Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet"

Átírás

1 Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

2 Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés során: Tanuló Matematika Nyelvek Színház Kiskereskedelem Péter Sanyi Ibolya Anikó Gabi Bence Ugyanazon személyeken mért változók között gyakran van valamilyen kapcsolat. Krisztina Boda 2

3 A kapcsolat vizsgálatához először készítsünk ábrát (pont ábra vagy szóródás-ábra). A két változó mért értékeivel mint (x i, y i ) koordinátákkal berajzoljuk a megfelelő pontokat. Egy ilyen ábrán a kapcsolat irányát és szorosságát vizsgáljuk, valamint az általános alakzatot. Tanuló Matematika Nyelvek Péter x 1 =525 y 1 =550 Sanyi x 2 =515 y 2 =535 Ibolya x 3 =510 y 3 =535 Anikó x 4 =495 y 4 =520 Gabi x 5 =430 y 5 =455 Bence x 6 =400 y 6 =420 Krisztina Boda 3

4 theater language retailing Lehetséges kapcsolatok math score math score Pozitív korreláció Negatív korreláció math score Nincs korreláció Krisztina Boda 4

5 Mérőszám a lineáris kapcsolat szorosságának mérésére: a korrelációs együttható (r) (Pearson-féle korrelációs együttható) Ha a két változó mért értékei rendre x 1,x 2, x n és y 1,y 2, y n, akkor a korrelációs együttható képlete r n n x y x y i i i i1 i1 i1 n n n n 2 2 n xi xi n yi yi 2 ( ) ( ) i1 i1 i1 i1 n n i 2 n i1 n i1 ( x x)( y y) i 2 ( x x) ( y y) i n i1 i i 2 Krisztina Boda 5

6 Karl Pearson (27 March April 1936) established the discipline of mathematical statistics. /wiki/karl_pearson Karl Pearson Krisztina Boda 6

7 theater retailing language Az r tulajdonságai A korrelációs együttható értéke mindig -1 és +1 között van; -1 és 1 jelzi a tökéletes lineáris kapcsolatot. -1r 1. a) Ha r közel van +1-hez vagy -1-hez, azt mondjuk, hogy szoros (magas) korreláció van a két változó között math score math score b) Ha r=1, tökéletes pozitív korreláció Ha r= -1, tökéletes negatív korreláció c) Ha r=0, nincs korreláció, vagyis nincs lineáris kapcsolat. Ha r közel van 0-hoz, akkor alacsony korrelációról beszélünk math score Krisztina Boda 7

8 theater language retailing Az r értékei az előbbi példák adataira math score math score r= r= r= math score Krisztina Boda 8

9 Hallgatók adatain kapott összefüggések r=0.018 r=0.873 Krisztina Boda 9

10 Korreláció és okság A korreláció nem jelent oksági kapcsolatot Két változó között korreláció nem jelenti azt, hogy az egyik változását a másik okozza. Krisztina Boda. 10

11 Correlation by eye Ezen az oldalon gyakorolhatjuk azt, hogy adott ponthalmaz esetén mekkora lehet a korreláció. Krisztina Boda 11

12 language language theater theater Kiugró értékek hatása Egyetlen kiugró érték nagyon meg tudja változtatni a korrelációt r=-0.21 math score math score r= r=0.74 math score math score r=-0.26 Krisztina Boda 12

13 A korreláció csak a lineáris kapcsolat szorosságát méri Szoros, de nem lineáris kapcsolat esetén a korrelációs együttható kicsi y r=2.8 E-15 y r=0.157 Krisztina Boda 13

14 Korreláció és linearitás A fenti négy adathalmaz mindegyikére igaz, hogy r= Krisztina Boda 14

15 Mikor mondjuk, hogy jó a korreláció? Nincs olyan egyértelmű határ, amitől kezdve jónak vagy magasnak minősítjük a korrelációt. De végrehajtható egy statisztikai próba, mellyel tesztelhetjük, hogy a kapott korrelációs együttható elég messze van-e 0-tól. Részletek: 8. előadás Krisztina Boda 15

16 A korrelációs együttható szignifikanciája Azt teszteljük, hogy a kapott korrelációs együttható tekinthető-e a 0 közelítésének, vagy pedig elég messze van 0-tól. H 0 : ρ=0 (görög rho=0, a populációs korrelációs együttható = 0) H a : ρ 0 (a populációs korrelációs együttható 0) Feltétel: a két minta két független minta kétdimenziós normális eloszlásból. Ha igaz a nullhipotézis, az alábbi t statisztika n-2 szabadságfokú t-eloszlást követ t r n 2 1 r r n 2 1 r 2 2 Döntés t-táblázat alapján: Ha t >t α,n-2, a különbség szignifikáns α szinten, elvetjük a nullhipotézist és azt mondjuk, hogy a populációs korrelációs együttható szignifikánsan eltér 0-tól. Ha t <t α,n-2, a különbség nem szignifikáns α szinten, nem vetjük el a nullhipotézist és azt mondjuk, hogy a populációs korrelációs együttható nem tér el 0-tól. Döntés p-érték alapján: Ha p < α a különbség szignifikáns α szinten, elvetjük a nullhipotézist és azt mondjuk, hogy a populációs korrelációs együttható szignifikánsan eltér 0-tól. Krisztina Boda 16

17 Kétváltozós normális eloszlások ρ=0 ρ=0.4 Function Plot Function = 1/(2*pi)*exp(-0.5*(x^2))*exp(-0.5*(y^2)) Function Plot Function = 1/(2*pi*Sqrt(0.84))*exp(-(1/1.68)*(x^2+y^2-0.8*x*x)) Function Plot Function = 1/(2*pi)*exp(-0.5*(x^2))*exp(-0.5*(y^2)) > 0.14 < 0.13 < 0.11 < 0.09 < 0.07 < 0.05 < 0.03 < 0.01 Function Plot Function = 1/(2*pi*Sqrt(0.84))*exp(-(1/1.68)*(x^2+y^2-0.8*x*x)) > 0.16 < 0.15 < 0.13 < 0.11 < 0.09 < 0.07 < 0.05 < 0.03 < 0.01 Krisztina Boda > 0.14 < 0.13 < 0.11 < 0.09 < 0.07 < 0.05 < 0.03 < 0.01 > 0.16 < 0.15 < 0.13 < 0.11 < 0.09 < 0.07 < 0.05 < 0.03 <

18 1. példa A matematika és a nyelvtudás közötti korrelációs együttható r= Szignifikánsan eltér-e 0-tól? H 0 : A populációs korrelációs együttható = 0, ρ =0. H a : A populációs korrelációs együttható nem 0. A t statisztika: t szabadságfok: df=6-2=4 A táblabeli kritikus érték t 0.05,4 = Mivel 42.6 > 2.776, elvetjük a nullhipotézist és azt mondjuk, hogy a populációs korrelációs együttható szignifikánsan eltér 0-tól. 2 Krisztina Boda 18

19 560 Scatterplot (corr 5v*6c) LANGUAGE = *x LANGUAGE MATH:LANGUAGE: r = ; p = MATH p<0.05, populációs korrelációs együttható szignifikánsan eltér 0-tól. Krisztina Boda 19

20 2. példa A matematika és az adásvétel közötti korreláció r= Szignifikánsan eltér-e 0-tól? H 0 : A populációs korrelációs együttható = 0, ρ =0. H a : A populációs korrelációs együttható nem 0. A t statisztika: t Szabadságfok: df=6-2=4 A táblabeli kritikus érték t 0.05,4 = Mivel =53.42 > 2.776, elvetjük a nullhipotézis és azt mondjuk, hogy a populációs korrelációs együttható szignifikánsan eltér 0-tól. Krisztina Boda 20

21 100 Scatterplot (corr 5v*6c) RETAIL = *x RETAIL MATH:RETAIL: r = ; p = MATH Krisztina Boda 21

22 3. példa. A matematika és a színház szeretete közötti korreláció r= Szignifikánsan eltér-e 0-tól? H 0 : A populációs korrelációs együttható = 0, ρ =0. H a : A populációs korrelációs együttható nem 0. A t statisztika: : t Szabadságfok: df=6-2=4 A táblabeli kritikus érték t 0.05,4 = Mivel = < 2.776, nem vetjük el a nullhipotézist és azt mondjuk, hogy a korreláció nem szignifikáns 5%-os szinten. Nem tudjuk kimutatni a 0-tól való eltérés 5% hiba feltételezése mellett. Krisztina Boda 22

23 100 Scatterplot (corr 5v*6c) THEATER = *x THEATER MATH:THEATER: r = ; p = MATH Krisztina Boda 23

24 Hallgatók adatain kapott összefüggések, a korreláció szignifikanciája r=0.018, p=0.833 r=0.873, p< Krisztina Boda 24

25 A lineáris kapcsolat becslése: lineáris regresszió Ha a kapcsolat lineáris, szükséges lehet a legjobban illeszkedő egyenes egyenletének meghatározása. A regressziós egyenes általános egyenlete y=bx + a a és b jelentése. b: regressziós együttható, az egyenes meredeksége; a: az egyenes tengelymetszete. Az együtthatók becslése a legkisebb négyzetek elvén alapul. Ha adott x 1,x 2, x n and y 1,y 2, y n, keressük meg azt az a és b értéket, amelyre Σ( y i -(a+bx i ) ) 2 min Krisztina Boda 25

26 A legkisebb négyzetek elve n 2 ( yi ( a b xi )) S( a, b) ->min b S a n i1 i1 S 0, 0 b x y n i i1 i x 2 i n x i i1 i1 n n n ( xi ) i1 n a y b x 2 y i n i1 ( x x)( y y) n i i1 ( x x) i i 2 A korrelációs együttható kiszámítása a regressziós együttható segítségével r b s sx y színház matematika színház = * matematika R-Square = 0.05 Linear Regres Krisztina Boda 26

27 100 Reziduálok Scatterplot (corr 5v*6c) THEATER = *x (x 1,y 1 ) y 1 -(b*x 1 +a) b*x 1 +a THEATER y 2 -(b*x 2 +a) y 6 -(b*x 6 +a) MATH:THEATER: r = ; p = MATH Krisztina Boda 27

28 A regressziós egyenes egyenlete az 1.példa adataira. y=1.016 x+15.5 a meredekség Mennyi pont várható a nyelvtudásra, ha a matematika pontértéke 400? y jósolt = = LANGUAGE Scatterplot (corr 5v*6c) LANGUAGE = *x MATH:LANGUAGE: r = ; p = MATH Krisztina Boda. 28

29 Hipotézisvizsgálatok a regressziós egyenlet paramétereire Valóban függ-e y az x-től (nem csak a mintában, hanem a populációban is)? Feltétel: a két minta két független minta kétdimenziós normális eloszlásból Egyik lehetséges módszer: t-próba a regressziós együtthatóra H 0 : b elm =0 az egyenes meredeksége nulla (vízszintes egyenes) Ha: b elm 0 Ha igaz a nullhipotézis, akkor a t= b/se(b) statisztika n-2 szabadságfokú t-eloszlást követ Krisztina Boda 29

30 Hipotézisvizsgálatok a regressziós egyenlet paramétereire Valóban függ-e y az x-től (nem csak a mintában, hanem a populációban is)? Másik lehetséges módszer (az előzővel ekvivalens) F-próba a regresszióra a regresszió varianciaanalízise Jelölje a becsült értéket Érvényes az alábbi felbontás: y a y teljes szórása= x-től való függésből eredő szórás+ véletlen hiba i SStot SSx SSh bx i n i1 n n 2 2 ( yi y) ( yi y) ( yi yi i1 i1 ) 2 Krisztina Boda 30

31 A regresszió varianciaanalízise A szóródás oka Négyzet -összeg szabadságfok Variancia F Regresszió SSr 1 SSr Véletlen hiba SSh n-2 SSh/n-2 Összes SStot n-1 F SSr SSh /( n 2) Krisztina Boda F szabadságfokai: 1 és n-2. Ez egy egyoldali próba: a regresszió akkor szignifikáns, ha a regresszió varianciája nagyobb, mint a hibavariancia, ami annak felel meg, hogy a regressziós függvény nem állandó, vagyis b elm 0. Ekvivalens a regressziós együtthatóra vonatkozó (kétoldali) t-próbával (ugyanazt a p-értéket adja). Ekvivalens a korrelációs együtthatóra vonatkozó szignifikanciavizsgálattal is. 31

32 Hipotézisvizsgálatok a regressziós egyenlet paramétereire t-próba a tengelymetszetre, nullhipotézise: H 0 : a elm =0 szab. fok: 1 t-próba a regressziós együtthatóra; nullhipotézise: H 0 : b elm =0 szab. fok: n-2 F-próba a regresszió szignifikanciájára: H 0 : szab. fokok: 1 és n-2 Krisztina Boda 32

33 SPSS futási eredmények a hallgatók adataira Model Summary R R Square Adjusted R Square Std. Error of the Estimate The independent variable is Age Age in years. A korrelációs együttható, r=0.018 Regression Residual Total Age Age in years (Constant) ANOVA Sum of Squares df Mean Square F Sig The independent variable is Age in years. Coefficients Unstandardized Standardized Coeff icients Coeff icients B Std. Error Beta t Sig A regresszió szignifikanciája, p=0.833 (=a korreláció szignifikanciája, p=0.833 A regressziós együttható szignifikanciája =a korreláció szignifikanciája, p=0.833 A regressziós egyenes egyenlete: y=0.078x A tengelymetszet szignifikanciája, p< Krisztina Boda 33

34 A determinációs együttható, r 2 A korrelációs együttható négyzete a determinációs együttható. 100-zal szorzott értéke megadja, hogy az y (függő) változó össz-varianciájának hány %-a magyarázható az x- től való lineáris függésével Példa. A matematika és a nyelvtudás között korreláció r = A determinációs együttható, r 2 = Tehát a nyelvtudás összszóródásának 99.8%-a magyarázható a matematikától való lineáris függésével. Regression Residual Total Model Summary R R Square Adjusted R Square Std. Error of the Estimate The independent v ariable is Matematika. ANOVA Sum of Squares df Mean Square F Sig The independent v ariable is Matematika. r2 az ANOVA táblázatból: r2 = Regression SS/Total SS= = / = Krisztina Boda 34

35 Regresszió transzformációk alkalmazásával Néha a pont-ábra nemlineáris, ugyanakkor valamilyen görbevonalú, függvénnyel megadható kapcsolatot mutat. Krisztina Boda 35

36 Példa A felső ábra exponenciális kapcsolatot sejtet az x (idő) és az y között. Az y logaritmusát véve a kapcsolat lineárissá válik (alsó ábra) y time ln(y) time Krisztina Boda Biostat 9. 36

37 Az x-re és az y e-alapó logaritmusára (ln y) lefuttatva a lineáris regressziót, a következő egyenletet kapjuk: ln y = x Ezt visszatranszformálva kapjuk az exponenciális görbe egyenletét y = e x =e e x = 1.293e x y time y = 1.293e x ln(y) time ln y = x Krisztina Boda Biostat 9. 37

38 Lehetséges transzformációk Krisztina Boda Biostat 9. 38

39 log y y Exponenciális kapcsolat -> vegyük y logaritmusát x y lg y Modell: y=a*10 bx Mindkét oldalt logaritmálva: lg y =lga+bx Tehát lg y és x között lineáris a kapcsolat x x Krisztina Boda 39

40 y y Logaritmikus kapcsolat ->vegyük x logaritmusát x y log x Modell: y=a+lgx x 5 4 Tehát y és lg x között lineáris a kapcsolat log10 x Krisztina Boda 40

41 log y y Hatványfüggvény kapcsolat ->vegyük x és y logaritmusát 110 x y log x log y x Modell: y=ax b Mindkét oldalt logaritmálva : lg y =lga+b lgx Tehát lgy és lg x között lineáris a kapcsolat log x Krisztina Boda 41

42 y y Reciprokos kapcsolat -> vegyük x reciprokát x y 1/x Modell: y=a +b/x y=a +b*1/x tehát y és 1/x között lineáris a kapcsolat x /x Krisztina Boda 42

43 Egy példa az orvosi irodalomból Krisztina Boda 43

44 Krisztina Boda 44

45 EL HADJ OTHMANE TAHA és mtsai: Osteoprotegerin: a regulátor, a protektor és a marker. Összefoglalás irodalmi adatok és saját eredményeink alapján. Orvosi Hetilap évfolyam, 42. szám Krisztina Boda 45

46 10-es alapú logaritmus skála log10 x Krisztina Boda Biostat 3. 46

47 Logaritmikus papírok Szemilogaritmus papír log-log papír Krisztina Boda 47

48 Hasznos WEB oldalak ml ure=related nlinear/logarithmiccurve.htm Krisztina Boda. 48

49 Kérdések Két folytonos változó között kapcsolat grafikus vizsgálata A korrelációs együttható jelentése, tulajdonságai Korrelációs együttható és linearitás kapcsolata A korrelációs együttható szignifikanciája: nullhipotézis, t-érték, szabadságfok, döntés A determinációs együttható jelentése A regressziós egyenes együtthatóinak jelentése A regressziós egyenes együtthatói meghatározásának elve. Hipotézisvizsgálat a regressziós együtthatóra, kapcsolata a korreláció szignifikanciájával. Hipotézisvizsgálat a regressziós egyenes tengelymetszetére. Regresszió transzformációkkal: nem lineáris speciális kapcsolatok jellemzése Krisztina Boda 49

50 Feladatok n=5 megfigyelés (adatpár) alapján a korrelációs együttható értéke r=0.7. Szignifikáns-e a korreláció 5% -os szinten? Nullhipotézis és alternatív hipotézis:. A korreláció t-értéke:... szabadságfok:... Döntés a szignifikanciáról (A táblázatbeli t-érték t3,0.05=3.182).. A fizika gyakorlatokon háromszor megismételték a derékkörfogat méréseit. Az első és a második mérések összefüggését lineáris regresszióval vizsgálhatjuk. Értelmezze a kapott eredményeket (korreláció együttható, determinációs együttható, a korreláció szignifikanciája nullhipotézis, szabadságfok, t-érték, p- érték -, a regressziós egyenes egyenlete) Model Summary R R Square Adjusted R Square Std. Error of the Estimate The independent variable is DERÉKKÖRFOGAT Első. Regression Residual Total ANOVA Sum of Squares df Mean Square F Sig The independent v ariable is Waist circumference 1. Krisztina Boda

51 A regresszió szó eredete. Galton: Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute 1886 Vol.15, Krisztina Boda 51

52 Krisztina Boda 52

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 18. J J 9 Információk a 2. ZH-ról és a vizsgáról 12. hét: gyakorló óra 13. hét: teszt 14. hét: a teszt megbeszélése, vizsgajegyek megajánlása. Minden

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

GyőrBike a győri közösségi bérkerékpár rendszer első éve

GyőrBike a győri közösségi bérkerékpár rendszer első éve GyőrBike a győri közösségi bérkerékpár rendszer első éve Magyar Urbanisztikai Társaság Győr-Moson-Sopron megyei csoportja MTA KRTK RKI Nyugat-magyarországi Tudományos Osztály Smart City rendezvénysorozat

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,

Részletesebben

IV. Változók és csoportok összehasonlítása

IV. Változók és csoportok összehasonlítása IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció.

Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció. http://statisztika.szoc.elte.hu/tarsstat Társadalomstatisztika, 003/004 I. félév. November 5. Mai tematika: Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció. Bevezetés Együttes

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN DOI: 10.12663/PsyHung.1.2013.1.2.4 ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN Takács Szabolcs 1 Smohai Máté 2 1 Károli Gáspár Református Egyetem és Budapest Főváros Kormányhivatala

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1 Tartalom Tartalomjegyzék 1. Ismétlés 1 1.1. Utóbbi előadások áttekintése.................................. 1 2. IV. esettanulmány 1 2.1. Uniós országok munkanélkülisége................................

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

A gravitációs modell felhasználása funkcionális távolságok becslésére

A gravitációs modell felhasználása funkcionális távolságok becslésére A gravitációs modell felhasználása funkcionális távolságok becslésére Dusek Tamás egyetemi tanár Széchenyi István Egyetem Eger, 2015. november 20. Gravitációs modell "A" város "B" város 100 000 lakos 100

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

SPSS ALAPISMERETEK. T. Parázsó Lenke

SPSS ALAPISMERETEK. T. Parázsó Lenke SPSS ALAPISMERETEK T. Parázsó Lenke 2 Statistical Package for Social Scienses Statisztikai programcsomag a szociológiai tudományok számára 1968-ban Norman H. Nie, C.Handlai Hull és Dale H. Bent alkották

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

: az i -ik esélyhányados, i = 2, 3,..I

: az i -ik esélyhányados, i = 2, 3,..I Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben