Bevezetés az ökonometriába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés az ökonometriába"

Átírás

1 Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, november 10.

2 Tartalom 1 Ismétlés Utóbbi előadások áttekintése 2 Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell 3 Fontosabb függvényformák áttekintése 4 Ramsey RESET

3 Előző részeink tartalmából Utóbbi előadások áttekintése Ismerkedés az ökonometriával, az ökonometriai modellezéssel Többváltozós lineáris regresszió alapjai Mintavételi vonatkozások: becslések és hipotézisvizsgálat Modellszelekció Modellspecifikáció (specifikációs torzítás), interakció Az OLS standard modellfeltevései, heteroszkedaszticitás és kezelése Nominális magyarázó változók szerepeltetése, dummyzás

4 Linearitás, mint közelítés Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Az élet általában nemlineáris (ez van) Miért használunk mégis lineáris modelleket: mert sokszor nem térnek el (nagyon) a valóságtól, de mégis sokkal könnyebben kezelhetőek matematikailag (ez van) Ez tehát az esetek többségében egy közelítés Mint ilyen: vizsgálni kell az érvényességi határokat (csap példája) Munkaponti linearizálás

5 Érvényességi határok Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Az érvényességi határokat az eddig látott modellekben is érdemes végiggondolni Azonnal kézenfekvő példa: a konstans (nagyon sok esetben) De sok meredekségnél is megragadható ez (fogyasztási függvény példája) Ez is egyfajta munkaponti linearizálás

6 Érvényességi határok Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell

7 Érvényességi határok Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell

8 Érvényességi határok Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell

9 Nemlinearitás fajtái Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Az β 1 + β 2 X + β 3 X 2 egy nemlineáris kifejezés (matematikailag) De figyelem: ennek ellenére minden további nélkül, tökéletesen kezelhető pusztán az eddig látott (lineáris!) eszköztárral, hiszen az OLS-nek mindegy, hogy a második magyarázó változó értékei történetesen épp az első négyzetei (Egészen addig nincs baj, amíg a kapcsolat nem lineáris) Nem úgy mint az β 1 X β 2 ez nem becsülhető OLS-sel A megkülönböztetés végett az első esetet változójában, a másodikat paraméterében nemlineáris modellnek nevezzük Mi van nemlinearitást okozó pozícióban

10 Változójában nemlineáris modell Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Jellemző: továbbra is fennáll a változók konstansokkal szorozva majd összeadva (tehát: lineáris kombinációs) struktúra De elképzelhető, hogy egy változó egy eredeti változó transzformáltja Itt szükségképp nemlineáris transzformációról beszélünk! Vegyük észre, hogy az eredeti és transzformált közti megkülönböztetés teljesen mesterséges (csak mi tudjuk, hogy mi volt az adatbázisban bemenő adatként), az OLS-nek mindegy Ide tartozik a kvadratikus hatás, általában az X a magyarázó változók, a log a X (de vigyázat: a logaritmus alapja nem paraméter), az a X stb. (a=konst) Az előzőek miatt további tárgyalást nem igényel

11 Paramétereiben nemlineáris modell Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Megsérti a lineáris kombináció struktúráját: paraméter nem csak szorzóként szerepel a regresszióban Például X β, log β X stb. Ez már nem becsülhető OLS-sel: az eredmányváltozó nem állítható elő mátrixszorzatként Más módszert fogunk használni

12 Nemlinearitás kezelése Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Mi egyetlen módszert fogunk látni: algebrai linearizálás Alkalmas transzformációval a nemlineáris problémát lineárissá alakítjuk, azt OLS-sel megoldjuk, majd a kapott eredményeket visszatranszformáljuk az eredeti transzformáció inverzével Például: Y = β 1 X β 2 u paramétereiben nemlineáris de mindkét oldal logaritmusát véve log Y = log β 1 + β 2 log X + u már az! Adatbázis logaritmálása, eredmények visszahatványozása Olyan esettel most nem foglalkozunk, ami ne lenne linearizálással kezelhető

13 Nemlinearitás hatásai Pár gondolat a linearitásról általában Változóiban és paramétereiben nemlineáris modell Kezelés szükségessége: lásd előbb Eltérő, specifikus értelmezések megjelenése

14 Log-log modell Fontosabb függvényformák áttekintése Például a Cobb-Douglas termelési modell: Y = β 1 L β L K β K, ahol Y a kibocsátás, L a munka, K a tőke (ill. általában a termelési tényezők) felhasználása Elaszticitása: El (Y, L) = dy Y dl L = dy L dl Y = β 1β L L βl 1 K β L K β 1 L β = β L K β K L Ezért nevezik konstans elaszticitású modellnek is Marginális hatás: dy dl = β 1β L L βl 1 K β K = β L Y L Kezelése linearizálással: mindkét oldalt logaritmáljuk log Y = log β 1 + β L log L + β K log K + u

15 Log-log modell Fontosabb függvényformák áttekintése Minden változót (eredmény és összes magyarázó is) logaritmálni kell Innen a modell neve Csak a konstans lesz logaritmálva, a többi koefficienst a transzformáció ellenére (ill. épp azért... ) közvetlenül kapjuk Volumenhozadék (skálahozadék): β K + β L viszonya 1-hez

16 Fontosabb függvényformák áttekintése Szakágazati termelési modell, Cobb-Douglas megközelítés Model 1: OLS, using observations (n = 476) Missing or incomplete observations dropped: 3 Dependent variable: l_ertnarb const l_befeszk,l_forgeszk l_szemraf,l_ecsleir l_rlejkot, Mean dependent var 3, S.D. dependent var 1, Sum squared resid 109,4631 S.E. of regression 0, R 2 0, Adjusted R 2 0, F (5, 470) 1490,231 P-value(F ) 1,3e 285 Log-likelihood 325,5952 Akaike criterion 663,1904 Schwarz criterion 688,1829 Hannan Quinn 673,0179 Volumenhozadék lineáris kombinációként tesztelhető Érdemes az R 2 -et is megnézni: ugyanez lineáris modellként 62,3%!

17 Log-lin modell Fontosabb függvényformák áttekintése Például a jövedelem alakulása: Y = e β 1+β 2 X +u Linearizálás ismét mindkét oldal logaritmálásával: log Y = β 1 + β 2 X + u Elnevezés logikája így már látható: az eredményváltozó logaritmálva, de a magyarázó változók maradnak szintben Növekedési ráta: e β 1+β 2 (X +1)+u = Ye β 2, pillanatnyi növekedési ütem: β 2 = dlog Y dx = 1 dy Y dx Elaszticitás: El (Y, X ) = dy X dx Y = β 2X, tehát csak X -től függ (közvetlenül)

18 Lin-log modell kakukktojás! Fontosabb függvényformák áttekintése Az előzőek alapján már világos a jelentése (pl. terület és kínálati ár összefüggése): Miért kakukktojás? β 2 értelmezése: Elaszticitás: Y = β 1 + β 2 log X + u dy dx = β 2 X β 2 = El (Y, X ) = β 2 X tehát csak Y -től függ (közvetlenül) dy dx /X X Y = β 2 Y,

19 Reciprok modell kakukktojás! Fontosabb függvényformák áttekintése Például keresleti modell: Y = β 1 + β 2 X + u Miért kakukktojás? Határkiadás: dy dx = β 2 X 2 Elaszticitás: El (Y, X ) = β 2 X 2 X Y = β 2 XY Paraméterek értelmezése, β j előjelének jelentősége az aszimptotikus viselkedés szempontjából: az élvezeti cikkek példája

20 Egy komplex példa vegyes modellre Fontosabb függvényformák áttekintése Tekintsük a következő kiadási modellt: Y = β 1 e β NN J β J+β JN N u, ahol Y a kiadás, N a nem (dummy, 1 ha férfi), J a jövedelem Alapvetően log-log jellegű (bár a β N felfogható exponenciálisként is), ráadásul még dummyzva is, hogy minden eltérő legyen nemenként (strukturális törés) Ez utóbbi miatt mondhatjuk egyszerűen, hogy log-log jellegű Linearizálás: log Y = log β 2 + β N N + β J J + β JN (J N) + u

21 Egy komplex példa vegyes modellre Fontosabb függvényformák áttekintése Paraméterértelmezések: β 1 és β N autonóm fogyasztás mindkét nemre teljesen külön (exponenciális jelleg ebben) A jövedelemnél célszerű az elaszticitást megragadni (a log-log jelleg miatt), hiszen: El (Y, J) = β J + β JN N nemtől függő elaszticitás (avagy: mindkét nemre teljesen külön elaszticitás, referencia-kódolás jelleggel)

22 A specifikációs tesztek Ramsey RESET Itt már nagyon erősen felmerül a kérdés: hogyan dönthetek a különféle függvényformák között? Ld. a termelési függvény példáját megadható lineárisan és Cobb-Douglas jelleggel (eredmény nagyon nem mindegy) Hogyan lehet analitikusan dönteni? Az előző példára: BM-teszt, PE-teszt stb., lásd Maddala Általánosságban (nem csak log/lin kérdésekre, mint az előzőek): ún. specifikációs tesztek

23 Ramsey RESET-je Ramsey RESET A modellspecifikáció általános tesztje Emiatt előnye: nem egy adott specifikációs kérdésre keres választ, hanem általában vizsgálja, hogy a specifikáció jó-e; hátránya, hogy ha nemleges választ ad, nem derül ki, hogy pontosan mi a specifikáció baja Trükk: új regressziót becsül, melynek eredményváltozója ugyanaz, de a magyarázó változókhoz hozzáadja az eredeti regresszió becsült eredményváltozójának magasabb hatványait (Ŷ 3 -ig néha Ŷ 4 -ig is) Nullhipotézis a helyes specifikáció, a tesztstatisztika: a hozzáadott változók együtt sem bírnak lényeges magyarázó erővel

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás,

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1 Tartalom Tartalomjegyzék 1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése....................... 1 2. Általánosítóképesség, túlilleszkedés 3 3. Modellszelekció 11 3.1. A modellszelekció

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Prof. Dr. Szerb László egyetemi tanár Pécsi Tudományegyetem Közgazdaságtudományi Kar Helyzetkép

Részletesebben

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3 Tartalom Tartalomjegyzék 1. Technikai kérdések 1 1.1. Adminisztratív ügyek....................................... 1 1.2. Tudnivalók a félévről....................................... 3 2. Bevezetés, alapgondolatok

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B A MONOPOLISZTIKUS VERSENY ÉS A DIXITSTIGLITZ-MODELL Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s:

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az 1 6. LECKE: REGRESSZIÓ -- Elıadás 6.1. A regresszió feladata és módszerei [C4] A módszer lényege, hogy arányskálán mért magyarázó változók (x 1,,x k ) segítségével közelítjük a számunkra érdekes, ugyancsak

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Validálás és bizonytalanságok a modellekben

Validálás és bizonytalanságok a modellekben Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét Pénzügytan I. Általános tudnivalók, ismétlés 2010/2011 tanév őszi félév 1. Hét 2010.09.07. 1 Tóth Árpád Ig. 617 e-mail: totha@sze.hu gyakorlatok letölthetősége: www.sze.hu/~totha Pénzügytan I. (könyvtár)

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

JELENTÉS AZ ELŐREJELZÉSRŐL

JELENTÉS AZ ELŐREJELZÉSRŐL STATISZTIKAI DÖNTÉSMEGALAPOZÁSI MODELL JELENTÉS AZ ELŐREJELZÉSRŐL VÉGSŐ VERZIÓ BUDAPEST, XVIII. KERÜLET, VECSÉS BUDAPEST, 2014 1 BUDAPEST XVIII. KERÜLET PESTSZENTLŐRINC-PESTSZENTIMRE ÖNKORMÁNYZATA VECSÉS

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 2658-06/3 Egy aktuális gazdaságpolitikai esemény elemzése a helyszínen biztosított szakirodalom alapján

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata

Ingatlanpiac és elemzése. 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Ingatlanpiac és elemzése 3-4. óra Az ingatlanok értékét meghatározó jellemzők általános vizsgálata Horváth Áron horvathar@eltinga.hu ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Tartalom 1. A statisztikai

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B AGGLOMERÁCIÓ ÉS TERMELÉKENYSÉG Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július

Részletesebben

0. Teszt megoldás, matek, statika / kinematika

0. Teszt megoldás, matek, statika / kinematika 0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.

Részletesebben

7.2. A készségek és az oktatás jövedelemben megtérülő hozama

7.2. A készségek és az oktatás jövedelemben megtérülő hozama 7.2. A készségek és az oktatás jövedelemben megtérülő hozama A neoklasszikus közgazdasági elmélet szerint a termelés végső értékéhez jobban hozzájáruló egyének számára elvárt a magasabb kereset. Sőt, mi

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz 2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért A makroökonómia tárgya és módszertana Mit tanultunk mikroökonómiából? Miben más és mivel foglalkozik a makroökonómia? Miért van külön makroökonómia? A makroökonómia módszertana. Miért fontos a makroökonómia

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Kiszorítás idősek és fiatalok között? Empirikus eredmények EU aggregált adatok alapján

Kiszorítás idősek és fiatalok között? Empirikus eredmények EU aggregált adatok alapján Empirikus eredmények EU aggregált adatok alapján MTA Közgazdaságtudományi Intézet, CEU Középeurópai Egyetem How could Hungary increase labour force participation? - záró konferencia, 2008 június 19. Hotel

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

Endrôdi-Kovács Viktória - Hegedüs Krisztina

Endrôdi-Kovács Viktória - Hegedüs Krisztina Endrôdi-Kovács Viktória - Hegedüs Krisztina A közvetlen külföldi befektetések és a korrupció közötti kapcsolat A szerzôk tanulmányának középpontjában a közvetlen külföldi befektetések és a korrupció kapcsolata

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

A termelés technológiai feltételei rövid és hosszú távon

A termelés technológiai feltételei rövid és hosszú távon 1 /12 A termelés technológiai feltételei rövid és hosszú távon Varian 18. Rgisztrált gazdasági szervezetek száma 2009.12.31 (SH) Társas vállalkozás 579 821 Ebbıl: gazdasági társaság: 533 232 Egyéni vállalkozás

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

Szenzorcsatolt robot: A szenzorcsatolás lépései:

Szenzorcsatolt robot: A szenzorcsatolás lépései: 1. Mi a szenzorcsatolt robot, hogyan épül fel? Ismertesse a szenzorcsatolás lépéseit röviden az Egységes szenzorplatform architektúra segítségével. Mikor beszélünk szenzorfúzióról? Milyen módszereket használhatunk?

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) ÉRETTSÉGI VIZSGA 2011. október 17. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

NT-17312 Az érthető matematika 11. Tanmenetjavaslat

NT-17312 Az érthető matematika 11. Tanmenetjavaslat NT-17312 Az érthető matematika 11. Tanmenetjavaslat Idézet a 3.2.04. kerettantervből (11 12. évfolyam, bevezetés): Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek kiemelten fontos

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

A monetáris rendszer

A monetáris rendszer A monetáris rendszer működése, pénzteremtés Dr. Vigvári András intézetvezető egyetemi tanár vigvari.andras@pszfb.bgf.hu Pénzügy Intézeti Tanszék A monetáris rendszer intézményi kerete Kétszintű bankrendszer,

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI

KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI Gazdálkodási modul Gazdaságtudományi ismeretek I. Üzemtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A mezőgazdasági vállalkozások termelési tényezői, erőforrásai 30. lecke A mezőgazdasági

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben