Életkor (Age) és szisztolés vérnyomás (SBP)
|
|
- Erika Gáspár
- 10 évvel ezelőtt
- Látták:
Átírás
1 Lináris rgrsszió Éltkor (Ag) és szisztolés vérnyomás (SBP) Ag SBP Ag SBP Ag SBP SBP (mm Hg) 220 SBP Ag
2 Két folytonos változó kapcsolata (SBP és Ag) y yβ 0 +β 1 x A β 1 rgrssziós gyüttható : Az x és y közötti kapcsolatot fjzi ki Mkkora a válozás y értékébn, ha x 1 gységnyit változik Lgkisbb négyztk módszrévl bcsül Többszörös lináris rgrsszió Egy folytonos változó és folytonos magyarázó változók csoportjának kapcsolata x Y β 0 + β 1 X 1 + β 2 X β k X k +ε A β i parciális rgrssziós gyüttható: - az a mnnyiség, amivl Y változik, ha X i 1 gységnyit változik, miközbn a többi X i értékét rögzítjük Példa: SBP vs. kor, tstsúly, magasság, stb.
3 Logisztikus rgrsszió (Logistic rgrssion) Hasznos, ha gy tulajdonság, vagy kimntl mglétét vagy hiányát szrtnénk mgjósolni magyarázó változók gy csoportja sgítségévl. Ekkor a függő változó dichotom. A magyarázó változók Xi csoportja lht dichotom (ign/nm) katgóriális, folytonos (kor, tömg, stb...) Az gyváltozós lmzés nm mindig ad hlys kockázat bcslést. Az pidmiológiai vizsgálatokban általában több kockázati tényzőt és intrakcióit kll figylmb vnni. Ilyn stkbn lht a logisztikus rgrssziót használni.
4 Éltkor (kor) és szívkoszorúér (CD) mgbtgdésr utaló szimptómák kor CD kor CD kor CD Hogyan lht zkt az adatokat lmzni? A btg és nm btg nők átlagos éltkorának összhasonlítása: Nm btg: Btg: 38.6 év 58.7 év (p<0.0001) Lináris rgrsszió? 1,2 1,0,8,6,4,2 0,0 CD -, KOR
5 Miért n használjunk lináris rgrssziót? Sérülnk a fltétlk: A hiba tagok varianciái különbözők. Nm normális loszlásúak. A prdiktált valószínűségk nm 0 és 1 közé snk. A szívoszorúér btgség prvalnciája (%) korcsoportonként Btg korcsoport Csoport mért száma % A logisztikus függvény prvalncia (%) valószínűség 11 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0, a + bx P ( y x) a + bx kor
6
7 A logisztikus rgrsszió modllj a Z 1 P( smény), Z b Z Z kifjzésből rd. b X 1 Az smény stünkbn a mgbtgdés. Az smény sély (odds): P( smény) P( nm smény) P( smény) 1 P( smény) Z, így logit(y) Y ln( odds) ln Z b0 + b1 X 1 Y. Mgjgyzés: Az általános lináris rgrsszió: Y b 0 + b 1 X 1 + b 2 X b k X k + Az általánosított lináris modll: Y g(b 0 + b 1 X 1 + b 2 X b k X k )+, azaz E(Y) g(b 0 + b 1 X 1 + b 2 X b k X k ) Ha f g -1 zt hívjuk link függvénynk, akkor f(e(y)) b 0 + b 1 X 1 + b 2 X b k X k Különböző link függvényk lhtségsk.
8 A logit transzformáció lőnyi: hasonló tulajdonságok, mint lináris rgrsszió stén a logit [, ] a valószínűség: 0 P 1 Közvtlnül kapcsolatba hozható a btgség sélyévl: P ln 1 P β + 0 β X 1 1 P β 0 + β 1 X P β intrprtációja: Rizikó faktor (X) Ign nm Btgség (Y) Ign P(Y X1) P(Y X0) nm 1-P(Y X1) 1-P(Y 10) 1 P β 0 + β 1 X P odds F β + β 0 1 β 0 + β 1 β 1 B OR β 0 odds F β ln( OR) β 0 B 1 β 1 az ln(or) változása, ha X gységnyit változik A H 0 : β 1 0 hipotézis tsztlés (Wald tszt) 2 β var( β ) 2 χ df 1 ± β SE ( β 1 ) Konfidncia intrvallum:
9 Logisztikus rgrsszió stén a paramétrkt az ún. maximum liklihood módszrrl bcsüljük (Úgy határozzuk mg az gyütthatókat, hogy a mgfigylt értékk valószínűség maximális lgyn.) Az gyütthatókra vonatkozó output: Stp 1 a kor Constant a. Variabl(s) ntrd on stp 1: kor. Variabls in th Equation B S.E. Wald df Sig. Exp(B) Lowr Uppr,132,046 8,053 1,005 1,141 1,042 1,249-6,708 2,354 8,121 1,004,001 95,0% C.I.for EXP(B) Ezk szrint: logit(cd)z -6, ,132 * kor OR Konfidncia intrvallum az OR-r : (1.042; 1.249) Ha azt szrtnénk mgmondani, hogy gy 55 évs nő stén mkkora a szívkoszorúér mgbtgdés valószínűség, akkor Z -6, ,132 * 55 0,552, azaz 1 P ( CD) 0,63 Z, azaz 63%. 1 +
10 Ha az éltkor szrint csinálunk két katgóriát, és úgy végzzük l az lmzést (kor_kat 0, ha Ag<50, kor_kat 1, ha Ag>50): Variabl B S.E. Wald df Sig R Exp(B) KOR_KAT(1) 2,2380,8165 7,5132 1,0061,3501 9,3749 Constant -1,3217,5627 5,5169 1,0188 Logisztikus rgrsszió nélkül: Ag Összs <50 >50 CD Összs OR Többszörös logisztikus rgrsszió Több mint 1 magyarázó változó. Lhtnk: dichotóm, ordinális, nominális, folytonos, ln P β 0 + β 1X1 + β 2X P 2 β i k intrprtációja: β n X n az ln(odds) változása, ha X i gységnyit változik miközbn a többi X rögzíttt Az 1 b jlntés jobban érthtő, ha még gy magyarázó változót bvszünk a modllb. Az új változó (dohányos) érték 1, ha a btg dohányzik, vagy hosszabb idig dohányzott a múltban, gyébként pdig 0.
11 Ekkor az output: Variabls in th Equation Stp 1 a kor dohányos Constant B S.E. Wald df Sig. Exp(B) Lowr Uppr,128,051 6,337 1,012 1,137 1,029 1,256 2,471 1,110 4,960 1,026 11,840 1, ,218-7,599 2,728 7,757 1,005,001 a. Variabl(s) ntrd on stp 1: kor, dohányos. 95,0% C.I.for EXP(B) Az lőző példában lévő 55 évs nm dohányos nő odds-a (sély) a szívkoszorúér mgbtgdésr: log(odds nm dohányos )-7, ,471*0 +0,128* kor -,559 Ha dohányos lnn, akkor log(odds dohányos )-7, ,471*1+0,128* kor 1,912. A kttő közti változás 2,471. Az sélyhányados: OR odds dohányos / odds nm dohányos xp(2,471)11,84. Az outputban még az OR-r vonatkozó konfidncia intrvallumot is mgtalálhatjuk. A két modllbn az Ag gyütthatói: és 0.132, azaz nincs lénygs különbség. A dohányzás nm confoundr az éltkorra nézv.
Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)
lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7
13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!
. gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a
Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn
Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
Szerző: Böröcz Péter János H-9026, Egyetem tér 1. Győr, Magyarország
In: Kóczy L, éánczos L, Bakó A, Prznszki J, Szgdi Z, Várlaki P (szrk.) Játéklmélt alkalmazási lhtőségi a logisztikai rndszrkbn - az gy- és többutas szállítási csomagolási szközök közötti döntéslmélti probléma
Villamos érintésvédelem
Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás
Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343
Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális
22. előadás OLIGOPÓLIUM
. lőadás OLIGOPÓLIUM Krtsi Gábor Varró László Varian 7. fjzt átdolgozva. Varian 7.-7.3 és 7.0-7. alfjzti nm részi a tananyagnak. . Bvztő Az lmúlt lőadásokon áttkintttük a piaci struktúrák két szélső stét:
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
KOD: B377137. 0, egyébként
KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,
Szúnyogháló 1.1 1.2 bepattintása 1.1 1.2 A szúnyogháló felengedése (A) (R) Tanács Portalanítás Tisztítás
Mágneses anyagok elektronmikroszkópos vizsgálata
Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok
A BINÁRIS LOGIT MODELLEK HASZNÁLATÁNAK ÉS TESZTELÉSÉNEK ESZKÖZEI
MÓDSZERTANI TANULMÁNYOK A BINÁRIS LOGIT MODELLEK HASZNÁLATÁNAK ÉS TESZTELÉSÉNEK ESZKÖZEI M FÜLÖP PÉTER A biáris logit modllk az alkalmazott közgazdasági problémák stéb is ig haszos szközk bizoyulak. Haszálatuk
DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme.
DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapst, Egry J. u. 1. Email: juhaszm@rg.bm.hu Tl: 1/463 40 22 www.rg.bm.hu A KIVÁLASZTÁS ÉS A MUNKAKÖRI ALKALMASSÁG PSZICHOLÓGIÁJA II. Az lızı
6. Határozatlan integrál
. Határozatlan intgrál.. Alkalmazza a hatványfüggvény intgrálására vonatkozó szabályt! d... d... d... d 8...... d... d... d..8. d..9. d..0. d... d... d 8... d... 8... d...... d..8...9. d..0. d d 8 d d..
A hőmérsékleti sugárzás
A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak
A központos furnérhámozás néhány alapösszefüggése
A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004ályázai rojk krébn Taralomfjlszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
Egy és többváltozós logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban
Egy és többváltozós logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika 2015-11-26 prohoz@kut.sote.hu
FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap
200. jnuár-fruár FELVÉTELI FELADATOK 8. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs
1. FELADATLAP TUDNIVALÓ
0851 modul: GEOMETRII ISMÉTLÉS z alakzatokról tanultak ismétlés 135 TUDNIVLÓ Egy alakzatot akkor nvzünk tnglysn szimmtrikusnak, ha létzik lgalá gy olyan gyns, amlyr az alakzatot tnglysn tükrözv önmagát
GYAKORLÓ FELADATOK 3. A pénzügyi eszközök értékelése
GYAKORLÓ FELADATOK 3. A pénzügyi szközök étéklés. fladat (kötvény) A vállalat 2 millió fointos buházása mgvalósításának finanszíozásához kötvénykibocsátást tvz, 5 Millió Ft étékbn. A jgyzést lbonyolító
FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA
FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA FÉLVEZETŐK VEZETÉSI TULAJDONSÁGAINAK VIZSGÁLATA. BEVEZETÉS A szilárd tstkbn a töltés, az nrgia vagy más mnnyiség áramlását vztési (transzport) folyamatnak
LÁTÓTÁVOLSÁG ÉS LÉGSZENNYEZETTSÉG BEVEZETÉS
Molnár Ágns Gácsr Vra LÁTÓTÁVOLSÁG ÉS LÉGSZENNYEZETTSÉG BEVEZETÉS A légsznnyző anyagok légköri mnnyiség, illtv koncntrációjuk változása fontos szrpt játszik mindnnapi éltünkbn, bfolyásolja éltminőségünkt.
FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap
2004. jnuár-fruár FELVÉTELI FELADATOK 4. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs
A vállalati likviditáskezelés szerepe eszközfedezettel rendelkező hitelszerződésekben
VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szml LVIII. évf. 2011. július augusztus (633 652. o.) Havran Dánil A vállalati likviditáskzlés szrp szközfdzttl rndlkző hitlszrződéskbn Az alkun alapuló mgközlítés rdményi
ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY
ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.
A radioaktív bomlás kinetikája. Összetett bomlások
A radioakív bomlás kinikája Össz bomlások Össz bomlások: lágazó bomlás B A B 40 K,EX 40 40 Ca Ar 0 B B Lvzés mgalálhaó az Izoópia I. 4. fjzébn! U-38 bomlási sor fonosabb agjai U-38 Th-34 Pa-34 U-34 Th-30
6. INTEGRÁLSZÁMÍTÁS. Írjuk fel a következő függvények primitív függvényeit ( ): 6.1. f: f ( x) = f: f ( x) = 4x f: f x x x.
5 6 INTEGRÁLSZÁMÍTÁS Írjuk fl a kövtkző függvényk primitív függvényit (6-67): 6 f: f ( ) = 6 f: f ( ) = 6 f: + f, R 6 f: f ( ) = 65 f: f ( ) = + 66 f: 67 f: f 68 f: f 69 f: 6 f: f +, R, R + f f +, R 6
Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése.
Aktív lgécillapítá. Máodfokú lgrdzr tztlé.. A gyakorlat célja Jármvk aktív lgé cillapítááak modllzé máodfokú lgrdzrkét. Szoftvrfjlzté a rdzr való idj tztléér, a tztrdméyk kiértéklé.. Elmélti bvzt. A máodfokú
A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1)
A Mozilla ThundrBird lvlzőprogram haszálata (Készíttt: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Vrsion 1.1) Tartalomjgyzék Tartalomjgyzék...1 A Központi Lvlző Szrvr használata... 1 A ThundrBird lvlzőprogram
A művészeti galéria probléma
A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai 2007 8: Műészti Galéria Probléma Őrzési / Mgilágítási problémák
53. sz. mérés. Hurokszabályozás vizsgálata
53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási
1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1
Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum
Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban
Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika 2016-11-24 prohoz@kut.sote.hu
: az i -ik esélyhányados, i = 2, 3,..I
Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +
11.Négymezős táblázatok. Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR)
.Négymezős táblázatok Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR) Az egyezés mérése:cohen s Kappa Kappa: az egyezés mérése két nominális
Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata
Tudományos Diákköri Konrncia Thrhordó üvg ödémszrkzt: T grnda ragasztott öv-grinc kapcsolatának numrikus vizsgálata Készíttt: Gál Tamás F17JCS építőmérnök hallgató Konzulns: Dr. Vigh László Grgly Egytmi
Installációs rendszerek
Tartalékvilágítási lámpatstk Rilux IP 40 Rilux Műszaki jllmzők b Állandó vagy késznléti üzmű lámpatstk b Bépíthtőség: gyors szrlés falflültr vagy mnnyztr b Mgfll a CEI EN 60598-2-22 szabvány kövtlményink
33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő
A 10/007 (II. 7.) SzMM rndlttl módosított 1/006 (II. 17.) OM rndlt Országos Képzési Jgyzékről és az Országos Képzési Jgyzékb történő flvétl és törlés ljárási rndjéről alapján. Szakképsítés, szakképsítés-lágazás,
KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?
NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG
Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban
Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála
LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)
Egészségügyi mérnöki mesterszak hallgatói adatainak elemzése. Computational Biomedicine (Combine) workgroup
Egészségügyi mérnöki mesterszak hallgatói adatainak elemzése Antal Péter Computational Biomedicine (Combine) workgroup Department of Measurement and Information Systems Budapest University of Technology
A kötéstávolság éppen R, tehát:
Forgás és rzgés spktroszkópa:. Határozzuk mg a kövtkző részcskék rdukált tömgét: H H, H 35 Cl, H 37 Cl, H 35 Cl, H 7 I Egy m és m tömgű atomból álló kétatomos molkula rdukált tömg () dfnícó szrnt: mm vagy
Többváltozós lineáris regresszió 3.
Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,
10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen
10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn
TÁMOGATÁSI SZERZŐDÉS. Leonardo da Vinci Innováció transzfer projektekre. Az Egész életen át tartó tanulás program 1 keretében
TÁMOGATÁSI SZERZŐDÉS Lonardo da Vinci Innováció transzfr projktkr Az Egész éltn át tartó tanulás program 1 krtébn amlyt gyrészről a Tmpus Közalapítvány Hivatalos jogi forma: közalapítvány Nyilvántartási
Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban
Egy és (többváltozós) logisztikus regressziós vizsgálatok és alkalmazásaik a klinikumban Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika 2017-11-23 prohoz@kut.sote.hu
4. Differenciálszámítás
. Diffrnciálszámítás.. Írja fl a diffrnciahányadost a mgadott pontban és határozza mg a határértékét!... f...... f..7. f, f,,..9. f... f... f... f...... f..7...9. f...... f... f... f...,..6. f,,,, f,..8.
A többváltozós lineáris regresszió III. Főkomponens-analízis
A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió
Módosítások: a) 22/2005. (IX. 19.) ör. b) 48/2006. (XII. 22.) ör. c) 7/2007. (II. 23.) ör. /2007.III. 1-
1 Módosítások: Budapst Főváros Trézváros Önkormányzat Képvislő-tstülténk 34/1996. (XII. 16.) rndlt az Önkormányzat tulajdonában álló lakások bérlőink lakbértámogatásáról a) 22/2005. (IX. 19.) ör. b) 48/2006.
RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2
RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (
ISO 9000 és ISO 20000, minőségmenedzsment és információtechnológiai szolgáltatások menedzsmentje egy szervezeten belül
ISO 9000 és ISO 20000, minőségmndzsmnt és információtchnológiai szolgáltatások mndzsmntj gy szrvztn blül dr. Vondrviszt Lajos, Vondrviszt.Lajos@nhh.hu Nmzti Hírközlési Hatóság Előzményk A kormányzati intézményk
(2) A d(x) = 2x + 2 függvénynek van véges határértéke az x0 = 1 helyen, így a differenciálhányados: lim2x
DIFFERENCIÁLSZÁMÍTÁS MINTAPÉLDÁK.. Példa. Határozzuk mg az f = függvénnk az = hlhz tartozó diffrnciahánados függvénét, majd vizsgáljuk mg, hog f diffrnciálható- az -ban adjuk mg az = hlhz tartozó diffrnciálhánadost.
7. Határozott integrál
7. Htározott intgrál 7.. Számolj ki z lái intgrálokt! 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7...
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 080 ÉRETTSÉGI VIZSGA 008. novmbr. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szrint,
PDF created with FinePrint pdffactory Pro trial version Adott egy X folytonos változó, ami normális eloszlású.
Á dott egy X folytonos változó, ami normális eloszlású. X ( µ,σ ) dottak ezen kívül az Y,Y,,Y k diszkrét változók (faktorok) total H 0 : X - re nincs hatással Y Q = Q + Q +... + Q + Q + Q3 +... + Q k hiba
AZ ERDŐÁLLAPOT-LEÍRÓ RENDSZER PROTOKOLLJA
SH/4/13 WP1 Erdi éltközösségk védlmét mgalapozó többcélú állapotértéklés a magyar Kárpátokban SH/4/13 2. részfladat Erdőállapot-flmérésk Magyarország Kárpát-régiójában AZ ERDŐÁLLAPOT-LEÍRÓ RENDSZER PROTOKOLLJA
10. Aggregált kínálat
Univrsität Miskolci Miskolc, Egytm, Fakultät für Gazdaságtudományi Wirtschaftswissnschaftn, Kar, Gazdaságlmélti Institut für Wirtschaftsthori 10. Aggrgált kínálat Univrsität Miskolci Miskolc, Egytm, Fakultät
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
2006. jnuár 28. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. jnuár 28. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz!
A biológiai szűrés természete és hőmérsékletfüggése
Nm a lgrősbb marad éltbn, nm is a lgokosabb, hanm az, aki a lgfogékonyabb a változásokra. Charls Darwin A biológiai szűrés trmészt és hőmérsékltfüggés Tolnai Béla gépészmérnök Kulcsszavak: frtőtlnítés,
SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL
SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2007. fruár 1. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. fruár 1. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
2006. jnuár 27. MATEMATIKA FELADATLA 4. évfolymosok számár 2006. jnuár 27. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NA: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon végzz! Mllékszámításokr
Országos Szilárd Leó fizikaverseny feladatai
Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta
III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)
5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
ÚJ FELADATLAP 2007. ruár 1. ANYANYELVI FELADATLAP 8. évolymosok számár 2007. ruár 1. 14:00 ór ÚJ FELADATLAPI NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai
Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás
Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,
Az idegenekkel szembeni attitűdök változása a menekültkrízis hatására
Az idegenekkel szembeni attitűdök változása a menekültkrízis hatására Örkény Antal ELTE Szociológiai Doktori Iskola vezetője Menedék Egyesület elnöke Elméleti megfontolások 1 Az idegen mint szociológiai
Installációs rendszerek
6 készülékcsalád, amly tökéltsn mgfll az Ön igényink A Schnidr csoporthoz csatlakozott OVA mgbízható és magas minőségű tartalékvilágítási rndszri már jó idj lismrt trméki a magyarországi piacnak. Alkalmazásukkal
Logisztikus regresszió október 27.
Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai
Túlélés analízis. Probléma:
1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális
Egy általános iskola nyolcadikosainak vallomásai
ÉLETEM w Egy általános iskola nyolcadikosainak vallomásai A fjlődéslélktan művlői és ismrői számára nm újság, hogy a gyrmk llki fjlődésébn szociális körülményir, zn körülményink változására is tkintttl
6. előadás Véges automaták és reguláris nyelvek
Formális nylvk és automaták Széchnyi István Egytm 6. lőadás Végs automaták és rguláris nylvk dr. Kallós Gábor 2017 2018 Formális nylvk és automaták Széchnyi István Egytm Tartalom Zártsági tulajdonságok
Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István
Lináris gynltrndszrk Készíttt: Dr. Ábrhám István A lináris gynltrndszrkt kitrjdtn hsználják optimumszámítási fldtokbn. A tém tárgylásához lőkészültt kll tnni. Mátri fktorizáció A fktorizáció mátri szorzttá
A fotometria alapjai
A fotomtria alapjai Mdicor Training Cntr for Maintnanc of Mdical Equipmnt Budapst, 198 Írta: Porubszky Tamás okl. fizikus Lktorálta: Bátki László és Fillingr László Szrkszttt: Török Tibor 1. ÁLTALÁNOS
Az éves statisztikai összegezés 1
21. mlléklt 2/2006. (I. 13.) IM rndlthz Az évs sttisztiki összgzés 1 Sttisztiki összgzés z évs közbszrzéskről Kbt. IV., VI. fjzt, vlmint ngydik rész szrinti jánltkérők vontkozásábn 1. Az jánltkérő nv,
DOMUSLIFT KATALÓGUS IV. RESET homeliftek
OMUSLIT KTLÓGUS IV. RST homliftk Miért jó a RST homlift? RST homliftk a omuslift széria lgolcsóbb darabjai, d tudásokban és biztonságosságukban gyáltalán nm különböznk a trmékcsalád többi tagjától. Ugyanazoknak
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
2006. fruár 2. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. fruár 2. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz! A
Helyszükséglet összehasonlítás
Hlyszükséglt összhsonlítás Hgyományos riálvntilátor A VAR rnszr összhsonlítás Hlios RADAX VAR Systm A VAR rnszr z lsony nyomás növkésű xiálvntilátorok és riál vntilátorok közötti szükségltkt légíti ki.
KÖZPONTI STATISZTIKAI HIVATAL
KÖZPONTI STATISZTIKAI HIVATAL Tlfon: 45-6 Intrnt: www.ksh.hu Atgyűjtésk Ltölthtő kérőívk, útmuttók Az tszolgálttás 9/6. (XI..) Korm. rnlt lpján kötlző. Nyilvántrtási szám: /7 Atszolgálttók: vlmnnyi trtós
A DUPLEX-S 1500 5600 kompakt szellőztető egységek ellenáramú hővisszanyerővel
A -S 1500 5600 kompakt szllőzttő k llnáramú hővisszanyrővl A S 1500 5600 kompakt szllőzttő k kizárólag bltéri kivitlbn a kisüzmk, műhlyk, üzltk, iskolák, éttrmk, sportlétsítményk, ipari üzmcsarnokok valamint
Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI
Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai
Nagycsaládosok "Szivárvány" Egyesülete
8 9 3 8 2 0-9 3 3-5 2 9-9 Nagycsaládosok "Szivárvány" Egysült 8230 Balatonfürd, Rózsa u. 2. Közhasznú Egyéb Szrvzt Egyszrűsíttt Bszámolója Evs zárómérlg 2008. január 0.- 2008. dcmbr 3 2008 Kcli Riilatonlurd.
Mike Evans Hogyan vizsgázz sikeresen?
Mik Evans Hogyan vizsgázz sikrsn? Fordította Mgyri Luca Mik Evans Hogyan vizsgázz sikrsn? Hasznos tonácsok érttségi, flvétli és gytmi vizsga lőtt állóknak A mű rdti cím: Mik Evans: How to Pass Y o ur Exams
Arculati Kézikönyv. website branding print
Arculati Kézikönyv wbsit branding print 22 2. A logó 23 A logó gy cég, szrvzt vagy szolgáltatás gydi, jól flismrhtő, azonosításra szolgáló vizuális jl. A logó lsődlgs célja a mgkülönbözttés, az gyértlmű
A DUPLEX-S 1500 5600 kompakt szellőztető egységek ellenáramú hővisszanyerővel
s a v y o u r n r g y A -S 1500 5600 kompakt szllőzttő k llnáramú hővisszanyrővl A S 1500 5600 kompakt szllőzttő k kizárólag bltéri kivitlbn a kisüzmk, műhlyk, üzltk, iskolák, éttrmk, sportlétsítményk,
2011. évi intézmény-felújítás,intézményi javaslatok
agasépítési csoport PRIORITÁSOK: BRH=biztonságos és rndlttésszrű használat, =állagmgóvás, = műszak iés funkcionális szükség, =gyéb 13 Holdfény Utcai Óvoda Kincskrső Tagóvodája Prioritás gjgyzés 13.1 Krt
KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?
NEVEZETES DISZKRÉT ÉS FOLYTONOS ELOSZLÁSOK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ
A szelepre ható érintkezési erő meghatározása
A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl
VT 265 www.whirlpool.com
VT 265.hirlpool.com 1 BEÜZEMELÉS A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LE- MEZEKET,
1. AZ MI FOGALMA. I. Bevezetés ELIZA. Első szakasz (60-as évek) Második szakasz (70-es évek) Harmadik szakasz (80-as évek)
1. AZ MI FOGALMA I. Bvztés 1956 nyár. Darthmouth Collg-i konfrncia Kzdti cél: Az mbri gondolkodás számítógép sgítségévl történő rprodukálása. Grgorics Tibor Bvztés a mstrségs intllignciába 1 Grgorics Tibor
Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a
1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)
DUPLEX, DUPLEX-S, DUPLEX-N, DUPLEX-NS
DUPLEX, DUPLEX-S, DUPLEX-N, DUPLEX-NS tlpítés módok A DUPLEX 000 000 ( hõvsszanyrõvl) és a DUPLEX-S 500 5600 ( hõvsszanyrõvl) többfél kvtlbn készül, mlyk mgkönnyítk az gységk gépházban történõ tlpítését,