs tljsgészn P-bn, akkor w tartalmazza P gy agy több csúcsát. Lgyn zn csúcsok közül az a csúcs, mlynk táolsága w-től maximális. Ekkor a szakasz nm mtszti P gy oldalát sm, mrt gy ilyn oldal gyik égpontja az w blsjébn lnn és w a táolsága w-től nagyobb lnn mint -nk. Ezért gy átló. Mindn átló P-t két sokszögr P 1 -r és P 2 -r osztja. Lgyn m 1 és m 2 a csúcsok száma P 1 -bn és P 2 -bn. Mil m 1 < n és m 2 < n, az indkciós fltétl szrint P 1 és P 2 -ltő, és zzl P is. Mil P 1 -nk és P 2 -nk pontosan két közös csúcsa an, m 1 +m 2 =n+2. P 1 és P 2 -lés az indkciós fltétl szrint m 1-2 és m 2-2 -t tartalmaz. Ezért P -lés n-2-t. 7 Sokszögk áromszöglés műgaléria probléma Lmma 1 implikálja, ogy mindn n csúcsú gyszrű P sokszögbn lgndő n - 2 őr, -nként 1. Ez azonban túl nagyonalú. Ha az őrökt bizonyos jól kiálasztott csúcsokban lyzzük l, akkor ksbb őr is lgndő. A stratégia : Válassznk ki a csúcsok gy (ltőlg kicsi) részalmazát, úgy ogy a -lés mindn -ébn lgalább gy kiálasztott csúcs an. Hlyzzük l az őrökt zkbn a csúcsokban. Ekkor az gész P mgfigylt. 8

3 Sokszögk áromszöglés műgaléria probléma Szinzzük a -lés csúcsait 3 színnl, úgy ogy a csúcsok, mlyk gy élll össz annak köt, különböző színűk lgynk. Ekkor mindn csúcsai 3 különböző színt kap. Ez 3 színosztályra osztja a csúcsok almazát. Kiálasztjk a lgkisbb színosztályt és az őrökt zkbn a csúcsokban lyzzük l. Mg kll mtatni, ogy a -lés 3 színnl szinztő Sokszögk áromszöglés műgaléria probléma Lmma 2: Tkintsük gy sokszög -lését T-t gy gráfként. Ekkor T 3 színnl szinztő. Biz.: Egy planár gráf G dál-gráfja G* az a gráf, mlynk csomópontjai G-nk a flülti. Két csomópont G*-bn pontosan akkor an összköt gy élll, a a mgfllő flültk G-bn gy él által szomszédosak. Tkintsük T dál-gráfját T*-t (a külső flült kiétlél). Mil mindn átló P-t két sokszögr osztja, T* bármlyik élénk törlés két komponnsr osztaná T*-t. Tát T* gy fa. (Ez nm lnn érénys olyan sokszögr, amlybn lyk an.) Toábbá, T* foka 3, mil mindn -öz T-bn lgfljbb 3 szomszédos an Sokszögk áromszöglés műgaléria probléma T szinzéséz T* bjárását asználjk mélységi krsés (DFS) által. Egy ttszőlgs T* bli csomóponttal kzdünk. T mgfllő -énk a csúcsait 3 különböző színnl szinzzük. Mgőrizzük azt az inariánst, ogy T mindn lért -énk csúcsai lysn annak szinz. Amikor T*-bn bjárnk gy (,) élt, az -nak és -nk mgfllő -knk t -nak és t -nk T-bn an gy közös oldala. Ekkor a közös oldal két égpontja már szinztt. A armadik csúcs szinzéséz t -bn a 3-adik színt asználjk. A DFS tán T-bn gy lys szinzést kapnk 3 színnl. Sokszögk áromszöglés műgaléria probléma Mil a szinzés tán a 3 színosztály közül lgalább gy n/3 csúcsot tartalmaz és mindn -bn pontosan gy csúcs zzl a színnl an szinz, a kötkző tljsül: Tétl 1: Lgyn P gy gyszrű sokszög n csúccsal. Akkor P lgfljbb n/3 őrrl mindig mgfigyltő. Vannak olyan sokszögk, mlykbn n/3 őr szükségs is

4 A áromszöglés kiszámítása Először P-t.n. monoton sokszögkr bontjk. Eztán zkt a monoton sokszögkt -ljük. Akkor mondjk, ogy gy gyszrű sokszög P gy gyns szrint monoton, a mindn -ra ortogonális gynsr P összfüggő, azaz P agy gy pont, agy gy szakasz. P x-monoton, a az x-tngly szrint monoton. P flbontása x-monoton sokszögkr 5 csúcstipst különbözttünk mg: Lgyn gy csúcs és α() blső szög -nél P-bn. Ekkor gy Start-csúcs: mindkét szomszédja jobbra an -től és α()<π, Split-csúcs: mindkét szomszédja jobbra an -től és α()>π, End-csúcs: mindkét szomszédja balra an -től és α()<π, Mrg-csúcs: mindkét szomszédja balra an -től és α()>π, Rglar-csúcs: különbn. Start End Rglar Split Mrg P flbontása x-monoton sokszögkr Lmma 3: Egy P sokszög akkor x-monoton, a nm tartalmaz s split-csúcsot s mrg-csúcsot. Biz.: Tgyük fl, ogy P nm x-monoton, akkor létzik gy rtikális gyns, mlyr P több mint 1 összfüggő komponnst tartalmaz. Válasszk -t úgy, ogy a lgmélybbn léő komponns gy szakasz nm gy pont. Lgyn p és q a szakasz két égpontja. Kössük P atárát q-ból balra indla addig, amíg gy r P mtszéspontot nm találnk. Ha p r, akkor útközbn klltt lnni gy split-csúcsnak. Különbn kössük P atárát q-ból jobbra indla addig, amíg Split p gy r P mtszéspontot nm találnk. Ekkor útközbn klltt lnni gy mrg-csúcsnak. P r q P p q r Mrg P flbontása x-monoton sokszögkr plan swp Így tát a split- és a mrg-csúcsokat kll P-bn kzlni. A sokszögknk P flbontása tán nm szabad ilyn csúcsokat tartalmaznik. P flbontásáoz gy plan-swp ljárást asználnk. Plan swp Ötlt: csúsztassnk gy függőlgs gynst (swp-lin) balról jobbra a síkon Egy swp-stats adatstrktúrában tároljk a swp-lin és a szcnárió mtsztét. A swp-stats adatstrktúrát csak bizonyos sményknél (nt point) kll aktalizálni (amikor az gyns és a szcnárió mtszt áltozik)

5 P flbontása x-monoton sokszögkr plan swp P flbontása x-monoton sokszögkr plan swp Swp-Stats T: gy bináris krsőfa. Az algoritms ftása alatt T mindig P-nk azon oldalait (élit) tárolja, mlyk -t mtszik, a mtszéspontok y-koordinátáinak mgfllőn rndz. Esménypontok: P csúcsai. Ezkt gy Q árakozási sorban tároljk, aol Q gy Priority- Q. Egy csúcs prioritása a csúcs x-koordinátája (pontosabban: a csúcs koordinátái lxikorafiksan). Q-t rndztt listaként is implmntálatjk, mil mindn smény kzdttől foga ismrt. P Mindn oldaláoz, amlyt a Swp-Stats T tartalmaz, tárolnk gy pointrt: lpr(). Ez P-nk arra a lgjobboldalibb csúcsára mtat, amly balra an -tól és P blsjébn és gy függőlgs szakasszal összköttő. Ha nincs ilyn csúcs, akkor lpr() a bal égpontja -nk. lpr() Ha lér gy i split-csúcsot, akkor mg kll találni P-nk azokat az j és k élit, amlyk a T-bn dirkt i fltt illt dirkt i alatt annak. Ekkor a szakasz i -től lpr( j )-z (és lpr( k )-oz) nm mtszti P gy másik élét és így j tljsn P-bn an. Mitán lért gy i split-csúcsot, i lsz j és k új lpr()-j és a két i -z incidns élé. Elgndő a lpr() mtatót csak azoknál az élknél tárolni, amlyk dirkt az újonnan lért csúcs fölött annak T-bn. i lpr( j ) k P flbontása x-monoton sokszögkr plan swp Az sményk fldolgozása: Lgyn az aktális csúcs, amit éppn lér. split-csúcs: Krssük mg P azon és élét, ami dirkt fltt és dirkt alatt an T-bn. Fűzzük b az átlót, amly -t és lpr()-t összköti. Fűzzük b T-b P-nk a -z incidns két élét. Eztán az és a -z incidns alsó oldal lpr() mtatóját állítsk -r. mrg-csúcs: Töröljük a -z incidns két élt T-ből. Krssük mg azt az élt, ami dirkt fölött an T-bn. Lgyn lpr():=. (Később még isszatérünk rr az str) start-csúcs: Fűzzük b a két incidns élt T-b. A flső él lpr() mtatója lgyn. nd-csúcs: Töröljük a két incidns élt T-ből. j i lpr( j ) k P flbontása x-monoton sokszögkr plan swp flső rgláris-csúcs: Csréljük ki T-bn az élt, ami balról incidns -z a jobbról incidns élr. Lgyn lpr():=. alsó rgláris-csúcs: Csréljük ki T-bn az élt, ami balról incidns -z a jobbról incidns élr. Lgyn az az él, ami T-bn dirkt fltt an. Lgyn lpr():=. Split Mrg Start End flsö alsó 19 20

6 P flbontása x-monoton sokszögkr plan swp A split-csúcsokat tljsn fldolgoztk. Átlókat fűztünk b mindgyiknél. Az új sokszögkbn már nincs split-csúcs. A mrg-csúcsokat kll még tljsn fldolgozni. 1. ltőség: Végrajtnk gy másik plan swp-t átrafl. 2. ltőség: Csak gy plan swp (csak balról jobba). Mindn alkalommal, amikor gy élnél lpr() mgáltozik, tsztljük, ogy a régi lpr()-csúcs gy mrg-csúcs-. Ha ign, akkor fűzzük b az átlót a régi és az új lpr()-csúcs között. Ugyanígy, mindig, amikor gy élt lagy, tsztljük, ogy lpr() gy mrg-csúcs-. Ha ign, fűzzük b az átlót jobb oldali égpontja és lpr() között. Ennk gyanaz a atása mint a átrafl plan swp -nk. P flbontása x-monoton sokszögkr plan swp Hlysség: Az új sokszögkbn nyilánalóan nincs s split- s mrg-csúcs. Azt kll még mgmtatni, ogy nm fűzünk b olyan átlót, amly P alamlyik élét agy gy másik átlót mtsz. Egyszrűség égtt tgyük fl, ogy nincs két gynlő x-koordinátájú csúcs (a kitrjsztés az általános str gyszrű: a lxikografiks sorrnd sgítségél). Lgyn w gy átló, amit akkor fűztünk b, amikor gy splitcsúcsot lértünk. A Q tartomány at-bn -z szomszédos élk és a függőlgs szakaszok között w-n és -n krsztül nm tartalmaz csúcsot Q j a lpr() dfiníciója miatt. Ezért a w átló nm w mtszt s másik átlót s P-nk gy élét. A mrg-csúcsoknál bfűzött átlókra asonló k érk ismétltők P flbontása x-monoton sokszögkr plan swp Ftási idő és tárigény: Mindn smény (csúcs) fldolgozása O(log n) időt igényl. Összsn: O(n log n) idő. Tárigény O(n). Lmma 5: Egy gyszrű sokszög flbontató x-monoton sokszögkr O(n log n) idő alatt O(n) tárigénnyl. Monoton sokszögk áromszöglés Lgyn P gy x-monoton sokszög. Egyszrűség kdéért tgyük fl, ogy P nm tartalmaz gynlő x-koordinátájú csúcsokat. Egy plan swp-t ajtnk égr balról jobbra. Ennk során P-b átlókat fűzünk b, amikor csak ltségs

7 Monoton sokszögk áromszöglés Inariáns: Lgyn i, i 2, az a csúcs P-bn, amlyt a swp lin éppn lért. Lgyn R a nm-áromszöglt tartomány P-bn -tól balra. Lgyn a lgbaloldalibb csúcs R-bn. Ekkor R-t két x-monoton lánc atárolja, a flső lánc és az alsó lánc. Mindkét lánc lgalább gy élt tartalmaz. Ha a lánc i -től -oz több mint gy élt tartalmaz, akkor z a lánc gy.n. rflx-lánc, azaz a lánc mindn blső csúcsánál a blső szög lgalább π. A másik lánc csak gy élt tartalmaz, mlynk bal égpontja és jobb égpontja jobbra an -tól. i Monoton sokszögk áromszöglés i=2: az inariáns = 1 -gyl tljsül. A 2 1 lánc csak gy élt tartalmaz, a másik lánc pdig abból a másik élből áll, amly 1 -z incidns. i>2: Tgyük fl, ogy az inariáns tljsül i-1 -r. Az algoritmsnak a kötkző stkt kll kzlni: 1. st:,..., i-1 gy rflx-láncot alkot és i a másik láncon an. Ekkor fűzzünk b gy átlót i -től a rflx-lánc mindn csúcsáoz -ig (xklzí ). Eztán lgyn := i-1. Most a rflx-lánc gytlngy élt tartalmaz i -t. 1 i i 1 R Monoton sokszögk áromszöglés 2. st: i gyanazon a láncon an mint i-1. Ekkor mnjünk a láncon i -től átrafl és fűzzünk b mindn látató csúcsoz gy átlót, amíg l nm érjük az lső csúcsot, ami i -ből már nm látató. (Ltségs, ogy gy átlót s fűzünk b. (2b. Est).) Eztán a i -ből látató csúcsokat töröljük a láncból. Ekkor az új lánc i -től -ig gy rflx-lánc. 2a i 1 i 2b i 1 i Monoton sokszögk áromszöglés Implmntálás: A rflx-lánc csúcsai gy rmbn tárolatók. Egy flag adja mg, ogy a rm a flső agy az alsó láncot tárolja. Tgyük fl, ogy mindn csúcsoz tdjk, ogy az alsó agy a flső láncon an. Elmzés: Ha P csúcsai sorba annak rndz balról jobbra, akkor a -lész O(n) idő szükségs. P csúcsainak balról jobbra rndzt sorrndj O(n) idő alatt kiszámolató a csúcsok óramtatóal llntéts sorrndjéből. A -lés során összsn O(n) pop-, ps-oprációt iránytsztt ( j a láncon pontosan akkor látató i -ből, j+1<i, a i j+1 j < π) ajtnk égr, O(1) idő alatt oprációnként. Az adatstrktúrák tárigény O(n)

8 Sokszögk áromszöglés műgaléria probléma Lmma 6: Lgyn P gy x-monoton sokszög n csúccsal. Akkor P gy áromszöglés O(n) idő alatt O(n) tárigénnyl kiszámítató. Tétl 2: Lgyn P gy gyszrű sokszög n csúccsal. Akkor P gy áromszöglés O(n log n) idő alatt O(n) tárigénnyl kiszámítató. Irodalom [1]: Josp O Rork: Art Galry Torms and Algoritms. Oxford Unirsity Prss,1987. [2]: Mark d Brg, Marc an Krld, Mark Ormars, and Otfrid Scwarzkopf: Comptational Gomtry, Algoritms and Applications. Springr-Vrlag, Kötkzmény: Lgyn P gy gyszrű sokszög n csúccsal. Akkor a n/3 őr llyzés, amlyk P-t mgfigylik, O(n log n) idő alatt O(n) tárigénnyl kiszámítató

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

KOD: B377137. 0, egyébként

KOD: B377137. 0, egyébként KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,

Részletesebben

Szerző: Böröcz Péter János H-9026, Egyetem tér 1. Győr, Magyarország

Szerző: Böröcz Péter János H-9026, Egyetem tér 1. Győr, Magyarország In: Kóczy L, éánczos L, Bakó A, Prznszki J, Szgdi Z, Várlaki P (szrk.) Játéklmélt alkalmazási lhtőségi a logisztikai rndszrkbn - az gy- és többutas szállítási csomagolási szközök közötti döntéslmélti probléma

Részletesebben

Villamos érintésvédelem

Villamos érintésvédelem Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás

Részletesebben

DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme.

DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme. DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapst, Egry J. u. 1. Email: juhaszm@rg.bm.hu Tl: 1/463 40 22 www.rg.bm.hu A KIVÁLASZTÁS ÉS A MUNKAKÖRI ALKALMASSÁG PSZICHOLÓGIÁJA II. Az lızı

Részletesebben

1. FELADATLAP TUDNIVALÓ

1. FELADATLAP TUDNIVALÓ 0851 modul: GEOMETRII ISMÉTLÉS z alakzatokról tanultak ismétlés 135 TUDNIVLÓ Egy alakzatot akkor nvzünk tnglysn szimmtrikusnak, ha létzik lgalá gy olyan gyns, amlyr az alakzatot tnglysn tükrözv önmagát

Részletesebben

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV Lap: 1/145 AZ INCZÉDY GYÖRGY KÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM MINŐSÉGIRÁNYÍTÁSI E AZ MSZ EN ISO 9001 SZABVÁNY ALAPJÁN, ILLETVE MINŐSÉGIRÁNYÍTÁSI PROGRAMJA A KÖZOK-TATÁSI TÖR- VÉNY (1993. ÉVI LXXIX.)

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS Orszáos Szkiskoli Közismrti Tnulmányi Vrsny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS II. (rionális) oruló 2006. ruár 17... Hlyszín jélyzőj Vrsnyző Pontszám Kój Elértő Elért Százlék. 120.. % Jvító tnár Zsűri

Részletesebben

Villamosságtan példatár 1.4 verzió A példatár hibáit a. email címeken szíveskedjen mindenki jelenteni!

Villamosságtan példatár 1.4 verzió A példatár hibáit a. email címeken szíveskedjen mindenki jelenteni! Vszrémi Egym Auomaizálás anszék Villamosságan éldaár. vrzió A éldaár hibái a nova@axl.hu ohrola@vn.hu mail címkn szívskdn mindnki lnni! Villanyan éldaár Bvzés: A Villamosságan éldaár a Vszrémi Egymn okao

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

2011. évi intézmény-felújítás,intézményi javaslatok

2011. évi intézmény-felújítás,intézményi javaslatok agasépítési csoport PRIORITÁSOK: BRH=biztonságos és rndlttésszrű használat, =állagmgóvás, = műszak iés funkcionális szükség, =gyéb 13 Holdfény Utcai Óvoda Kincskrső Tagóvodája Prioritás gjgyzés 13.1 Krt

Részletesebben

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata Tudományos Diákköri Konrncia Thrhordó üvg ödémszrkzt: T grnda ragasztott öv-grinc kapcsolatának numrikus vizsgálata Készíttt: Gál Tamás F17JCS építőmérnök hallgató Konzulns: Dr. Vigh László Grgly Egytmi

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

JT 379 www.whirlpool.com

JT 379 www.whirlpool.com JT 379.hirlpool.com A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ÜZEMBE HELYEZÉS ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LEMEZEKET,

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés ELIZA. Első szakasz (60-as évek) Második szakasz (70-es évek) Harmadik szakasz (80-as évek)

1. AZ MI FOGALMA. I. Bevezetés ELIZA. Első szakasz (60-as évek) Második szakasz (70-es évek) Harmadik szakasz (80-as évek) 1. AZ MI FOGALMA I. Bvztés 1956 nyár. Darthmouth Collg-i konfrncia Kzdti cél: Az mbri gondolkodás számítógép sgítségévl történő rprodukálása. Grgorics Tibor Bvztés a mstrségs intllignciába 1 Grgorics Tibor

Részletesebben

VT 265 www.whirlpool.com

VT 265 www.whirlpool.com VT 265.hirlpool.com 1 BEÜZEMELÉS A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LE- MEZEKET,

Részletesebben

ANYANYELVI FELADATLAP

ANYANYELVI FELADATLAP 2007. jnuár 26. ANYANYELVI FELADATLAP 4. évfolymosok számár 2007. jnuár 26. 14:00 ór A 1 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr

Részletesebben

Tartályfedél rögzítő csavarok. HENNLICH Industrietechnik. Lapos körmös kivitel Íves körmös kivitel Tartozékok

Tartályfedél rögzítő csavarok. HENNLICH Industrietechnik. Lapos körmös kivitel Íves körmös kivitel Tartozékok HENNLICH Inustritnik ás s l!...t n á s H-6000 Kskmét-Kflv, Hliport-Rptér.Tl.: +36 76 509 655. Fx: +36 76 470 308. rmturtnik@nnli.u. www.nnli.u Trtályfél rögzítő svrok Lpos körmös kivitl Ívs körmös kivitl

Részletesebben

ANYANYELVI FELADATLAP a 8. évfolyamosok számára

ANYANYELVI FELADATLAP a 8. évfolyamosok számára 2006. fruár 2. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. fruár 2. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz! A

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2

RSA. 1. Véletlenszerűen választunk két nagy prímszámot: p1, p2 RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (

Részletesebben

2. A geometria alapfogalmai A geometria alapfogalmai: pont, vonal, egyenes, sík, tér.

2. A geometria alapfogalmai A geometria alapfogalmai: pont, vonal, egyenes, sík, tér. 1. Mi z lpfoglom? Alpfoglom: olyn foglom, mit ismrtnk fogdunk l, nm tudunk más foglmk sgítségévl mghtározni, dfiniálni, lgflj szmléltsn körülírjuk. Mindn tudomány ilyn lpfoglmkr épül fl. (Egy foglmt úgy

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22.

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22. Országos Szkiskoli Közismrti Tnulmányi Vrsny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS II. (rgionális) foruló 2008. fruár 22. Mgolás 1 Országos Szkiskoli Közismrti Irolom Mgyr nylv és hlysírás Tnulmányi

Részletesebben

MAGYARORSZÁGI KYUDO SZÖVETSÉG 2012. ÉVI ELNÖKI BESZÁMOLÓ

MAGYARORSZÁGI KYUDO SZÖVETSÉG 2012. ÉVI ELNÖKI BESZÁMOLÓ MAGYARORSZÁGI KYUDO SZÖVETSÉG 212. ÉVI ELNÖKI BESZÁMOLÓ A 212-s év volt a frissn alakult Kyuo Szövtség lső aktív év. A Magyarországi Kyuo Szövtség létrjött és az Európai Szövtséghz történő csatlakozása

Részletesebben

Helyszükséglet összehasonlítás

Helyszükséglet összehasonlítás Hlyszükséglt összhsonlítás Hgyományos riálvntilátor A VAR rnszr összhsonlítás Hlios RADAX VAR Systm A VAR rnszr z lsony nyomás növkésű xiálvntilátorok és riál vntilátorok közötti szükségltkt légíti ki.

Részletesebben

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai Bojtár Imr Gáspár Zsolt A végslmmódszr matmatka alapja Elktronkusan ltölthtő lőadásvázlat építőmérnök hallgatók számára. http://www.pto.bm.hu/m/htdocs/oktatas/oktatas.php Kadó: BME Tartószrkztk Mchankája

Részletesebben

Feladatok megoldással

Feladatok megoldással Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A

Részletesebben

segítségével! Hány madárfajt találtál meg? Gratulálunk!

segítségével! Hány madárfajt találtál meg? Gratulálunk! Odú llnőrzés CSORMÍVES Ha mgfogadtad a téli számban javasolt odúkihlyzést, vagy már volt odú kihlyzv a krtbn, márciustól már érdms figylgtnd trmésztsn csak gy kissé távolabbról hogy van- a környékén mozgolódás,

Részletesebben

MATEMATIKA B változat. A tanuló neve, osztálya:...

MATEMATIKA B változat. A tanuló neve, osztálya:... MATEMATIKA B változt A tnuló nv, osztály:... Az lmúlt tnév vé osztályzt mtmtkáól:... Olvs l ylmsn ltokt! A ltokt ttszés szrnt sorrnn olto m. Törk rr, oy molások lírás yértlmő lyn, yl rnztt küllkr! Mnn

Részletesebben

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni.

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni. Játékok a tanításhoz? - 1 - Tanító játékok? A Lgo kockák gészn biztosan fontos szívügyi gy gész sor gyrk és szül gnráció éltébn. Mi köz van a Lgo kockáknak a tanuláshoz? Vagy lht gyáltalán tanítani /órákat

Részletesebben

Kazincbarcikai ÁPRILIS 6-ÁN PARLAMENTI VÁLASZTÁS HUSZONEGY EGYÉNI JELÖLT INDUL A VÁLASZTÓ- KERÜLETBEN 2014. MÁRCIUS 28.

Kazincbarcikai ÁPRILIS 6-ÁN PARLAMENTI VÁLASZTÁS HUSZONEGY EGYÉNI JELÖLT INDUL A VÁLASZTÓ- KERÜLETBEN 2014. MÁRCIUS 28. Kazincbarcikai 2014. MÁRCIUS 28. Facbook: Barcika Art Kft www.barcikaart.hu/kommunikacio/ ÁPRILIS 6-ÁN PARLAMENTI VÁLASZTÁS HUSZONEGY EGYÉNI JELÖLT INDUL A VÁLASZTÓ- KERÜLETBEN Választás 2014 Fotó: Barcika

Részletesebben

közepes (3) 65..72,5 pont jeles (5) 85 pont felett A szóbeli vizsgához legalább 50 pontot kell elérni az írásbeli részvizsgán. Dátum:..

közepes (3) 65..72,5 pont jeles (5) 85 pont felett A szóbeli vizsgához legalább 50 pontot kell elérni az írásbeli részvizsgán. Dátum:.. vasago krz rész a vizsgázó öli ki!................................................... Név (a szélyi igazolváya szrlő óo) Szélyazoosság llőrizv Kijl, hogy a flaaok golásai aga készí és azokhoz az gélyz

Részletesebben

FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap

FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap 200. jnuár-fruár FELVÉTELI FELADATOK 8. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs

Részletesebben

Vizsgára való felkészülési kérdések kidolgozása Hő- és áramlástechnikai gépek I

Vizsgára való felkészülési kérdések kidolgozása Hő- és áramlástechnikai gépek I Vizsgára való flkészülési kérdésk kidolgozása Hő- és áraláscnikai gépk I Kidolgoza: B99DFE I. Dfiníciók, alapfogalak. Hőrőgép és őközvíő gép Hőrőgép: azoka a gépk, lyk üzlőanyagból őnrgiá, vagy canikai

Részletesebben

ELSÔ FEJEZET St. Ives-ház Grosvenor Square, London

ELSÔ FEJEZET St. Ives-ház Grosvenor Square, London ELSÔ FEJEZET St. Ivs-ház Grosvnor Squar, London Ez így gyszrűn nm tisztsségs. Elizabth Margurit Cynstr, akit mindnki csak Elizának hívott, alig hallhatóan méltatlankodott. Egydül állt köpönygbn gy hatalmas

Részletesebben

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak 1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn

Részletesebben

Erő- és munkagépek I.

Erő- és munkagépek I. Áramlás- és Hőtikai Gék Taszék r. zabó zilárd Erő- és mkagék I. Előadásvázlat iskol-egytmváros 005 r. zabó zilárd: Erő- és mkagék Készült r. Nyíri Adrás Erő- és mkagék I. és II. gytmi jgyzti (iskoli Egytmi

Részletesebben

GÁZOK TRANSZPORTJA MEMBRÁNOKON KERESZTÜL permeabilitás, diffúziós állandó és oldhatóság mérése

GÁZOK TRANSZPORTJA MEMBRÁNOKON KERESZTÜL permeabilitás, diffúziós állandó és oldhatóság mérése GÁZOK TRANSZPORTJA MEMBRÁNOKON KERESZTÜL rmabiitás, diffúziós áandó és odhatóság mérés Sbők Béa, Kiss Gábor Budasti Műszaki és Gazdaságtudományi Egytm, Atomfizika Tanszék Mmbránokka számos trütn taákozunk,

Részletesebben

MATEMATIKA A változat. A tanuló neve, osztálya:...

MATEMATIKA A változat. A tanuló neve, osztálya:... MATEMATIKA A változt A tnuló nv, osztály:... Az lmúlt tnév véi osztályzt mtmtikáól:... Olvs l iylmsn ltokt! A ltokt ttszés szrinti sorrnn olto m. Törkj rr, oy molások lírás yértlmő lyn, iylj rnztt küllkr!

Részletesebben

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK 2013. március 31. 18. évfolyam, 1. szám A szrtt tanúi Az algy i gyházközség kiadványa KRISZTUS FELTÁMADT! A Húsvét a Fltámadás - és nm a nyuszi - ünnp Ádám és Éva az s-b nnl vszíttt l az örök éltt. Az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)

Részletesebben

MATEMATIKA B változat. A tanuló neve, osztálya:...

MATEMATIKA B változat. A tanuló neve, osztálya:... MATEMATIKA B változt A tnuló nv, osztály:... Az lmúlt tnév vé osztályzt mtmtkáól:... Olvs l ylmsn ltokt! A ltokt ttszés szrnt sorrnn olhto m. Törk rr, hoy molások lírás yértlmő lyn, yl rnztt küllkr! Mnn

Részletesebben

közel vagyunk. Ez az érzés erősödött meg bennem a nyíregyházi műszaki ügyllleten.

közel vagyunk. Ez az érzés erősödött meg bennem a nyíregyházi műszaki ügyllleten. Vll. i ÉVFOLYAM i ~.szám 1998. t QECEMBER AZ ALSO-TlSZA.. VDEK VZUGYGAZGATOSAG LAPJA Szrtttljs, békés és boldog karácsonyi ünnpkt, sikrkbn gazdag, rdménys új sztndőt kiván a VÍZPART mindn olvasójának A

Részletesebben

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) 5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá

Részletesebben

Rockfall lejtésképző elemek

Rockfall lejtésképző elemek LAPOSTETŐ SZIGETELÉS LEZÁRVA: 00. MÁRCIUS. Rokll ljtésképző lmk Műszki tlp Vonlr-, lln- és pontrljtő lmk, ttikék A Rokwool Rokll rnszrévl iztosíthtó ttők tökélts vízlvztés Műgynt kötésű, tljs krtmtsztén

Részletesebben

ELSÔ FEJEZET 1829. március Wadham Gardens, London

ELSÔ FEJEZET 1829. március Wadham Gardens, London ELSÔ FEJEZET 1829. március Wadham Gardns, London Amint bttt a lábát Lady Hrford szalonjába, Hathr Cynstr tudta, hogy lgutóbbi trv, miszrint mgfllő férjt talál magának, kudarcra van ítélv. Egy távoli sarokban

Részletesebben

BIATORBÁGYI ÁLTALÁNOS ISKOLA MINŐSÉGIRÁNYÍTÁSI PROGRAMJA

BIATORBÁGYI ÁLTALÁNOS ISKOLA MINŐSÉGIRÁNYÍTÁSI PROGRAMJA A Biaorbágyi Álaláno Ikola Minőégirányíái Programja 2009. Kézí: Bnkő C. Gyuláné BIATORBÁGYI ÁLTALÁNOS ISKOLA MINŐSÉGIRÁNYÍTÁSI PROGRAMJA Kézí: Bnkő C. Gyuláné igazgaó A minőégirányíái munkacopor közrműködéévl

Részletesebben

ANYANYELVI FELADATLAP a 8. évfolyamosok számára

ANYANYELVI FELADATLAP a 8. évfolyamosok számára 2006. jnuár 28. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. jnuár 28. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz!

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI Az önkormányzati és trültfjlsztési minisztr../2008. (..) ÖTM rndlt a katasztrófavédlmi szrvk és az önkormányzati tűzoltóság hivatásos szolgálati viszonyban álló tagjaival kapcsolatos munkáltatói jogkörök

Részletesebben

Kisbodaki Harangláb Kisbodak Község Önkormányzatának lapja 2012. február hó V. évfolyam 1. szám

Kisbodaki Harangláb Kisbodak Község Önkormányzatának lapja 2012. február hó V. évfolyam 1. szám Kibodaki Haangláb Kibodak Közég Önkományzatának lapja 2012. fbuá hó V. évfolyam 1. zám hatályát vzttt a kataztófák llni védkzé iányítááól, zvztéől é a vzély anyagokkal kapcolato úlyo baltk llni védkzéől

Részletesebben

a Felső tálca b Alsó tálca

a Felső tálca b Alsó tálca Gyors tlpítési útmuttó Strt MFC-J6920DW A készülék üzm hlyzés lőtt, kérjük, olvss át Trmékiztonsági útmuttót. Ezt kövtőn, állítás és tlpítés szkszrű lvégzés érkén, olvss l zt Gyors tlpítési útmuttót. FIGYELEM

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

Egy általános iskola nyolcadikosainak vallomásai

Egy általános iskola nyolcadikosainak vallomásai ÉLETEM w Egy általános iskola nyolcadikosainak vallomásai A fjlődéslélktan művlői és ismrői számára nm újság, hogy a gyrmk llki fjlődésébn szociális körülményir, zn körülményink változására is tkintttl

Részletesebben

GYAKORLÓ FELADATOK 3. A pénzügyi eszközök értékelése

GYAKORLÓ FELADATOK 3. A pénzügyi eszközök értékelése GYAKORLÓ FELADATOK 3. A pénzügyi szközök étéklés. fladat (kötvény) A vállalat 2 millió fointos buházása mgvalósításának finanszíozásához kötvénykibocsátást tvz, 5 Millió Ft étékbn. A jgyzést lbonyolító

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap

FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap 2004. jnuár-fruár FELVÉTELI FELADATOK 4. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs

Részletesebben

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1 Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum

Részletesebben

a vármegyei iskolánkívüli népmüvelés

a vármegyei iskolánkívüli népmüvelés BJ X. é v f o l y m 27. s z á m r Komárom, július 2. 2U f i l l é r. fwoj ELŐFIZETÉSI ÁR 10 P. E g é s z évr 5 P. Félévr SZERKESZTŐSÉG ÉS KIDÓHIVTL: Ngydévr 2*50 P. E g y s s z á m á r 2 0 fül. Mgjlnik

Részletesebben

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1)

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1) A Mozilla ThundrBird lvlzőprogram haszálata (Készíttt: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Vrsion 1.1) Tartalomjgyzék Tartalomjgyzék...1 A Központi Lvlző Szrvr használata... 1 A ThundrBird lvlzőprogram

Részletesebben

Múlt BETSBŐL Szombaton 23. 3tán. 1787.-

Múlt BETSBŐL Szombaton 23. 3tán. 1787.- Múlt BETSBŐL Szombaton 23. 3tán. 1787.- : o-^a a' közl fkvő dolgot4s homállyofon látó, ** -R- fávól l é v ő k t pdig tsak képzlni fm tudd né- "ljy Bétsi köz uéptől tudakoznók: mikor érkzika' F. Mónárkha?

Részletesebben

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése Az Intgrációs Pdagógiai Rndszr projtlmin bépülés a Fsttics Kristóf Általános Művlődési Központ Póaszpti 1-8. évfolyamos és a Paodi 1-4. évfolyamos Általános Isola tagintézményin otató-nvlő munájába 2011/2012.

Részletesebben

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk: Anyagok:

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk: Anyagok: L E 15 P1 PE K É F S EEE IS 9001 : 2008 PED 97/2/CE t: őd: in. hőmklt: x. hőmklt: x. nomá: Spcifikációk: Anok: D 1/2 -től 2 -i nt BSP -20 C 00 C 1 B nliánú moá Külő vdlm Blő cő Acl lvn n.hu v l n.hu v

Részletesebben

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára 4. évfolym AMNy1 fltlp MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2010. jnuár 22. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr

Részletesebben

a Felső tálca b Alsó tálca

a Felső tálca b Alsó tálca Gyors tlpítési útmuttó Strt MFC-J6520DW MFC-J6720DW A készülék üzm hlyzés lőtt, kérjük, olvss át Trmékiztonsági útmuttót. Ezt kövtőn, állítás és tlpítés szkszrű lvégzés érkén, olvss l zt Gyors tlpítési

Részletesebben

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Gépszerkezettan tanszék Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Összeállította: Dr. Stampfer Mihály Pécs, 0. . A fogaskerekek előtervezése.

Részletesebben

ANYANYELVI FELADATLAP a 4. évfolyamosok számára

ANYANYELVI FELADATLAP a 4. évfolyamosok számára 2006. jnuár 27. ANYANYELVI FELADATLAP 4. évolymosok számár 2006. jnuár 27. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és küllkr! Tolll olgozz! A

Részletesebben

ISO 9000 és ISO 20000, minőségmenedzsment és információtechnológiai szolgáltatások menedzsmentje egy szervezeten belül

ISO 9000 és ISO 20000, minőségmenedzsment és információtechnológiai szolgáltatások menedzsmentje egy szervezeten belül ISO 9000 és ISO 20000, minőségmndzsmnt és információtchnológiai szolgáltatások mndzsmntj gy szrvztn blül dr. Vondrviszt Lajos, Vondrviszt.Lajos@nhh.hu Nmzti Hírközlési Hatóság Előzményk A kormányzati intézményk

Részletesebben

Életkor (Age) és szisztolés vérnyomás (SBP)

Életkor (Age) és szisztolés vérnyomás (SBP) Lináris rgrsszió Éltkor (Ag) és szisztolés vérnyomás (SBP) Ag SBP Ag SBP Ag SBP 22 131 41 139 52 128 23 128 41 171 54 105 24 116 46 137 56 145 27 106 47 111 57 141 28 114 48 115 58 153 29 123 49 133 59

Részletesebben

ANYANYELVI FELADATLAP a 8. évfolyamosok számára

ANYANYELVI FELADATLAP a 8. évfolyamosok számára ÚJ FELADATLAP 2007. ruár 1. ANYANYELVI FELADATLAP 8. évolymosok számár 2007. ruár 1. 14:00 ór ÚJ FELADATLAPI NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és

Részletesebben

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel Cikória szárítástchnikai tulajdonságainak vizsgálata modllkísérlttl Kacz Károly Stépán Zsolt Kovács Attila Józsf Nményi Miklós Nyugat-Magyarországi Egytm Mzőgazdaság- és Éllmiszrtudományi Kar Agrárműszaki,

Részletesebben

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő A 10/007 (II. 7.) SzMM rndlttl módosított 1/006 (II. 17.) OM rndlt Országos Képzési Jgyzékről és az Országos Képzési Jgyzékb történő flvétl és törlés ljárási rndjéről alapján. Szakképsítés, szakképsítés-lágazás,

Részletesebben

Írásbeli szorzás kétjegyû szorzóval

Írásbeli szorzás kétjegyû szorzóval Írásli szorzás kétjgyû szorzóvl Kiolgozott mintpél Egy krtész 36 plántát ültttt gy sor. Hány plántát ül - t ttt 24 sor? Atok: sor 36 plánt 24 sor x Trv: x = 24 36 vgy x = 36 24 Bslés: x 20 40 = 800 Számolás:

Részletesebben

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára

MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára 8. évfolym AMNy1 fltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár 2010. jnuár 23. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr

Részletesebben

Ábrahám Gábor: Az f -1 (x)=f(x) típusú egyenletekről. típusú egyenletekről, Megoldás: (NMMV hivatalos megoldása) 6 x.

Ábrahám Gábor: Az f -1 (x)=f(x) típusú egyenletekről. típusú egyenletekről, Megoldás: (NMMV hivatalos megoldása) 6 x. Ábrahám Gábor: Az f - ()=f() típusú gynltkről Az f ( ) = f( ) típusú gynltkről, avagy az írástudók fllősség és gyéb érdksségk Az alábbi cikk a. évi Rátz László Vándorgyűlésn lhangzott lőadásom alapján

Részletesebben

Matt Leacock játéka. KArtúm. SzuDán. moszkva. hô Chi minh ville. oroszország. essen. Montreal. németország. manila. Canada. Montreal.

Matt Leacock játéka. KArtúm. SzuDán. moszkva. hô Chi minh ville. oroszország. essen. Montreal. németország. manila. Canada. Montreal. Mtt Lcock játék Mgvn bnntk mindn, mi z mbriség mgmntéséhz kll? Egy járványlhárító cspt szkképztt tgjiként kll flfdzntk tomboló hlálos járványok llnszérumit, még milőtt zok világszrt ltrjdnénk. Nkd és cspt

Részletesebben

CÉLEGYENESBEN! Nyertek a horgászok

CÉLEGYENESBEN! Nyertek a horgászok á z h i y g k r D Hírk ám 1. sz lyam o f év XI.. 2010 ár Janu t a! n o v i k ha n l j Mg A Drkgyházi Önkormányzat mgbízásából szrkszttt függtln információs kiadvány. CÉLEGYENESBEN! Nyrtk a horgászok Jó

Részletesebben

Számok tízezerig. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint

Számok tízezerig. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint. ezer forint Számok tízzrig 1. Vásároltatok olyan holmit tanévkzdésr, ami több mint -ba krült? Mnnyi volt az érték? Mondd l! 2. Írd a számgyns mgfllő pontjához, amnnyi forintot fölött látsz! Hasonlítsd össz az gymás

Részletesebben

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen 10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,

Részletesebben

GEÓF CSÁKT ALBINT kinevezte Ő Felsége a

GEÓF CSÁKT ALBINT kinevezte Ő Felsége a 700 VASÁRNAPI ÚJSÁG. Magyarország Ausztria,Nmi-ország sah lglső hozzáérröi ajáljáb Lgjobb és lgolcsóbb táplálkozás gészségssblbtg gyrmkknk rfapnalómindn gygyszp -árbr.n H»nguríábon és a gyárnál R. KUFEKE

Részletesebben

Arculati Kézikönyv. website branding print

Arculati Kézikönyv. website branding print Arculati Kézikönyv wbsit branding print 22 2. A logó 23 A logó gy cég, szrvzt vagy szolgáltatás gydi, jól flismrhtő, azonosításra szolgáló vizuális jl. A logó lsődlgs célja a mgkülönbözttés, az gyértlmű

Részletesebben

FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA

FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA. BEVEZETÉS A szilárd tstkbn a töltés, az nrgia vagy más mnnyiség áramlását vztési (transzport) folyamatnak

Részletesebben

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk:

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk: L SZ 17 SÓS O L Z Ó ÉSTOL t: őd: in. hőmklt: x. hőmklt: x. nomá: Spcifikációk: Anok: -től -i ISO P kimák kö - C 0 C b -i m mlkdő oó ki kk tiánú ámlá tömít nh nomávt Öntöttv há n.hu v l n.hu v l Z ÉSTOLÓ

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

Város Polgármestere ELŐTERJESZTÉS

Város Polgármestere ELŐTERJESZTÉS Város Polgármstr 251 Biatorbágy, Baross Gábor utca 2/a Tlfon: 6 23 31-174/233 mllék Fax: 6 23 31-135 E-mail: bruhazas@biatorbagy.hu www.biatorbagy.hu ELŐTERJESZTÉS Budapst Balaton közötti krékpárút nyomvonalával

Részletesebben

Operatív döntéstámogatás módszerei

Operatív döntéstámogatás módszerei ..4. MSKOLC YM azaságtuomáyi Kar Üzlti formációgazálkoási és Mószrtai tézt Számvitl tézti aszék Opratív ötéstámogatás mószri Dr. Musiszki Zoltá Opratív ötéstámogatás mószri Statisztikai, matmatikai mószrk

Részletesebben

Módosítások: a) 22/2005. (IX. 19.) ör. b) 48/2006. (XII. 22.) ör. c) 7/2007. (II. 23.) ör. /2007.III. 1-

Módosítások: a) 22/2005. (IX. 19.) ör. b) 48/2006. (XII. 22.) ör. c) 7/2007. (II. 23.) ör. /2007.III. 1- 1 Módosítások: Budapst Főváros Trézváros Önkormányzat Képvislő-tstülténk 34/1996. (XII. 16.) rndlt az Önkormányzat tulajdonában álló lakások bérlőink lakbértámogatásáról a) 22/2005. (IX. 19.) ör. b) 48/2006.

Részletesebben

A vállalati likviditáskezelés szerepe eszközfedezettel rendelkező hitelszerződésekben

A vállalati likviditáskezelés szerepe eszközfedezettel rendelkező hitelszerződésekben VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szml LVIII. évf. 2011. július augusztus (633 652. o.) Havran Dánil A vállalati likviditáskzlés szrp szközfdzttl rndlkző hitlszrződéskbn Az alkun alapuló mgközlítés rdményi

Részletesebben

Előterjesztés. Tárgy: Szentesi lakosság egészségi állapotának javítását megcélzó átfogó program

Előterjesztés. Tárgy: Szentesi lakosság egészségi állapotának javítását megcélzó átfogó program Sznts Váos Önkományzata Képvislő-tstülténk Szociális Bizottságától Sznts Váos Önkományzata Képvislő-tstült Székhlyén Előtjsztés Tágy: Szntsi lakosság gészségi állapotának javítását mgcélzó átfogó pogam

Részletesebben

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk:

Méret: Végződés: Min. hőmérséklet: Max. hőmérséklet: Max. nyomás: Specifikációk: L E 15 PN1 PEN K É F S KAI IS 9001 : 08 PED 97/2/CE t: őd: in. hőmklt: x. hőmklt: x. nomá: Spcifikációk: Anok: DN 25-től 250-i PN 1 Kimák - C 00 C 1 B nliánú moá odmnt blő cővl odmnt cl hullám tt Acl kimák

Részletesebben

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/ . Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (

Részletesebben

22. előadás OLIGOPÓLIUM

22. előadás OLIGOPÓLIUM . lőadás OLIGOPÓLIUM Krtsi Gábor Varró László Varian 7. fjzt átdolgozva. Varian 7.-7.3 és 7.0-7. alfjzti nm részi a tananyagnak. . Bvztő Az lmúlt lőadásokon áttkintttük a piaci struktúrák két szélső stét:

Részletesebben

Forrás Nyelő. Fizikai. Kémiai BELSŐ. Biológiai. Mesterséges szennyvíz KÜLSŐ. Természetes. hordalék felkeveredés

Forrás Nyelő. Fizikai. Kémiai BELSŐ. Biológiai. Mesterséges szennyvíz KÜLSŐ. Természetes. hordalék felkeveredés BESŐ ÜSŐ Fizikai émiai Biológiai Forrá Nylő hordalék flkvrdé nirifikáció, NO - NO lpuzul, auolízi, akriáli loná, minralizáció Mrég znnyvíz vzé Trméz flzíni folyá, capadékvízzl, l. a-hoz köö znny a. kiülpdé

Részletesebben

Zsebmérleg 500 g méréshatárral Magas mérési tartomány Szállítás során védett kivitel Jól olvasható, megvilágított LCD

Zsebmérleg 500 g méréshatárral Magas mérési tartomány Szállítás során védett kivitel Jól olvasható, megvilágított LCD 22_Labormrlk_atnzv_Layout 1 2010.03.15. 13:43 Pa 160 Labormérlk Piktoraok PCE-JS 500 Blső kalibrálás: a pontossá bállítása motorizált blső súllyal történik Külső kalibrálás: a pontossá bállításához külső

Részletesebben

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths. www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ

Részletesebben

Mike Evans Hogyan vizsgázz sikeresen?

Mike Evans Hogyan vizsgázz sikeresen? Mik Evans Hogyan vizsgázz sikrsn? Fordította Mgyri Luca Mik Evans Hogyan vizsgázz sikrsn? Hasznos tonácsok érttségi, flvétli és gytmi vizsga lőtt állóknak A mű rdti cím: Mik Evans: How to Pass Y o ur Exams

Részletesebben