Ökonometria. Dummy változók használata. Ferenci Tamás 1 Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék"

Átírás

1 Dummy változók használata Ferenci Tamás 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet

2 Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége 2

3 Uniós országok adatbázisa Uniós országok munkanélkülisége Makroökonómiai feladatot kell megoldanunk: vizsgáljuk a munkanélküliség alakulását, befolyásoló tényezőit az Európai Unió országain belül! Kvantitatív vizsgálat a feladat, ökonometriai modellezést fogunk bevetni A munkanélküliség munkanélküliségi rátaként (%-ban mérve) van operacionalizálva, a GDP az EU-átlaghoz relatíve (szintén %-ban mérve) A fenti eredmény és magyarázó változón kívül még azt is tudjuk, hogy az egyes országok melyik kategóriába esnek tagságuk szerint: régi tag, újonnan csatlakozó, tagjelölt (Az adatbázis 2002-ből való, így értendőek a kategóriák)

4 Nominális tulajdonságok a regresszióban A kérdés, ami mostani kutatásainkat motiválja: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot, pl. férfi/nő, egészéges/beteg, régi tagállam/újonnan csatlakozó/tagjelölt (az EU-ban) stb. egy regressziós modellben A regresszió csak számszerű adatokat tud felhasználni valahogy kódolni kell a nominális tulajdonság lehetséges értékeit (kimeneteit, csoportjait) Eddig csak mennyiségi tulajdonságokkal foglalkoztunk, aminek kódolása triviális volt: a naturáliában kifejezett értékével (m 2, eft stb.) A minőségi változókat úgy kódoljuk, hogy a lehetséges (véges sok!) kimenet mindegyikéhez hozzárendelünk egy egész (ritkábban racionális) számot, pl. a férfi nemet 0-val, a nőt 1-gyel kódoljuk

5 Dummy változó fogalma A kódolást megvalósíthatjuk olyan változóval vagy változókkal, melyek csak 0 vagy 1 értéket vehetnek fel Az ilyen változókat nevezzük dummy változónak Ha két kimenet van, akkor a kódolás teljesen kézenfekvő: egy dummy változóra van szükségünk, mely (például) 0 értéket vesz fel férfira, 1-et nőre Bonyolultabb a helyzet, ha több kimenet van Triviális kódolás: D1 D2 D3 A B C ám vegyük észre, hogy 3 csoporthoz nem kell 3 dummy változó, kódolható 2-vel is!

6 Referencia-kódolás IV. esettanulmány Általában k kimenet kódolása megoldható k 1 dummy változóval az ún. referencia-kódolás logikájával Itt kiválasztunk egy kimenetet, aminél mind a k 1 darab dummy változó 0 értéket vesz fel (ez az ún. kontrollcsoport), és a többi k 1 csoportot az jelzi, hogy a k 1 dummy változó közül melyik vesz fel 1 értéket (mindig csak 1!) R A A 1 0 Például (3 kimenetre): B 0 1 C 0 0 Itt C a referenciacsoport, R A és R B a két szükséges (ugye k = 3!) magyarázó változó Vegyük észre, hogy R A D A és R B D B (tehát a két kódoláshoz pontosan ugyanazon dummykra van szükség, csak a referencia-kódolásnál eldobjuk az egyiket) R B

7 Referencia-kódolás az uniós országok példáján Triviális módon kódoltuk dummyval, hogy egy ország melyik kategóriába (régi tag, újonnan csatlakozó, tagjelölt) esik, referencia-kódolást kapunk, ha valamelyiket elhagyjuk:

8 Dummy változó csapda Ha van konstans a modellben, akkor tilos is k csoporthoz k dummyt használni a kódoláshoz Ellenkező esetben egzakt multikollinearitás jön létre (gondoljuk végig, hogy a dummy változókhoz mi tartozik az X mátrixban, ld. előbb!); ez az ún. dummy változó csapda További magyarázat: gondoljunk bele, ha mégis lenne konstans és k csoporthoz k darab dummy, akkor k értéket (a k csoportra becsülendő eredményváltozót, hiszen ne feledjük, itt mindegyikhez egyetlen számot becsülünk eredményként, azaz mindegyik elemeire ugyanazt a konstans adjuk vissza eredményváltozóként) k + 1 változóban (konstans + k darab dummy) kéne eltárolnunk nem oldható meg egyértelmű módon; mindenképp k darab változóban kell ezeket tárolnunk Ha k csoportot mégis k dummyval kódolunk (a triviális módon), akkor nem szerepeltethetünk konstanst

9 Dummy változó csapda Az előző okfejtésből az is látszik, hogy k kategóriához kell is k 1 darab dummy (ha van konstans, különben k darab) különben nem lenne hol tárolni a becsült eredményváltozóként visszaadandó értékeket

10 Triviális kódolás konstans nélkül A két kódolási mód (k darab dummy, nincs konstans és k 1 darab dummy, van konstans) jól szemléltethető egy csak a nominális tulajdonsággal magyarázó regresszióval Eredményváltozónk legyen tehát a munkanélküliségi ráta, magyarázó változónk a csoporttagság (varianciaanalízis-modell) k darab dummy, nincs konstans: D A D B D C A B C Együtthatók értelmezése? Y = β A D A + β B D B + β C D C + u

11 Referencia-kódolás konstanssal k 1 darab dummy, van konstans: D A D B A 1 0 B 0 1 C 0 0 Együtthatók értelmezése? Y = β + β AD A + β BD B + u

12 A kettő kapcsolata IV. esettanulmány Értelmezésnél egy dolgot tartsunk mindig szem előtt: ugyanarra a csoportra ugyanannak az értéknek kell kijönnie, akárhogy kódolunk! Például a B csoportra: β B = β + β B... ezért a fenti egyenlet így kell kinézzen: Y = β C + (β A β C ) D A + (β B β C ) D B + u

13 Mindezek az EU országok munkanélküliségének példáján A két különböző módon kódolt modell megbecslése: Dependent variable: MnRata Coefficient Std. Error t-ratio p-value D1 6, , ,9197 0,0000 D2 10,4400 1, ,6688 0,0000 D3 11,7000 2, ,7073 0,0001 R 2 0, Adjusted R 2 0, F (2, 25) 3, P-value(F ) 0, Coefficient Std. Error t-ratio p-value const 11,7000 2, ,7073 0,0001 D1 5, , ,8805 0,0717 D2 1, , ,4446 0,6604 R 2 0, Adjusted R 2 0, F (2, 25) 3, P-value(F ) 0, Értelmezzük az együtthatókat! az értelmezések eltérnek, de egy adott csoport értéke mindenképp ugyanannyi Vegyük észre, hogy a változónkénti szignifikanciák eltérhetnek (mert másra fognak vonatkozni!), de a modellminősítő mutatók nem

14 Fontos hipotézisvizsgálatok Referencia-kódolás esetén (a triviális kódolás tesztelésének általában nincs sok tartalma) a kézenfekvő kérdés, hogy van-e különbség a csoportonkénti értékek (amik ugye itt konstans számok) között (mint az ANOVA-nál) Precízebben: szignifikáns-e egy adott csoportbeli érték eltérése a referenciacsoportétől Ez itt nem más, mint β relevanciája Egyszerűen t-próbával ellenőrizhető! Az ANOVA megfelelője: H 0 : β A = β B =... = 0 H 1 : j : β j 0

15 Dummyzás folytonos magyarázó változó jelenléte mellett Amit eddig csináltunk az lényegében az volt, amit konstans dummyzásának nevezhetünk: csoportonként eltérő (de konstans) értékkel becsültük az eredményváltozót Mi van, ha bevonunk egy magyarázó változót, pl. a GDP-t? Azaz ekkor már nem egy konstanst becsülünk az egyes csoportokra, hanem egy egyenest (GDP függvényében) Dummyzással (tehát a csoporttagság szerint) eltéríthetjük az egyenesek tengelymetszetét és meredekségét is! Lehet csoportonként különböző 1 +1 egység GDP-hatása 2 a 0 GDP-hez tartozó munkanélküliségi szint

16 Y IV. esettanulmány Eltérő tengelymetszet Ha csak a tengelymetszetet térítjük el (+1 egység GDP hatása ugyanaz minden csoportban, de nem ugyanannyi a 0 GDP-hez tartozó munkanélküliség) 25 beta_1 + beta_x * X beta_1 + beta_d * D + beta_x * X X Algebrailag: Y = β 1 + β D D + β X X + u

17 Y Eltérő meredekség IV. esettanulmány Ha csak a meredekséget térítjük el (0 GDP-hez ugyanakkora munkanélküliség tartozik, de +1 egység GDP hatása csoportonként eltérő) beta_1 + beta_x * X beta_1 + (beta_x + beta_d) * X X Algebrailag: Y = β 1 + (β X + β D D) X + u

18 Eltérő tengelymetszet és meredekség Akár a tengelymetszet és a meredekség is lehet különböző De hát ez megoldható a minta szétszedésével is! Például a globális regresszió: Dependent variable: MnRata Coefficient Std. Error t-ratio p-value const 14,3628 1, ,9863 0,0000 GDP 0, , ,0771 0,0004 R 2 0, Adjusted R 2 0, F (1, 26) 16,62304 P-value(F ) 0, Regresszió a régi tagállamok csoporton belül: Coefficient Std. Error t-ratio p-value const 12,7791 2, ,1485 0,0002 GDP 0, , ,5790 0,0229 R 2 0, Adjusted R 2 0, F (1, 13) 6, P-value(F ) 0,022900

19 Eltérő tengelymetszet és meredekség Regresszió az újonnan csatlakozók csoporton belül Coefficient Std. Error t-ratio p-value const 23,9611 4, ,0818 0,0010 GDP 0, , ,9839 0,0175 R 2 0, Adjusted R 2 0, F (1, 8) 8, P-value(F ) 0, Regresszió a tagjelöltek csoporton belül Coefficient Std. Error t-ratio p-value const 108,550 1, ,5551 0,0063 GDP 4, , ,5833 0,0057 R 2 0, Adjusted R 2 0, F (1, 1) 12675,00 P-value(F ) 0,005655

20 Eltérő tengelymetszet és meredekség És persze megoldható mindez dummyzással is ahogy előbb láttuk, csak a módszereket kell kombinálni: a konstanst és a meredekséget is megdummyzzuk Mi értelme ennek a minta szétszedéséhez képest? Egyrészt spórolunk a szabadsági fokokkal (nagyobb erejű próbák stb.), másrészt fontos hipotéziseket vizsgálhatunk egyszerűen (ld. mindjárt)

21 A dummyzás általános modellje Az előző két eset (konstans és meredekség dummyzása) így foglalható tehát össze az előbb mondottaknak megfelelően (3 csoportra): Y = β 1 + β 2 X + u, de úgy, hogy β 1 = α + α A D A + α B D B és β 2 = γ + γ A D A + γ B D B Vegyük észre, hogy a meredekség dummyzása a dummy és a mennyiségi változó közti interakcióra vezet: Y = α + α A D A + α B D B + γx + γ A (D A X) + γ B (D B X) + u Végeredmény bizonyos értelemben ugyanaz... de messzemenően több lehetőségünk van a fenti modellel makroökonómiailag releváns hipotézisek tesztelése!

22 Hipotézisvizsgálat a dummyzott modellben Pl.: van-e egyáltalán bármilyen eltérés a csoportok között? (Értsd: eltér-e a becsült egyenes (bármilyen szempontból) a csoportok között, vagy mindegyikben teljesen ugyanaz?) Ez az ún. strukturális törés, hipotézispárja: H 0 : α A = α B = γ A = γ B = 0, H 1 : valamelyik ezek közül nem nulla, tehát van strukturális törés És most jön a szép rész: ha a fenti modellt megbecsültük (sima OLS-sel), akkor ez a hipotézis egyszerűen egy közönséges Wald- (vagy hasonló) próbát jelent! Hasonlóképp: nem lehet, hogy csak a tengelymetszetek eltérőek? ez az ún. párhuzamos ráták hipotézise, H 0 : γ A = γ B = 0; szintén Wald-teszttel elintézhető Minden hasonló (itt: makroökonómiailag releváns) kérdés vizsgálata változó vagy változók relevanciájának tesztelésére vezethető vissza

23 Kontraszt-kódolás IV. esettanulmány Kontraszt-kódolás: trükkös kódolás úgy kitalálva, hogy a dummy-k együtthatója ne a referencia-csoporthoz, hanem az átlaghoz képesti eltérést jelentse Itt fordulhat elő, hogy a dummy változó nem 0 és 1 értéket vehet csak fel Ha a csoportok tagszáma nem ugyanannyi (pl. ez a helyzet az EU-s adatbázis esetén is), akkor ún. súlyozott kontraszt változókat kell alkalmazni (itt ráadásul már nem is egész értékeket fognak a dummy változóink felvenni) Nem foglalkozunk vele ennél bővebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás,

Részletesebben

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Prof. Dr. Szerb László egyetemi tanár Pécsi Tudományegyetem Közgazdaságtudományi Kar Helyzetkép

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1 Tartalom Tartalomjegyzék 1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése....................... 1 2. Általánosítóképesség, túlilleszkedés 3 3. Modellszelekció 11 3.1. A modellszelekció

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá-

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá- 152 - - - - - - Az öko, a bio vagy az organikus kifejezések használata még napjainkban sem egységes, miután azok megjelenési formája a mindennapi szóhasználatban országon- A német, svéd, spanyol és dán

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Területi fejlettségi egyenlőtlenségek alakulása Európában. Fábián Zsófia KSH

Területi fejlettségi egyenlőtlenségek alakulása Európában. Fábián Zsófia KSH Területi fejlettségi egyenlőtlenségek alakulása Európában Fábián Zsófia KSH A vizsgálat célja Európa egyes térségei eltérő természeti, társadalmi és gazdasági adottságokkal rendelkeznek. Különböző történelmi

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet Tartalom Technikai kérdések 1 Technikai kérdések Adminisztratív

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Együttmőködés és innováció

Együttmőködés és innováció Vállalkozói innováció a Dunántúlon Pécs, 2010. március 3. Együttmőködés és innováció Csizmadia Zoltán, PhD tudományos munkatárs MTA RKK Nyugat-magyarországi Tudományos Intéztet Az előadás felépítése 1.

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

Gazdaságra telepedő állam

Gazdaságra telepedő állam Gazdaságra telepedő állam A magyar államháztartás mérete jóval nagyobb a versenytársakénál Az állami kiadások jelenlegi szerkezete nem ösztönzi a gazdasági növekedést Fókusz A magyar államháztartás mérete

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Ingatlanpiac és elemzése 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Horváth Áron horvathar@eltinga.hu ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Tartalom 1. A statisztikai

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető

Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető Tobit modell sarokmegoldás Cenzorált modell maximált értékek Csonkolt modell x értékei nem megfigyeltek

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Tudáshálózatok kialakulása és regionális fejlődés egy integrált modell alkalmazásának tapasztalatai a magyar régiók esetében Sebestyén Tamás,

Tudáshálózatok kialakulása és regionális fejlődés egy integrált modell alkalmazásának tapasztalatai a magyar régiók esetében Sebestyén Tamás, Tudáshálózatok kialakulása és regionális fejlődés egy integrált modell alkalmazásának tapasztalatai a magyar régiók esetében Sebestyén Tamás, Hau-Horváth Orsolya, Varga Attila Szerkezet Motiváció Irodalom:

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON

SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON ÁTMENETI GAZDASÁGOKKAL FOGLALKOZÓ EGYÜTTMŰKÖDÉSI KÖZPONT MUNKAÜGYI MINISZTÉRIUM NÉPJÓLÉTI MINISZTÉRIUM ORSZÁGOS MŰSZAKI INFORMÁCIÓS KÖZPONT ÉS KÖNYVTÁR SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Az energiahatékonyság dilemmája visszapattanó hatás

Az energiahatékonyság dilemmája visszapattanó hatás Az energiahatékonyság dilemmája visszapattanó hatás Sebestyénné Szép Tekla Egyetemi tanársegéd Miskolci Egyetem, Gazdaságtudományi Kar, Világ- és Regionális Gazdaságtan Intézet MET VIII. Energia Műhely

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

A csökkenõ halálozási és baleseti kockázat közgazdasági értéke Magyarországon

A csökkenõ halálozási és baleseti kockázat közgazdasági értéke Magyarországon Közgazdasági Szemle, LII. évf., 2005. március (231 248. o.) KADERJÁK PÉTER ÁBRAHÁM ÁRPÁD PÁL GABRIELLA A csökkenõ halálozási és baleseti kockázat közgazdasági értéke Magyarországon Egy munkaerõ-piaci elemzés

Részletesebben

A FELADATLAPOT A MEGOLDÁSSAL EGYÜTT KÖTELEZİ BEADNI!

A FELADATLAPOT A MEGOLDÁSSAL EGYÜTT KÖTELEZİ BEADNI! BUDAPESTI CORVINUS EGYETEM 2009. május 8. Vezetıi Számvitel Tanszék ÜLÉSREND TEREM OSZLOP SOR NÉV.. NEPTUN KÓD: Gyakorlatvezetı neve:. MINTA V I Z S G A D O L G O Z A T SZÁMVITEL II. c. tárgyból MÉRNÖK,

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Függelék. Táblázatok és ábrák jegyzéke

Függelék. Táblázatok és ábrák jegyzéke Függelék. Táblázatok és ábrák jegyzéke Táblázatok Munkapiac 1. táblázat: A foglalkoztatási ráták különbsége 2009 és 2008 első negyedéve között (százalékpont)... 22 2. táblázat: Csoportos létszámleépítések

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043 370 Statisztika, valószínûség-számítás 1480. a) Nagy országok: Finnország, Olaszország, Nagy-Britannia, Franciaország, Spanyolország, Svédország, Lengyelország, Görögország, Kis országok: Ciprus, Málta,

Részletesebben

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT Készítette: Vályi Réka Neptun-kód: qk266b 2011 1 Az elemzés

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló Hallgatók 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011 Módszertani összefoglaló Készítette: Veroszta Zsuzsanna PhD 2012. március 1. Az adatfelvétel

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

EGÉSZSÉG-GAZDASÁGTAN

EGÉSZSÉG-GAZDASÁGTAN EGÉSZSÉG-GAZDASÁGTAN EGÉSZSÉG-GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

A Feldspar fordító, illetve Feldspar programok tesztelése

A Feldspar fordító, illetve Feldspar programok tesztelése A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

A költségvetés egyenlege és az infláció kapcsolata

A költségvetés egyenlege és az infláció kapcsolata Acta Oeconomica Kaposváriensis (2007) Vol 1 No 1-2, 165-174 Kaposvári Egyetem, Gazdaságtudományi Kar, Kaposvár Kaposvár University, Faculty of Economic Science, Kaposvár A költségvetés egyenlege és az

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

Válság és előrejelzés

Válság és előrejelzés Válság és előrejelzés Magyar Statisztikai Társaság 2009. október 15. Dr. Gáspár Tamás Tudományos főmunkatárs ECOSTAT 1998. augusztus A globális kapitalizmus válsága 2000. szeptember Nem omlott össze a

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Az ingázás megtérülése Magyarországon

Az ingázás megtérülése Magyarországon Bartus Tamás Budapesti Corvinus Egyetem Szociológia és Társadalompolitika Intézet Áttekintés A munkanélküliségekben mutatkozó területi különbségek egyik magyarázata: a napi ingázás költségei magasabbak

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Az internethasználat és néhány társadalmi-gazdasági tényező közötti kapcsolat vizsgálata

Az internethasználat és néhány társadalmi-gazdasági tényező közötti kapcsolat vizsgálata A Miskolci Egyetem Közleményei, A sorozat, Bányászat, 82. kötet (2011) Az internethasználat és néhány társadalmi-gazdasági tényező közötti kapcsolat vizsgálata Técsy Zoltán tanszéki mérnök Miskolci Egyetem,

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd

Részletesebben

SZÁMOLÁSTECHNIKAI ISMERETEK

SZÁMOLÁSTECHNIKAI ISMERETEK SZÁMOLÁSTECHNIKAI ISMERETEK Műveletek szögekkel Geodéziai számításaink során gyakran fogunk szögekkel dolgozni. Az egyszerűbb írásmód kedvéért ilyenkor a fok ( o ), perc (, ), másodperc (,, ) jelét el

Részletesebben

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA Kézül a TÁMOP-4..2-8/2/A/KMR-29-4álázai rojek kereében Taralomfejlezé az ELTE TáTK Közgazdaágdománi Tanzékén az ELTE Közgazdaágdománi Tanzék az MTA Közgazdaágdománi Inéze é a Balai Kiadó közreműködéével

Részletesebben

Ö ü é ő ő íí é ő ö é é é é ő ő Í Ó Ö é é é é é é é ö é é ö é é é é é é ő í í ő é é é é ü ú é Ö ü ö í ő Í ő é ü ű ö é é ö ö é é é Ö ü í ü ű ö é é é é é ő é é é ö é é é Ö ü ö í ő é ő ö ö é ü ő ő é é é ő

Részletesebben

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69 TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005 FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

dr. Tóth Zita 2013. november 21. MIE konferencia

dr. Tóth Zita 2013. november 21. MIE konferencia A szellemi tulajdon értékének és a szellemi tulajdonjogokat érintő jogsértések hatásának tudatosítása az EU Observatory és a HENT által végzett felmérések eredményeinek bemutatása dr. Tóth Zita 2013. november

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

A magyar mobilpiac nemzetközi tükörben

A magyar mobilpiac nemzetközi tükörben iránytű a piacszabályozásban A magyar mobilpiac nemzetközi tükörben Pápai Zoltán Workshop - Budapesti Corvinus Egyetem Infokommunikációs Tanszék 2013. május 6. A tanulmány kiindulópontja Fontos hogy az

Részletesebben

Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével

Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével Bázár György, Kövér György, Locsmándi László, Szabó András, Romvári Róbert Kaposvári Egyetem, Állattudományi Kar Állatitermék

Részletesebben

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola FIT-jelentés :: 2011 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola 4200 Hajdúszoboszló, Gönczy P. u. 17. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban a 10. évfolyamon

Részletesebben