Ökonometria. Dummy változók használata. Ferenci Tamás 1 Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék"

Átírás

1 Dummy változók használata Ferenci Tamás 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet

2 Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége 2

3 Uniós országok adatbázisa Uniós országok munkanélkülisége Makroökonómiai feladatot kell megoldanunk: vizsgáljuk a munkanélküliség alakulását, befolyásoló tényezőit az Európai Unió országain belül! Kvantitatív vizsgálat a feladat, ökonometriai modellezést fogunk bevetni A munkanélküliség munkanélküliségi rátaként (%-ban mérve) van operacionalizálva, a GDP az EU-átlaghoz relatíve (szintén %-ban mérve) A fenti eredmény és magyarázó változón kívül még azt is tudjuk, hogy az egyes országok melyik kategóriába esnek tagságuk szerint: régi tag, újonnan csatlakozó, tagjelölt (Az adatbázis 2002-ből való, így értendőek a kategóriák)

4 Nominális tulajdonságok a regresszióban A kérdés, ami mostani kutatásainkat motiválja: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot, pl. férfi/nő, egészéges/beteg, régi tagállam/újonnan csatlakozó/tagjelölt (az EU-ban) stb. egy regressziós modellben A regresszió csak számszerű adatokat tud felhasználni valahogy kódolni kell a nominális tulajdonság lehetséges értékeit (kimeneteit, csoportjait) Eddig csak mennyiségi tulajdonságokkal foglalkoztunk, aminek kódolása triviális volt: a naturáliában kifejezett értékével (m 2, eft stb.) A minőségi változókat úgy kódoljuk, hogy a lehetséges (véges sok!) kimenet mindegyikéhez hozzárendelünk egy egész (ritkábban racionális) számot, pl. a férfi nemet 0-val, a nőt 1-gyel kódoljuk

5 Dummy változó fogalma A kódolást megvalósíthatjuk olyan változóval vagy változókkal, melyek csak 0 vagy 1 értéket vehetnek fel Az ilyen változókat nevezzük dummy változónak Ha két kimenet van, akkor a kódolás teljesen kézenfekvő: egy dummy változóra van szükségünk, mely (például) 0 értéket vesz fel férfira, 1-et nőre Bonyolultabb a helyzet, ha több kimenet van Triviális kódolás: D1 D2 D3 A B C ám vegyük észre, hogy 3 csoporthoz nem kell 3 dummy változó, kódolható 2-vel is!

6 Referencia-kódolás IV. esettanulmány Általában k kimenet kódolása megoldható k 1 dummy változóval az ún. referencia-kódolás logikájával Itt kiválasztunk egy kimenetet, aminél mind a k 1 darab dummy változó 0 értéket vesz fel (ez az ún. kontrollcsoport), és a többi k 1 csoportot az jelzi, hogy a k 1 dummy változó közül melyik vesz fel 1 értéket (mindig csak 1!) R A A 1 0 Például (3 kimenetre): B 0 1 C 0 0 Itt C a referenciacsoport, R A és R B a két szükséges (ugye k = 3!) magyarázó változó Vegyük észre, hogy R A D A és R B D B (tehát a két kódoláshoz pontosan ugyanazon dummykra van szükség, csak a referencia-kódolásnál eldobjuk az egyiket) R B

7 Referencia-kódolás az uniós országok példáján Triviális módon kódoltuk dummyval, hogy egy ország melyik kategóriába (régi tag, újonnan csatlakozó, tagjelölt) esik, referencia-kódolást kapunk, ha valamelyiket elhagyjuk:

8 Dummy változó csapda Ha van konstans a modellben, akkor tilos is k csoporthoz k dummyt használni a kódoláshoz Ellenkező esetben egzakt multikollinearitás jön létre (gondoljuk végig, hogy a dummy változókhoz mi tartozik az X mátrixban, ld. előbb!); ez az ún. dummy változó csapda További magyarázat: gondoljunk bele, ha mégis lenne konstans és k csoporthoz k darab dummy, akkor k értéket (a k csoportra becsülendő eredményváltozót, hiszen ne feledjük, itt mindegyikhez egyetlen számot becsülünk eredményként, azaz mindegyik elemeire ugyanazt a konstans adjuk vissza eredményváltozóként) k + 1 változóban (konstans + k darab dummy) kéne eltárolnunk nem oldható meg egyértelmű módon; mindenképp k darab változóban kell ezeket tárolnunk Ha k csoportot mégis k dummyval kódolunk (a triviális módon), akkor nem szerepeltethetünk konstanst

9 Dummy változó csapda Az előző okfejtésből az is látszik, hogy k kategóriához kell is k 1 darab dummy (ha van konstans, különben k darab) különben nem lenne hol tárolni a becsült eredményváltozóként visszaadandó értékeket

10 Triviális kódolás konstans nélkül A két kódolási mód (k darab dummy, nincs konstans és k 1 darab dummy, van konstans) jól szemléltethető egy csak a nominális tulajdonsággal magyarázó regresszióval Eredményváltozónk legyen tehát a munkanélküliségi ráta, magyarázó változónk a csoporttagság (varianciaanalízis-modell) k darab dummy, nincs konstans: D A D B D C A B C Együtthatók értelmezése? Y = β A D A + β B D B + β C D C + u

11 Referencia-kódolás konstanssal k 1 darab dummy, van konstans: D A D B A 1 0 B 0 1 C 0 0 Együtthatók értelmezése? Y = β + β AD A + β BD B + u

12 A kettő kapcsolata IV. esettanulmány Értelmezésnél egy dolgot tartsunk mindig szem előtt: ugyanarra a csoportra ugyanannak az értéknek kell kijönnie, akárhogy kódolunk! Például a B csoportra: β B = β + β B... ezért a fenti egyenlet így kell kinézzen: Y = β C + (β A β C ) D A + (β B β C ) D B + u

13 Mindezek az EU országok munkanélküliségének példáján A két különböző módon kódolt modell megbecslése: Dependent variable: MnRata Coefficient Std. Error t-ratio p-value D1 6, , ,9197 0,0000 D2 10,4400 1, ,6688 0,0000 D3 11,7000 2, ,7073 0,0001 R 2 0, Adjusted R 2 0, F (2, 25) 3, P-value(F ) 0, Coefficient Std. Error t-ratio p-value const 11,7000 2, ,7073 0,0001 D1 5, , ,8805 0,0717 D2 1, , ,4446 0,6604 R 2 0, Adjusted R 2 0, F (2, 25) 3, P-value(F ) 0, Értelmezzük az együtthatókat! az értelmezések eltérnek, de egy adott csoport értéke mindenképp ugyanannyi Vegyük észre, hogy a változónkénti szignifikanciák eltérhetnek (mert másra fognak vonatkozni!), de a modellminősítő mutatók nem

14 Fontos hipotézisvizsgálatok Referencia-kódolás esetén (a triviális kódolás tesztelésének általában nincs sok tartalma) a kézenfekvő kérdés, hogy van-e különbség a csoportonkénti értékek (amik ugye itt konstans számok) között (mint az ANOVA-nál) Precízebben: szignifikáns-e egy adott csoportbeli érték eltérése a referenciacsoportétől Ez itt nem más, mint β relevanciája Egyszerűen t-próbával ellenőrizhető! Az ANOVA megfelelője: H 0 : β A = β B =... = 0 H 1 : j : β j 0

15 Dummyzás folytonos magyarázó változó jelenléte mellett Amit eddig csináltunk az lényegében az volt, amit konstans dummyzásának nevezhetünk: csoportonként eltérő (de konstans) értékkel becsültük az eredményváltozót Mi van, ha bevonunk egy magyarázó változót, pl. a GDP-t? Azaz ekkor már nem egy konstanst becsülünk az egyes csoportokra, hanem egy egyenest (GDP függvényében) Dummyzással (tehát a csoporttagság szerint) eltéríthetjük az egyenesek tengelymetszetét és meredekségét is! Lehet csoportonként különböző 1 +1 egység GDP-hatása 2 a 0 GDP-hez tartozó munkanélküliségi szint

16 Y IV. esettanulmány Eltérő tengelymetszet Ha csak a tengelymetszetet térítjük el (+1 egység GDP hatása ugyanaz minden csoportban, de nem ugyanannyi a 0 GDP-hez tartozó munkanélküliség) 25 beta_1 + beta_x * X beta_1 + beta_d * D + beta_x * X X Algebrailag: Y = β 1 + β D D + β X X + u

17 Y Eltérő meredekség IV. esettanulmány Ha csak a meredekséget térítjük el (0 GDP-hez ugyanakkora munkanélküliség tartozik, de +1 egység GDP hatása csoportonként eltérő) beta_1 + beta_x * X beta_1 + (beta_x + beta_d) * X X Algebrailag: Y = β 1 + (β X + β D D) X + u

18 Eltérő tengelymetszet és meredekség Akár a tengelymetszet és a meredekség is lehet különböző De hát ez megoldható a minta szétszedésével is! Például a globális regresszió: Dependent variable: MnRata Coefficient Std. Error t-ratio p-value const 14,3628 1, ,9863 0,0000 GDP 0, , ,0771 0,0004 R 2 0, Adjusted R 2 0, F (1, 26) 16,62304 P-value(F ) 0, Regresszió a régi tagállamok csoporton belül: Coefficient Std. Error t-ratio p-value const 12,7791 2, ,1485 0,0002 GDP 0, , ,5790 0,0229 R 2 0, Adjusted R 2 0, F (1, 13) 6, P-value(F ) 0,022900

19 Eltérő tengelymetszet és meredekség Regresszió az újonnan csatlakozók csoporton belül Coefficient Std. Error t-ratio p-value const 23,9611 4, ,0818 0,0010 GDP 0, , ,9839 0,0175 R 2 0, Adjusted R 2 0, F (1, 8) 8, P-value(F ) 0, Regresszió a tagjelöltek csoporton belül Coefficient Std. Error t-ratio p-value const 108,550 1, ,5551 0,0063 GDP 4, , ,5833 0,0057 R 2 0, Adjusted R 2 0, F (1, 1) 12675,00 P-value(F ) 0,005655

20 Eltérő tengelymetszet és meredekség És persze megoldható mindez dummyzással is ahogy előbb láttuk, csak a módszereket kell kombinálni: a konstanst és a meredekséget is megdummyzzuk Mi értelme ennek a minta szétszedéséhez képest? Egyrészt spórolunk a szabadsági fokokkal (nagyobb erejű próbák stb.), másrészt fontos hipotéziseket vizsgálhatunk egyszerűen (ld. mindjárt)

21 A dummyzás általános modellje Az előző két eset (konstans és meredekség dummyzása) így foglalható tehát össze az előbb mondottaknak megfelelően (3 csoportra): Y = β 1 + β 2 X + u, de úgy, hogy β 1 = α + α A D A + α B D B és β 2 = γ + γ A D A + γ B D B Vegyük észre, hogy a meredekség dummyzása a dummy és a mennyiségi változó közti interakcióra vezet: Y = α + α A D A + α B D B + γx + γ A (D A X) + γ B (D B X) + u Végeredmény bizonyos értelemben ugyanaz... de messzemenően több lehetőségünk van a fenti modellel makroökonómiailag releváns hipotézisek tesztelése!

22 Hipotézisvizsgálat a dummyzott modellben Pl.: van-e egyáltalán bármilyen eltérés a csoportok között? (Értsd: eltér-e a becsült egyenes (bármilyen szempontból) a csoportok között, vagy mindegyikben teljesen ugyanaz?) Ez az ún. strukturális törés, hipotézispárja: H 0 : α A = α B = γ A = γ B = 0, H 1 : valamelyik ezek közül nem nulla, tehát van strukturális törés És most jön a szép rész: ha a fenti modellt megbecsültük (sima OLS-sel), akkor ez a hipotézis egyszerűen egy közönséges Wald- (vagy hasonló) próbát jelent! Hasonlóképp: nem lehet, hogy csak a tengelymetszetek eltérőek? ez az ún. párhuzamos ráták hipotézise, H 0 : γ A = γ B = 0; szintén Wald-teszttel elintézhető Minden hasonló (itt: makroökonómiailag releváns) kérdés vizsgálata változó vagy változók relevanciájának tesztelésére vezethető vissza

23 Kontraszt-kódolás IV. esettanulmány Kontraszt-kódolás: trükkös kódolás úgy kitalálva, hogy a dummy-k együtthatója ne a referencia-csoporthoz, hanem az átlaghoz képesti eltérést jelentse Itt fordulhat elő, hogy a dummy változó nem 0 és 1 értéket vehet csak fel Ha a csoportok tagszáma nem ugyanannyi (pl. ez a helyzet az EU-s adatbázis esetén is), akkor ún. súlyozott kontraszt változókat kell alkalmazni (itt ráadásul már nem is egész értékeket fognak a dummy változóink felvenni) Nem foglalkozunk vele ennél bővebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás,

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Az energiahatékonyság dilemmája visszapattanó hatás

Az energiahatékonyság dilemmája visszapattanó hatás Az energiahatékonyság dilemmája visszapattanó hatás Sebestyénné Szép Tekla Egyetemi tanársegéd Miskolci Egyetem, Gazdaságtudományi Kar, Világ- és Regionális Gazdaságtan Intézet MET VIII. Energia Műhely

Részletesebben

Az ingázás megtérülése Magyarországon

Az ingázás megtérülése Magyarországon Bartus Tamás Budapesti Corvinus Egyetem Szociológia és Társadalompolitika Intézet Áttekintés A munkanélküliségekben mutatkozó területi különbségek egyik magyarázata: a napi ingázás költségei magasabbak

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

A költségvetés egyenlege és az infláció kapcsolata

A költségvetés egyenlege és az infláció kapcsolata Acta Oeconomica Kaposváriensis (2007) Vol 1 No 1-2, 165-174 Kaposvári Egyetem, Gazdaságtudományi Kar, Kaposvár Kaposvár University, Faculty of Economic Science, Kaposvár A költségvetés egyenlege és az

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az 1 6. LECKE: REGRESSZIÓ -- Elıadás 6.1. A regresszió feladata és módszerei [C4] A módszer lényege, hogy arányskálán mért magyarázó változók (x 1,,x k ) segítségével közelítjük a számunkra érdekes, ugyancsak

Részletesebben

Endrôdi-Kovács Viktória - Hegedüs Krisztina

Endrôdi-Kovács Viktória - Hegedüs Krisztina Endrôdi-Kovács Viktória - Hegedüs Krisztina A közvetlen külföldi befektetések és a korrupció közötti kapcsolat A szerzôk tanulmányának középpontjában a közvetlen külföldi befektetések és a korrupció kapcsolata

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Friss diplomás keresetek a versenyszektorban

Friss diplomás keresetek a versenyszektorban Friss diplomás keresetek a versenyszektorban Budapest, 213 október Az MKIK Gazdaság- és Vállalkozáskutató Intézet olyan non-profit kutatóműhely, amely elsősorban alkalmazott közgazdasági kutatásokat folytat.

Részletesebben

JELENTÉS AZ ELŐREJELZÉSRŐL

JELENTÉS AZ ELŐREJELZÉSRŐL STATISZTIKAI DÖNTÉSMEGALAPOZÁSI MODELL JELENTÉS AZ ELŐREJELZÉSRŐL VÉGSŐ VERZIÓ BUDAPEST, XVIII. KERÜLET, VECSÉS BUDAPEST, 2014 1 BUDAPEST XVIII. KERÜLET PESTSZENTLŐRINC-PESTSZENTIMRE ÖNKORMÁNYZATA VECSÉS

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Segítség ANOVA feladatok megoldásához

Segítség ANOVA feladatok megoldásához Segítség ANOVA feladatok megoldásához Ennek a dokumentumnak a célja az, hogy segítsen a feladat megoldójának beleélni magát abba helyzetbe, amibe bele kell magát képzelnie a megoldás során. Továbbá segítséget

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Munkaerő-piaci visszacsatoló és oktatásfejlesztési döntéstámogató rendszer kialakítása AP

Munkaerő-piaci visszacsatoló és oktatásfejlesztési döntéstámogató rendszer kialakítása AP Munkaerő-piaci visszacsatoló és oktatásfejlesztési döntéstámogató rendszer kialakítása AP Az előrejelzés szempontjai 1. A munkapiac leírása és foglalkoztatási igények előrejelzése. 2. Az oktatási igények

Részletesebben

Együttmőködés és innováció

Együttmőködés és innováció Vállalkozói innováció a Dunántúlon Pécs, 2010. március 3. Együttmőködés és innováció Csizmadia Zoltán, PhD tudományos munkatárs MTA RKK Nyugat-magyarországi Tudományos Intéztet Az előadás felépítése 1.

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN DOI: 10.12663/PsyHung.1.2013.1.2.4 ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN Takács Szabolcs 1 Smohai Máté 2 1 Károli Gáspár Református Egyetem és Budapest Főváros Kormányhivatala

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

Válság és előrejelzés

Válság és előrejelzés Válság és előrejelzés Magyar Statisztikai Társaság 2009. október 15. Dr. Gáspár Tamás Tudományos főmunkatárs ECOSTAT 1998. augusztus A globális kapitalizmus válsága 2000. szeptember Nem omlott össze a

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő:

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő: Módszertani leírás Bevezetés A Központi Statisztikai Hivatal a magánháztartásokban élők gazdasági aktivitásának foglalkoztatottságának és munkanélküliségének vizsgálatára 1992-ben vezette be a magánháztartásokra

Részletesebben

A Feldspar fordító, illetve Feldspar programok tesztelése

A Feldspar fordító, illetve Feldspar programok tesztelése A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Gázolaj-jövedékiadó verseny az Európai Unióban

Gázolaj-jövedékiadó verseny az Európai Unióban VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szemle, LVI. évf., 009. március (6 38. o.) PAIZS LÁSZLÓ Gázolaj-jövedékiadó verseny az Európai Unióban A tanulmány azt a kérdést vizsgálja, hogy versenyeznek-e az európai

Részletesebben

Hogyan lesz adatbányából aranybánya?

Hogyan lesz adatbányából aranybánya? Hogyan lesz adatbányából aranybánya? Szolgáltatások kapacitástervezése a Budapest Banknál Németh Balázs Budapest Bank Fehér Péter - Corvinno Visontai Balázs - KFKI Tartalom 1. Szolgáltatás életciklus 2.

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005 FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001 FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

Endrıdi-Kovács Viktória Hegedüs Krisztina Korrupció: mérhetıség és modellezés 1

Endrıdi-Kovács Viktória Hegedüs Krisztina Korrupció: mérhetıség és modellezés 1 Endrıdi-Kovács Viktória Hegedüs Krisztina Korrupció: mérhetıség és modellezés 1 TM 51. sz. Mőhelytanulmány BCE Világgazdasági tanszék 1 A mőhelytanulmány a TÁMOP-4.2.1.B-09/1/KMR-2010-0005 azonosítójú

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola FIT-jelentés :: 2011 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola 4200 Hajdúszoboszló, Gönczy P. u. 17. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban a 10. évfolyamon

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló Hallgatók 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011 Módszertani összefoglaló Készítette: Veroszta Zsuzsanna PhD 2012. március 1. Az adatfelvétel

Részletesebben

Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS. A kutatást lezáró beszámoló

Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS. A kutatást lezáró beszámoló Az önkormányzati beruházási hajlandóság becslése a magyar kistelepülések körében OTKA KUTATÁS 77871 A kutatást lezáró beszámoló A projekt legtöbb feladatát 2009-ben végzem el. Miután 2009 április és május

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

AZ ÉLETSZÍNVONAL TÉNYEZŐINEK HATÁSA A MAGYAR ENERGIAFELHASZNÁLÁSRA THE IMPACT OF STANDARD OF LIVING FACTORS ON DOMESTIC ENERGY CONSUMPTION

AZ ÉLETSZÍNVONAL TÉNYEZŐINEK HATÁSA A MAGYAR ENERGIAFELHASZNÁLÁSRA THE IMPACT OF STANDARD OF LIVING FACTORS ON DOMESTIC ENERGY CONSUMPTION Anyagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp. 65 74. AZ ÉLETSZÍNVONAL TÉNYEZŐINEK HATÁSA A MAGYAR ENERGIAFELHASZNÁLÁSRA THE IMPACT OF STANDARD OF LIVING FACTORS ON DOMESTIC ENERGY CONSUMPTION

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

A nemzeti identitás alakulása különböző földrajzinemzetiségi alcsoportok között egy mérési kísérlet

A nemzeti identitás alakulása különböző földrajzinemzetiségi alcsoportok között egy mérési kísérlet A nemzeti identitás alakulása különböző földrajzinemzetiségi alcsoportok között egy mérési kísérlet Koltai Júlia A n e m z e t i i d en t i tá s meghatározása a magyar szlovák és a magyar ukrán határ mentén

Részletesebben

ADATELEMZÉS FELSŐFOKON

ADATELEMZÉS FELSŐFOKON MIBEN SEGÍTHETÜNK? ADATELEMZÉS FELSŐFOKON Szolgáltatásaink Tanácsadás és rendszeres konzultáció Teljes körű adatfeldolgozás, adatbáziskezelés Klinikai vizsgálatok tervezése és kiértékelése Statisztikai

Részletesebben

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX SZIGETI Cecília Széchenyi István Egyetem, Kautz Gyula Gazdaságtudományi Kar, 906 Győr, Egyetem tér 1. e-mail: szigetic@sze.hu

Részletesebben

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN Mika János 1, Csabai Edina 1, Molnár Zsófia 2, Nagy Zoltán 3, Pajtókné Tari Ilona 1, Rázsi András 1,2, Tóth-Tarjányi Zsuzsanna 3, Wantuchné Dobi Ildikó

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

Abban a farmerba nem mehetsz színházba. A (bvn) variabilitásának vizsgálata a BUSZI tesz9eladataiban

Abban a farmerba nem mehetsz színházba. A (bvn) variabilitásának vizsgálata a BUSZI tesz9eladataiban Abban a farmerba nem mehetsz színházba. A (bvn) variabilitásának vizsgálata a BUSZI tesz9eladataiban Mátyus Kinga, Bokor Julianna IV. AlkalmazoD NyelvészeG Doktorandusz Konferencia Budapest, 2010. február

Részletesebben

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a

Részletesebben

VI. ADÓSNYILVÁNTARTÁS KAMATSZINT KOCKÁZATI PRÉMIUM: EGY NEMZETKÖZI ÖSSZEHASONLÍTÓ ELEMZÉS EREDMÉNYEI *

VI. ADÓSNYILVÁNTARTÁS KAMATSZINT KOCKÁZATI PRÉMIUM: EGY NEMZETKÖZI ÖSSZEHASONLÍTÓ ELEMZÉS EREDMÉNYEI * VI. ADÓSNYILVÁNTARTÁS KAMATSZINT KOCKÁZATI PRÉMIUM: EGY NEMZETKÖZI ÖSSZEHASONLÍTÓ ELEMZÉS EREDMÉNYEI * Major Iván és Nagy Dávid Krisztián. Bevezetés A bankok és más pénzintézetek egyik legértékesebb input-tényezője

Részletesebben

NEMZETI IDENTITÁS A KÜLÖNBÖZŐ FÖLDRAJZI-NEMZETISÉGI ALCSOPORTOK KÖZÖTT

NEMZETI IDENTITÁS A KÜLÖNBÖZŐ FÖLDRAJZI-NEMZETISÉGI ALCSOPORTOK KÖZÖTT 60 KOLTAI JÚLIA NEMZETI IDENTITÁS A KÜLÖNBÖZŐ FÖLDRAJZI-NEMZETISÉGI ALCSOPORTOK KÖZÖTT A nemzeti identitás meghatározása a szlovák és a ukrán határ mentén élő nemzetiségi csoportok körében komplex probléma.

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

A munkanélküli-ellátás változásainak hatása a munkanélküliek segélyezésére és elhelyezkedésére

A munkanélküli-ellátás változásainak hatása a munkanélküliek segélyezésére és elhelyezkedésére Közgazdasági Szemle, L. évf., 2003. július augusztus (608 634. o.) GALASI PÉTER NAGY GYULA A munkanélküli-ellátás változásainak hatása a munkanélküliek segélyezésére és elhelyezkedésére 2000 májusától

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor. 2010. június

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor. 2010. június KÖZGAZDASÁGTAN II. Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei

A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei 2015. június Elemzésünk azt vizsgálja, hogy a hazai vállalkozók milyen szempontokat tartanak fontosnak egy-egy bank megítélésénél

Részletesebben

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2012 10. évfolyam :: Szakközépiskola Sághy Mihály Szakképző Iskola, Középiskola és Kollégium, a Csongrádi Oktatási Központ, Gimnázium, Szakképző Iskola és Kollégium Tagintézménye 6640 Csongrád,

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA BGF PSzK Módszertani Intézeti Tanszéki Osztály GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA A jegyzetet a BGF Módszertani Intézeti Tanszékének oktatói készítették 001-ben, és frissítették

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2010 10. évfolyam :: Szakközépiskola Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye 6724 Szeged, Kálvária tér 7. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Ábrázolható-e a gazdálkodás világa és látszik-e az ábrán a csalás? Vágujhelyi Ferenc informatikai elnökhelyettes

Ábrázolható-e a gazdálkodás világa és látszik-e az ábrán a csalás? Vágujhelyi Ferenc informatikai elnökhelyettes Ábrázolható-e a gazdálkodás világa és látszik-e az ábrán a csalás? Vágujhelyi Ferenc informatikai elnökhelyettes A minimum információ 2 Nézzünk ki: a revízió Ez a folyószámla az adózó bevallásaira és befizetéseire

Részletesebben

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 2658-06/3 Egy aktuális gazdaságpolitikai esemény elemzése a helyszínen biztosított szakirodalom alapján

Részletesebben

Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével

Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével Élelmiszer-hamisítás kimutatásának lehetősége NIR spektroszkópia segítségével Bázár György, Kövér György, Locsmándi László, Szabó András, Romvári Róbert Kaposvári Egyetem, Állattudományi Kar Állatitermék

Részletesebben

Keresztély Tibor. Tanulmányok. Tanítási tapasztalat. Kutatási tevékenység

Keresztély Tibor. Tanulmányok. Tanítási tapasztalat. Kutatási tevékenység Keresztély Tibor Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Statisztika Tanszék 1093 Budapest, Fővám tér 8. Telefon: 06-1-482-5183, 06-1-373-7027, 06-20-776-1152 Email: tibor.keresztely@uni-corvinus.hu,

Részletesebben

A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István

A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István A villamosenergia-termelés rendszerszintű megbízhatóságának jellemzésére széleskörűen alkalmazzák a Loss-of-Load Probability (LOLP) értéket. A mutató fontos szerepet játszik a rendszerszintű teljesítőképesség-tervezési

Részletesebben

Nappali tagozatos hallgatók bevételeinek és időfelhasználásának egyenlőtlenségei

Nappali tagozatos hallgatók bevételeinek és időfelhasználásának egyenlőtlenségei Nappali tagozatos hallgatók bevételeinek és időfelhasználásának egyenlőtlenségei Nyüsti Szilvia Educatio Nkft. A felsőoktatási struktúrába kódolt egyenlőtlenségek Műhelykonferencia Budapest, 2014. május

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben