Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör"

Átírás

1 Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat, de nem korrelációs jellegű, ha például X növekedése kis x-ekre Y növekedésével, nagyobb x-ekre pedig Y csökkenésével jár együtt, mint a második ábrán.

2 Az is előfordulhat, hogy két változó között nincs semmilyen kapcsolat: Az állat becsült kor Több változó esetén a statisztikai programok egy része képes az ábrákat az alábbi táblázatos módon megjeleníteni: teljes súly teljes hossz orrtól törzs hossza pocak körkörös méret hátsó láb hossza kör

3 Pearson-féle korrelációs együttható A korrelációs kapcsolat erősségét intervallum skála esetén számszerűen a Pearsonféle korrelációs együtthatóval szokták mérni, amit R(X,Y)-nal jelölünk. R ( X, Y) 0 körüli érték gyenge, --hez vagy -hez közeli érték erős negatív, illetve pozitív korrelációs kapcsolatot jelez. A korrelációs együttható néhány tulajdonsága: Ha a változók függetlenek, akkor R(X,Y)=0, de abból, hogy R(X,Y)=0, nem következik a változók függetlensége. R(X,Y) = pontosan akkor áll fenn, amikor a változók között lineáris a kapcsolat, azaz Y=aX+b, ekkor R(X,Y) előjele megegyezik a előjelével. A korrelációs együttható szimmetrikus, a két változó felcserélhető. Nem szabad részátlagokra használni, mert a kiejtett bizonytalanságok miatt a valóságosnál erősebb összefüggést mutathat.

4 Hogyan lehet a korreláltságot a minták alapján vizsgálni? ( x, y ),( x 2, y 2 ),...,( x n, y n ). mintaelemek esetén r xy = n i= ( x x) ( y y) i ( n ) s x i s y, ahol x, y a változók mintaátlaga, s x, s y pedig a becsült szórások.

5 Mivel a korrelációs együttható a mintából számított becslés, ezért hibával terhelt. Akkor sem kapunk pontosan nullát, ha a két változó között nincs korreláció, ezért el kell végeznünk az alábbi hipotézisvizsgálatot: Nullhipotézis: : R( X, Y) 0 Próbastatisztika: Szabadsági fok: n-2 H, azaz H : µ 0 0 = t = r s µ r r = r 2 r n 2 0 r =

6 A rangkorrelációs együttható: Ha adatainkat nem intervallum skálán mérjük, hanem ordinálison, akkor a Spearman féle rangkorrelációs együtthatót használhatjuk: r s 2 6 d =, 3 n n ahol n a mintaelemek száma, d a rangok közti különbségek. Ha az intervallum, vagy arányskálán mért értékeket a rangszámaikkal helyettesítjük vagy ha az ordinális skálájú változónkat az, 2, 3, n kódokkal kódoljuk akkor az ebből számolt Pearson-féle és a Spearman féle együtthatók megegyeznek. Így lehet kiszámítani a Spearman féle együtthatót, ha a program csak Pearson-féle korrelációs együtthatót tud számolni.

7 A regressziószámítás célja Regresszió-analízis A regressziószámítást akkor használjuk, amikor függvényszerű kapcsolatot keresünk egy vagy több magyarázó változó (vagy független változó) és egy függő változó között. Szokásosan a magyarázó változókat X-ekkel, a függő változót pedig Y-nal jelöljük. Feltételezzük, hogy az X-ek és az Y közötti összefüggés kifejezhető függvény formájában, azaz Y =f(x) vagy Y=f(X,X 2,,X r ) Ahhoz, hogy regresszió számítást végezhessünk, mind a magyarázó, mind a függő változót ismernünk kell ugyanazokon a megfigyelési egységeken, azaz a kiinduló adatok egy magyarázó változó esetén (x,y ), (x 2,y 2 ), (x 3,y 3 )... (x n,y n ) értékpárok, több magyarázó változó esetén pedig (x, x 2, x 3,, y ), (x 2, x 22, x 23,, y 2 ), (x 3, x 32, x 33,, y 3 )... (x n, x n2, x n3,, y n ) vektorok. Ez az úgynevezett adatmátrix.

8 A regressziószámítás szokásos kérdésfeltevései Van-e bizonyos változók között összefüggés? Függ-e a borjak 30 napos testtömege a születési súlyuktól? Milyen függvénnyel (lineáris, exponenciális, stb.) írható le az összefüggés? Alkalmas-e ennek az összefüggésnek a leírására a lineáris függvény? Mi a függő változó várható értéke a magyarázó változó egy bizonyos értékéhez? Mekkora 30 napos testtömeget várhatunk, ha a születési súly 45 kg? Mi a magyarázó változó feltételezhető értéke a függő változó egy bizonyos értékéhez? Mekkora születési súly küszöb feletti állatokat szelektáljunk, ha az a cél, hogy 30 napos korban az állatok (legalábbis átlagban) elérjék az 55 kg-ot? A cél lehet oksági kapcsolat megállapítása X és Y között, gyakran azonban csak következtetni szeretnénk az egyik változó értékéből a másikra, a közöttük tapasztalt összefüggés alapján.

9 Feltétel: a magyarázó és a függő változó egyaránt intervallum skálán mérhető. Példa: A születési súly és a 30 napos testtömeg összefüggése 30 borjú adatai alapján (Bajcsy Á. Csaba és munkatársai, Szülészeti Tanszék) napos testtömeg (kg) Születési súly (kg) Bár egyértelmű a pozitív összefüggés a két adat között, a szóródás túlságosan nagy ahhoz, hogy a születési súly alapján jó előrejelzést adhatnánk a 30 napos testtömegre.

10 Melyik legyen a magyarázó és melyik a függő változó? Ez mindig attól függjön, hogy milyen irányú oksági kapcsolatot, illetve milyen véletlen hatásokat tételezünk fel a változók között, és NE attól, hogy melyik változót szeretnénk a másik alapján előrejelezni. Előfordulhat, hogy az ismeretlen X-et szeretnénk meghatározni a megfigyelt Y-ból, bár a regressziós modell Y=f(X)+ε. Ez az úgynevezett inverz regresszió.

11 Véletlenség a magyarázó és a függő változóban A függő változó mindig valószínűségi változó, a magyarázó változók azonban nem biztos. Általában úgy gondoljuk, hogy Y két független, additív komponensre bontható: az egyik az X-ektől függ, a másik pedig egy, az X-ektől független véletlen faktor, azaz Y=f(X)+ε. magyarázó változó(k) hatása véletlen komponens (=minden egyéb hatás) függő változó Fel szokás tenni, hogy a véletlen komponens várható értéke 0, azaz E(ε)=0 és hogy eloszlása szimmetrikus, a statisztikai tesztek kedvéért pedig még azt is, hogy normális eloszlású.

12 A magyarázó változóban háromféle véletlenséget szoktak megkülönböztetni: X nem véletlen változó, a kísérlet vezetője állítja be X értékét a természet állítja be, de az pontosan ismert A mért X nem azonos az Y-t befolyásoló változóval (mérési pontatlanság miatt, vagy mert X elvont, nem mérhető, pl. ha X = intelligencia IQ). Ezt az esetet itt nem tárgyaljuk.

13 Korreláció- vagy regressziószámítás? A legfontosabb különbségek a két módszer között: A korrelációszámítás szimmetrikus kapcsolatot tételez fel az X és Y között, míg a regresszió számítás egy bizonyos irányú (X Y) kapcsolatot, Míg a korrelációszámításban mindkét változó valószínűségi változó, a regresszió számításban X nem feltétlenül az (nem feltétlenül függ a véletlentől). A korrelációszámításnak nincs értelme akkor, ha az X értékeit a kísérletező állítja be (pl. egy gyógyszer dózisát). Gyakran mindkét módszer alkalmazható, ha megfelelően átfogalmazzuk a kérdéseket. Mindig gondoljuk meg azonban, melyik fogalmazás tükrözi jobban, hogy valójában mi is érdekel!

14 NE használjunk regressziószámítást ha két mérési módszer közötti egyezést vizsgálunk, és nem pedig azt, hogy hogyan fejezhető ki egyik mérési eredmény a másikkal. Ilyenkor a korrelációelemzésnek sincs értelme, hiszen az erős korreláció sem feltétlenül jelent jó egyezést erős korrelációt kaphatunk nagy szisztematikus hiba (torzítás) esetén is (ha X 2 = X + 000, a korrelációs együttható = ). Ha a mérési eredmények egyezése érdekel, legjobb, ha a különbséggel (abszolút vagy relatív) számolunk. Végezhetünk azonban regresszió- (nem korreláció!) számítást, ha az egyik mérési módszert pontosnak tekintjük, és arra vagyunk kíváncsiak, hogyan lehet a másikat korrigálni. ha nem tudjuk eldönteni, melyik változót tekintsük magyarázó és melyiket függő változónak (ez nem csupán technikai kérdés, hanem a véleményünket tükrözi arról, hogy mi mitől függ, illetve, hogy mit tételezünk fel a véletlen faktorokról). ha tudjuk, hogy a magyarázó változó a függő változóval azonos nagyságrendű véletlen hibával terhelt.

15 Lineáris regresszió egy magyarázó változóval (simple linear regression) A lineáris modell egy magyarázó változóval: ( X) = β + β + ε = f X Y 0 Az együtthatókat az adatokból a legkisebb négyzetek módszerével becsüljük (least squares), azaz úgy választjuk a paramétereket, hogy a ( yi f( x i )) minimális legyen. Ezt az alábbi becsléssel érjük el: n i= 2 négyzetösszeg n ( xi x)( yi y) b, b0 = y b x i= = n ( xi x) i= 2 Y estimated line Y=b 0 +b X true line Y=β 0 +β X Vigyázat! Ez a képlet akkor is ad eredményt, ha valójában nincs kapcsolat! observed data X

16 Az előző miatt hipotézisvizsgálatra van szükség, hogy valóban függ-e az Y az X-től. Ennek menete kétféle lehet: t-próba: Nullhipotézis: H β 0, azaz Y nem függ X-től a modellben Próba-statisztika: 0 : = b SE t = (lásd később a képletet) ( b ) Szabadsági fokok száma: n-2

17 F-próba: Csak több magyarázó változó esetén különbözik Teljes eltérés négyzetösszeg: SSQt ( yi y) = n Reziduumok négyzetösszege: SSQr ( yi f( xi) ) i= = n i= 2, szabadsági fok n- 2, szabadsági fok n-2 (b i becsült) A számított és a valódi értékek különbségének négyzetösszege, ezt nem magyarázza a modell Magyarázott négyzetösszeg: SSQ t SSQ Az Y ingadozásának az a része, amelyet X változása magyaráz Próbastatisztika: F = r SSQt SSQr, szabadsági fokok, n-2 SSQr n 2

18 Feltételek: Ahhoz, hogy a modellt alkalmazni lehessen, a következőknek teljesülni kell: E ( ε) = 0 ε szórása minden megfigyelt értékre ugyanakkora ε értékei függetlenek egymástól és X-től ε normális eloszlású Az illeszkedés jóságának mérése: Determinációs együttható, R 2 = SSQt SSQ SSQ t r (a korrelációs együttható négyzete) Azt mutatja meg, hogy X változása mennyire magyarázza Y változását Értéke 0 és kötött lehet.

19 A paraméterek szórásának becslése 2 2 = = n e s n i i ε, ahol ( ) i i i x f y e = x b ns s s ε =, x b ns s? 0 = Ezeket felhasználva az n-2 szabadsági fokú t-eloszlásból a két paraméterre lehet konfidenciaintervallumot adni. Ennek megfelelően fel lehet rajzolni két konfidenciatartományt, az elsőt a regressziós egyenesre, a bővebbet pedig X adott értéke esetén Y-ra.

20 Az ábrán (a borjak adatai), a lila vonalak jelölik a regressziós egyenesre vonatkozó, a zöld vonalak pedig az egyes pontokra vonatkozó 95%-os konfidencia-sávot. Az X tartomány szélei felé haladva a becslések egyre bizonytalanabbak. (A legkisebb a bizonytalanság az X értékek átlagánál.) day body weight (kg) Birth weight (kg)

21 A változók transzformálása A transzformációk olyankor segíthetnek, amikor a megfigyelt adatokra a lineáris regresszió közvetlenül nem alkalmazható. Néha elméleti megfontolásokból következik, hogy a változók közötti kapcsolat nem lineáris: Testhossz testtömeg ( gömb / ellipszoid térfogata hatványfüggvény) Gyógyszer dózis hatás görbéje (logisztikus görbe vagy hasonló S-alakú görbe) Máskor a megfigyelt adatok ugyan egyértelműen arra utalnak, hogy az X és az Y között van összefüggés, de ha a pontokra egyenest illesztünk, az illeszkedés nagyon rossz.

22 Az első esetben az elméleti megfontolások arra vonatkozóan is útmutatást adnak, hogy milyen függvénytípust válasszunk, a másodikban pedig az adatok grafikus ábrázolása segíthet: A kétváltozós szórásdiagramok a modell-választáshoz nyújtanak segítséget, A hisztogram, boxplot, stb. az adatok eloszlásának vizsgálatában (reziduálisok normalitása, függetlenségük X-től!). Azokban az esetekben, amikor az X és Y közötti összefüggés nem lineáris, lineáris összefüggés állhat fenn valamely X és Y transzformált változók között. Ha elméleti megfontolásokból nem következik, hogy milyen transzformációval érdemes próbálkozni, akkor szórásdiagramok segítségével választhatjuk ki a legmegfelelőbbet. Mivel a legtöbb számítógépes programban egy gombnyomással kérhető, a logaritmustranszformációt próbáljuk ki rutinszerűen! Mindig gondoljuk végig, hogy egy ilyen transzformáció interpretálható-e, meg tudjuke magyarázni, mi az értelme.

23 exponenciális görbe log. skála az y tengelyen egyenes logaritmus-görbe log. skála az x tengelyen egyenes

24 hatványfüggvény log. skála mindkét tengelyen egyenes A transzformációk érinthetik mind a regressziós függvényt, mind a véletlenséget a modellben (utóbbit akkor, ha a függő változót transzformáljuk). Példák: Ha a regresszió lineárissá válik az Y log-transzformálásával: log Y = β 0 + β X + ε, akkor a függvény exponenciális, multiplikatív hibával: Y = e β 0 e β X e ε Multiplikatív hiba: a véletlen faktor nem hozzáadódik a függvényértékhez, hanem összeszorzódik vele. Ekkor nagyobb függvényértékhez nagyobb Y szórás tartozik.

25 Ha a regresszió lineárissá válik X és Y log-transzformálásával: logy=β 0 +β log X +ε, akkor a függvény hatványfüggvény, multiplikatív hibával: Y = e β 0 x β e ε Ha a regresszió lineárissá válik az X log-transzformálásával: Y =β 0 +β log X +ε, akkor a függvény logaritmus-függvény, multiplikatív hibával. Ugyanilyen elterjedt a hatvány- és a gyök-transzformáció. A gyökök (relatíve) összehúzzák a nagy értékek tartományát, az (egynél nagyobb) hatványok pedig a kis értékekét. Ha a mért értékek helyett rangokkal dolgozunk, a változót teljesen skála-függetlenné tehetjük.

26 Megjegyzések: A fent említettek mind monoton transzformációk. Ha a változó értéktartománya szűk, a rangok kivételével az összes többi kb. egyenértékű. Gyakorisági adatokra az arcsin transzformációt szokták alkalmazni.

27 A transzformációk statisztikai modell hiányában is hasznosak lehetnek. Segíthetnek az adatok jobb megismerésében és ábrázolásában, szebb grafikonok készítésében, stb. Példa a transzformációs lehetőségekre az összefüggés linearizálásában: eredeti összefüggés négyzetgyök Y negyedik gyök Y logaritmus Y

28 Megjegyzések: A transzformációkat nemcsak az összefüggés linearizálására, hanem szóráskiegyenlítésre és az eloszlások szimmetrizálására is szokták használni. (Persze előfordulhat, hogy az a transzformáció, amely linearizálja az összefüggést, elrontja a szórások egyenlőségét, stb.) A transzformáció megválasztásánál fontos szempont az interpretálhatóság. A transzformáció útján történő linearizálás nem az egyetlen lehetőség a nemlineáris össze-függések kezelésére. Léteznek eljárások lineárissá nem transzformálható ( intrinsically nonlinear ) modellek illesztésére is.

29 Ami idén kimaradt: Lineárisra visszavezethető regressziók Többszörös (multiple) regresszió Többszörös és parciális korreláció Polinomiális regresszió

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Korrelációs kapcsolatok elemzése

Korrelációs kapcsolatok elemzése Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001)

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001) A regressziószámítás gyakorlati kérdései A Szent István Egyetem Állatorvosi Kar Biomatematikai és Számítástechnikai Tanszék, Budapest és az Bécsi Állatorvosi Egyetem Biofizika és Biostatisztika Tanszék,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk? Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Lineáris regressziószámítás 1. - kétváltozós eset

Lineáris regressziószámítás 1. - kétváltozós eset Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Korreláció számítás az SPSSben

Korreláció számítás az SPSSben Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 18. J J 9 Információk a 2. ZH-ról és a vizsgáról 12. hét: gyakorló óra 13. hét: teszt 14. hét: a teszt megbeszélése, vizsgajegyek megajánlása. Minden

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Kvantitatív statisztikai módszerek

Kvantitatív statisztikai módszerek Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

A modellben az X és Y változó szerepe nem egyenrangú: Y (x n )

A modellben az X és Y változó szerepe nem egyenrangú: Y (x n ) Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A többváltozós lineáris regresszió 1.

A többváltozós lineáris regresszió 1. 2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben