Diszkriminancia-analízis

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkriminancia-analízis"

Átírás

1 Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz

2 Diszkriminancia-analízis folyamata

3 Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független változó (x) Metrikus Függő változó (y) Nem metrikus Metrikus Kereszttábla elemzés Varianciaanalízis Diszkriminancia-analízis, Logisztikus regresszió Korreláció- és regresszióelemzés

4 2. Feltételek vizsgálata 1. Adatok, változók X: Metrikus változók / Dummy változók (age, education level, current salary, beginning salary, month since hire, previous experience, minority classification) Adatok kizárólagossága: Pl. aki vezető, az nem hivatalnok Mindenki valamelyik csoport tagja, stb

5 2. Feltételek vizsgálata 2. Normális eloszlás Graph / Histogram Stb. Nonparametric Tests / 1-Sample K-S Test n Mahalanobis távolság

6 2. Feltételek vizsgálata 3. Multikollinearitás (vagy Pooled Within-Groups Matrices) Faktoranalízis (?)

7 2. Feltételek vizsgálata 4. Outlier: Mahalanobis távolság 5. Homoszkedaszticitás: Box s M Analyze / Classify / Discriminant Elemzés lefuttatásával

8 Multikollinearitás (r) Homoszkedaszticitás: nemcsak variancia állandóság, de varianciakovariancia mátrixok egyezősége is feltétel Outlier Normál eloszlás Változók bevonása: milyen mértékben csökken a Wilks λ Milyen mértékben csökken a nem magyarázott variancia Kisebb M-távolság Legnagyobb F-érték Rao s V értékének növekedése

9 mert nem ugyanannyi menedzser van, mint pl. hivatalnok 5. Érvényesség vizsgálat

10 - Month since hire - Minority - Age (?) STEPWISE Megmutatja, hogy vannak-e különbségek a csoportosító változó által kialakított csoportok átlagai között: ha a csoportosító változó a varianciának nagy részét magyarázza, akkor a csoportok átlagai között szignifikáns eltérés mutatkozik, és a mutató értéke 0-hoz közelít. Így az egyes változók az alapján kerülhetnek bevonásra a diszkriminanciaelemzésbe, hogy milyen mértékben képesek a Wilks λ értékét csökkenteni. Magas F érték, alacsony Wilks Lambda!!! A kevés diszkriminatív értékkel bíró változók a stepwise diszkriminanciaelemzés segítségével eltávolíthatók.

11 Stepwise Statistics: 1. Education Level 2. Previous Experience 3. Current Salary 4. Age 5. Beginning Salary

12 Group Statistics Employment Category Mean Std. Deviation Valid N (listwise) Unweighted Weighted Clerical Educational Level (years) Current Salary Beginning Salary Months since Hire Previous Experience (months) Minority Classification age Custodial Educational Level (years) Current Salary Beginning Salary Months since Hire Previous Experience (months) Minority Classification age Manager Educational Level (years) Current Salary Beginning Salary Months since Hire Previous Experience (months) Minority Classification age Total Educational Level (years) Current Salary Beginning Salary Months since Hire Previous Experience (months) Minority Classification age

13 Vs.

14 Egyező log determinánsok (nagyon alacsony log determinánssal rendelkező csoportokat célszerű törölni, ha M szignifikáns minél magasabb kritikus p-érték) H 0 : homoszkedasztikus (egyező kovariancia mátrixok) H 1 : heteroszkedasztikus p<0.000 szignifikancia-szinten fogadjuk el, hogy homoszkedasztikus (nagy mintaelemszámnál a szignifikancia eredménye kevésbé jelentős)

15 3. Diszkriminancia függvény Stepwise: Nő a magyarázó erő Kevésbé járul a magyarázó erő növekedéséhez Szignifikáns diszkriminancia függvény p=0.000 λ=22,3% a nem magyarázott variancia ( ANOVA H 2 inverze) KANONIKUS DISZKRIMINANCIA FÜGGVÉNY Min {p;y kategóriáinak száma-1} = 2 A különbözőség azon része, amit a DF 1 nem foglal magába

16 DF külső szórásnégyzet DF belső szórásnégyzet DF által magyarázott különbözőség DF által nem magyarázott különbözőség DF-k a magyarázott különbözőség hány %-t magyarázzák ( 100%) Az DF 1 83,4%-ban járul hozzá a különbözőség magyarázatához, míg a DF 2 csak 16,6%-ban. Többszörös korreláció a magyarázó változók és a diszkriminancia fv. között H komplementere 1 fv. esetében a négyzete R 2 (modell illeszkedés) A DF 1 0,826 2 =68,23%-ban magyarázza a csoportosító változó varianciáját

17 3-4. DF, Értelmezés Diszkrimináló hatás értelmezése DF elnevezése Változók fontossága Kapcsolat iránya β együtthatók (parciális) Pl. DF 1 -t a leginkább a jelenlegi fizetés, míg DF 2 -t a korábbi munkatapasztalat határozza meg DF-k és a magyarázó változók közötti korreláció Változók relatív fontossága (a korreláció abszolút mértékének sorrendjében) faktor loading (határ: >0,3 fontos)

18 Diszkriminancia függvény paraméterei: b i együtthatók (A mértékegységek különbözősége miatt nem látszik a jelentősége, de ezek is diszkriminálnak) DF DF 1 2 = = 0,082-0,201 education education level - 0,002 level + 0,013 previous previous experience experience 0,019 0,038 b: a változók parciális hozzájárulása a DF-ekhez (a többi változó változatlansága mellett) + age - age 4, ,748 Dummy változók használata esetén: elemzés a használatuk nélkül használatukkal (a kanonikus korreláció négyzetében mért különbség a Dummy változók magyarázó ereje)

19 Átlagos D értékek Egy egyed ahhoz a csoporthoz tartozik, amely csoport centroidjához a legközelebb esik a diszkriminancia értéke (discriminant score) (Mahalanobis távolság alapján) Pl: 1. személy: manager Predicted group Discriminant membership score

20

21

22 5. Érvényesség vizsgálat Találati arány Helyes kategorizálás Új dolgozó: abba csoportba tartozik, amelyik centroidjától a kiszámított Mahalanobis távolság értéke a legalacsonyabb

23 Köszönöm a figyelmet!

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

Hátrányok: A MANOVA elvégzésének lépései:

Hátrányok: A MANOVA elvégzésének lépései: MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k populációban a függő változók egy lineáris kombinációjának

Részletesebben

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Többváltozós problémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Typotex Kiadó. Tartalomjegyzék

Typotex Kiadó. Tartalomjegyzék Tartalomjegyzék Bevezetés... 11 A hasznos véletlen hiba... 13 I. Adatredukciós módszerek... 17 1. Fıkomponens-elemzés... 18 1.1. A fıkomponens jelentése... 25 1.2. Mikor használjunk fıkomponens-elemzést?...

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Klaszterelemzés az SPSS-ben

Klaszterelemzés az SPSS-ben Klaszterelemzés az SPSS-ben Petrovics Petra Doktorandusz Klaszteranalízis Olyan dimenziócsökkentő eljárás, amellyel adattömböket megfigyelési egységeket tudunk viszonylag homogén csoportokba sorolni, klasszifikálni.

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

A Fertő tó magyarországi területén mért vízkémiai paraméterek elemzése többváltozós feltáró adatelemző módszerekkel

A Fertő tó magyarországi területén mért vízkémiai paraméterek elemzése többváltozós feltáró adatelemző módszerekkel A Fertő tó magyarországi területén mért vízkémiai paraméterek elemzése többváltozós feltáró adatelemző módszerekkel Magyar Norbert Környezettudomány M. Sc. Témavezető: Kovács József Általános és Alkalmazott

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Ingatlanpiac és elemzése 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Horváth Áron horvathar@eltinga.hu ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Tartalom 1. A statisztikai

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Többváltozós roblémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

TEXTÚRA ANALÍZIS VIZSGÁLATOK LEHETŐSÉGEI A RADIOLÓGIÁBAN

TEXTÚRA ANALÍZIS VIZSGÁLATOK LEHETŐSÉGEI A RADIOLÓGIÁBAN TEXTÚRA ANALÍZIS VIZSGÁLATOK LEHETŐSÉGEI A RADIOLÓGIÁBAN Monika Béres 1,3 *, Attila Forgács 2,3, Ervin Berényi 1, László Balkay 3 1 DEBRECENI EGYETEM, ÁOK Orvosi Képalkotó Intézet, Radiológia Nem Önálló

Részletesebben

: az i -ik esélyhányados, i = 2, 3,..I

: az i -ik esélyhányados, i = 2, 3,..I Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +

Részletesebben

7.2. A készségek és az oktatás jövedelemben megtérülő hozama

7.2. A készségek és az oktatás jövedelemben megtérülő hozama 7.2. A készségek és az oktatás jövedelemben megtérülő hozama A neoklasszikus közgazdasági elmélet szerint a termelés végső értékéhez jobban hozzájáruló egyének számára elvárt a magasabb kereset. Sőt, mi

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Véleménypolarizáció és választási részvétel. Kmetty Zoltán MTA- ELTE- PERIPATO

Véleménypolarizáció és választási részvétel. Kmetty Zoltán MTA- ELTE- PERIPATO Véleménypolarizáció és választási részvétel Kmetty Zoltán MTA- ELTE- PERIPATO Tartalom Problémafelvetés Magyarázati sémák Indikátorok, modellek Eredmények Választási verseny és részvétel összefüggése Kistelepülések

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz

Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz Az SPSS statisztikai program World95.sav nevű adatbázisa a világ 109 nemzetének 26 társadalmi-gazdasági és politikai helyzetét leíró

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

- BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ. Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011.

- BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ. Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011. - BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011. T A R T A L O M J E G Y Z É K 1. Felhasznált adatok 2.

Részletesebben

M. Schumacher versenyelőnyének statisztikai vizsgálata

M. Schumacher versenyelőnyének statisztikai vizsgálata M. Schumacher versenyelőnyének statisztikai vizsgálata Többváltozós statisztikai elemzések házi dolgozat Szolnoki Endre, 2009. december Összefoglalás A következőkben Schumacher és versenytársai közötti

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

Főkomponens és Faktor analízis

Főkomponens és Faktor analízis Főkomponens és Faktor analízis Márkus László 2014. december 4. Márkus László Főkomponens és Faktor analízis 2014. december 4. 1 / 34 Bevezetés - Főkomponens és Faktoranalízis A főkomponens és faktor analízis

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló Hallgatók 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011 Módszertani összefoglaló Készítette: Veroszta Zsuzsanna PhD 2012. március 1. Az adatfelvétel

Részletesebben

DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI

DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI HÁMORI GÁBOR Kaposvári Egyetem 2014 KAPOSVÁRI EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Doktori Iskola vezetője: PROF. DR. Kerekes Sándor MTA Doktora Témavezető:

Részletesebben

REL REL. Histogramok A második kép anormál eloszlással összevetve. minden változó értéket külön-külön vesz figyelembe

REL REL. Histogramok A második kép anormál eloszlással összevetve. minden változó értéket külön-külön vesz figyelembe Frequency Frequency 1. ALAPFOGALMAK Deduktív stratégia: Az általános elvekből, törvényszerűségekből, vagy egyéb tudományos megállapításból indul ki a kutató. Induktív stratégia: A konkrét tapasztalatokból

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára. HÉTFA Kutatóintézet és Elemző Központ

Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára. HÉTFA Kutatóintézet és Elemző Központ Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára Uniós források elosztása HATÁSVIZSGÁLAT MÓDSZERTANI KIHÍVÁSAI Mi a hatásvizsgálat? Hatásvizsgálat: jellemzően olyan vizsgálatok,

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben