és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával ( )

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001)"

Átírás

1 A regressziószámítás gyakorlati kérdései A Szent István Egyetem Állatorvosi Kar Biomatematikai és Számítástechnikai Tanszék, Budapest és az Bécsi Állatorvosi Egyetem Biofizika és Biostatisztika Tanszék, Bécs közös tanfolyama. Letölthető a címről További információk: Dr. Reiczigel Jenő Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-1)

2 Tartalomjegyzék A regressziószámítás célja 3 A legegyszerűbb modell (simple lin. regr.) 9 Regressziós modellek 11 A változók transzformálása 1 Többszörös (multiple) regresszió 17 Többszörös és parciális korreláció 1 Polinomiális regresszió Multikollinearitás 3 Logit és probit modellek 6 Regressziós diagnosztika 9 Néhány további fogalom röviden 37 Ajánlott irodalom 38

3 A regressziószámítás célja A regressziószámítást akkor használjuk, amikor függvényszerű kapcsolatot keresünk egy vagy több magyarázó változó (vagy független változó) és egy függő változó között. Szokásosan a magyarázó változókat X-ekkel, a függő változót pedig Y -nal jelöljük. Feltételezzük, hogy az X-ek és az Y közötti összefüggés kifejezhető függvény formájában, azaz X Y vagy Y = f(x) pl. TESTSÚLY = f (KOR) X 1, X,, X r Y vagy Y = f(x 1, X,, X r ) pl. TESTSÚLY = f (KOR, SZÜLETÉSI_SÚLY) Ahhoz, hogy regressziószámítást végezhessünk, mind a magyarázó, mind a függő változót ismernünk kell ugyanazokon a megfigyelési egységeken (egyedeken), azaz a kiinduló adatok egy magyarázó változó esetén (x 1,y 1 ), (x,y ), (x 3,y 3 )... (x n,y n ) értékpárok, több magyarázó változó esetén pedig (x 11, x 1, x 13,, y 1 ), (x 1, x, x 3,, y ), (x 31, x 3, x 33,, y 3 )... (x n1, x n, x n3,, y n ) vektorok. Ez az úgynevezett adatmátrix. Egy magyarázó változó esetén több magyarázó változó esetén 1. egyed: x 1 y 1 x 11 x 1 x 13 y 1. egyed: x y x 1 x x 3 y 3. egyed: x 3 y 3 x 31 x 3 x 33 y 3 n-ik egyed: x n y n x n1 x n x n3 y n 3

4 4 A regressziószámítás szokásos kérdésfeltevései Van-e bizonyos változók között összefüggés, Függ-e a borjak 3 napos testtömege a születési súlyuktól? Milyen függvénnyel (lineáris, exponenciális, stb.) írható le az összefüggés, Alkalmas-e ennek az összefüggésnek a leírására a lineáris függvény? Mi a függő változó várható értéke a magyarázó változó egy bizonyos értékéhez, Mekkora 3 napos testtömeget várhatunk, ha a születési súly 45 kg? Mi a magyarázó változó feltételezhető értéke a függő változó egy bizonyos értékéhez, Mekkora születési súly küszöb feletti állatokat szelektáljunk, ha az a cél, hogy 3 napos korban az állatok (legalábbis átlagban) elérjék az 55 kg-ot? A cél lehet oksági kapcsolat megállapítása X és Y között, gyakran azonban csak következtetni szeretnénk az egyik változó értékéből a másikra, a közöttük tapasztalt összefüggés alapján. Feltételezzük, hogy mind a magyarázó, mind a függő változó intervallum skálán mérhető. Egyes modellekben dichotom (=kétértékű, bináris, /1, igen/nem) változók is előfordulhatnak. Például a logit és probit modellekben a függő változó /1 változó (ott a magyarázó változók folytonosak). Tágabb értelemben a varianciaelemzés is felfogható regressziószámításnak, mesterséges /1változók (=dummy változók) bevezetésével.

5 5 Példa: A születési súly és a 3 napos testtömeg összefüggése 3 borjú adatai alapján (Bajcsy Á. Csaba és munkatársai, Szülészeti Tanszék). Bár egyértelmű a pozitív összefüggés a két adat között, a szóródás túlságosan nagy ahhoz, hogy a születési súly alapján jó előrejelzést adhatnánk a 3 napos testtömegre napos testtömeg (kg) Születési súly (kg) Melyik változó legyen a magyarázó és melyik a függő változó? Ez mindig attól függjön, hogy milyen irányú oksági kapcsolatot, illetve milyen véletlen hatásokat tételezünk fel a változók között, és NE attól, hogy melyik változót szeretnénk a másik alapján előrejelezni. Előfordulhat, hogy az ismeretlen X-et szeretnénk meghatározni a megfigyelt Y -ból, bár a regressziós modell Y = f (X) + ε. Ez az úgynevezett inverz regresszió. Például ha ugyanarra a mérésre két módszer is van, az A1 (lassú, drága, de pontos) és a A (olcsó, gyors, de kevésbé pontos), a helyes regressziós modell V = V1 + ε (a pontatlan módszer tartalmazza a hibát), de a természetes előrejelzési feladat a V V1.

6 Véletlenség a magyarázó és a függő változóban A függő változó mindig valószínűségi változó, a magyarázó változók azonban nem biztos. Általában úgy gondoljuk, hogy Y két független, additív komponesre bontható: az egyik az X- ektől függ, a másik pedig egy, az X-ektől független véletlen faktor, azaz Y = f (X ) + ε. magyarázó változó(k) hatása függő változó véletlen komponens (=minden egyéb hatás) Fel szokás tenni, hogy a véletlen komponens várható értéke, azaz E(ε)= és hogy eloszlása szimmetrikus, a statisztikai tesztek kedvéért pedig még azt is, hogy normális eloszlású. Mivel Y valószínűségi változó, X értéke nem határozza meg teljesen Y-t, csak Y eloszlására van hatással. Ezért adott X = x esetén vagy az Y feltételes eloszlását, vagy (gyakrabban) a feltételes várható értékét E(Y X = x ) szokták vizsgálni. (Például gondoljunk azon borjak 3 napos testtömegének eloszlására, illetve várható értékére, amelyeknek születési súlya 35 kg). A magyarázó változóban háromféle véletlenséget szoktak megkülönböztetni: - X egyáltalán nem véletlen változó, a kísérlet vezetője állítja be, MODEL I - bár a természet állítja be az X értékét, de az pontosan ismert, - a mért X nem azonos az Y-t befolyásoló változóval (mérési pontatlanság miatt, vagy mert X elvont, nem mérhető, pl. ha X = intelligencia IQ). Ezt az esetet itt nem tárgyaljuk. MODEL II 6

7 Korreláció- vagy regressziószámítás? A legfontosabb különbségek a két módszer között: - a korrelációszámítás szimmetrikus kapcsolatot tételez fel az X és Y között, míg a regressziószámítás egy bizonyos irányú (X Y) kapcsolatot, - míg a korrelációszámításban mindkét változó valószínűségi változó, a regressziószámításban X nem feltétlenül az (nem feltétlenül függ a véletlentől). A korrelációszámításnak nincs értelme akkor, ha az X értékeit a kísérletező állítja be (pl. egy gyógyszer dózisát). Gyakran mindkét módszer alkalmazható, ha megfelelően átfogalmazzuk a kérdéseket. Mindig gondoljuk meg azonban, melyik fogalmazás tükrözi jobban, hogy valójában mi is érdekel! Tegyünk fel korrelációs és regressziós megközelítésű kérdéseket a következő (vagy hasonló) mért adatok közötti összefüggésekkel kapcsolatban és beszéljük meg ezeket! cipőméret és testsúly testmagasság és testsúly vérnyomás és testsúly vérnyomás és életkor Na és K koncentráció a vérben age and body weight 7

8 NE használjunk regressziószámítást - ha két mérési módszer közötti egyezést vizsgálunk és nem pedig azt, hogy hogyan fejezhető ki egyik mérési eredmény a másikkal. Ilyenkor a korrelációelemzésnek sincs értelme, hiszen az erős korreláció sem feltétlenül jelent jó egyezést erős korrelációt kaphatunk nagy szisztematikus hiba (torzítás) esetén is (ha X = X 1 + 1, a korrelációs együttható = 1). Ha a mérési eredmények egyezése érdekel, legjobb, ha a különbséggel (abszolút vagy relatív) számolunk. (DE végezhetünk regresszió- <nem korreláció!> számítást, ha az egyik mérési módszert pontosnak tekintjük, és arra vagyunk kíváncsiak, hogyan lehet a másikat korrigálni.) - ha nem tudjuk eldönteni, melyik változót tekintsük magyarázó és melyiket függő változónak (ez nem csupán technikai kérdés, hanem a véleményünket tükrözi arról, hogy mi mitől függ, illetve, hogy mit tételezünk fel a véletlen faktorokról), - ha tudjuk, hogy a magyarázó változó a függő változóval azonos nagyságrendű véletlen hibával terhelt, vagy általánosabban fogalmazva, ha tudjuk, hogy az Y nem a mért X-től függ, hanem egy ismeretlen "valódi értéktől", (jelöljük X*-gal) azaz X* Y, a megfigyelt X érték pedig X = X* + δ ahol δ az X*-tól független véletlen faktor. (DE ha feltehetjük, hogy δ nem a valódi, hanem a mért X-től független, akkor alkalmazhatunk regressziószámítást.) 8

9 Lineáris regresszió egy magyarázó változóval (simple linear regression) a) Az általános modell egy magyarázó változóval: Y = f(x) + ε 9 b) Ugyanez lineáris függvénnyel: Y = β + β 1 X + ε c) Az együtthatók becslése az adatokból: a legkisebb négyzetek módszere ( LS módszer ) a becsléseket b, b 1 jelöli (máshol lehet még b ˆ ˆ, b1) Y estimated line Y=b +b 1 X observed data true line Y= β + β 1 X d) Hipotézisvizsgálat ("Valóban függ az Y az X-től?") t-próba H : β 1 = ( β 1 = azt jelenti, hogy Y nem függ X-től a modellben! ) próba-statisztika: b 1 / SE ( b 1 ) ahol SE ( b 1 ) -et az adatokból becsüljük null-eloszlás: Student-féle t eloszlás n szabadsági fokkal F-próba ugyanarra (ekvivalens csak több magyarázó változó esetén különbözik) Y teljes szórása = Y X-től való függéséből eredő szórása + Y egyéb hatások miatti szórása ("véletlen hiba") Σ ( Y i Y ) = Σ ( f (X i ) Y ) + Σ ( Y i f (X i) ) Teljes SSQ = Regressziós SSQ + HIba (=reziduális) SSQ Mindkét teszthez szükséges: a véletlen faktor (=ε) független, normális eloszlású legyen! X

10 1 e) Az illeszkedés jóságának mérése: R (determinációs koefficiens, Regressziós SSQ / Teljes SSQ), reziduumok (a megfigyelt és a számított Y értékek eltérése - az ε becslése). f) Konfidencia-intervallumok a paraméterekre (a β i -kre: b i ± t crit SE( b i ), ahol t crit az (n ) szabadsági fokú t eloszlás kritikus értéke, és SE( b i ) -t az adatokból becsüljük. Konfidenciasáv a regressziós egyenesre / az egyes Y értékekre ugyanazok a feltételek szükségesek, mint a hipotézisvizsgálathoz! Az ábrán (a borjak adatai), a lila vonalak jelölik a regressziós egyenesre vonatkozó, a zöld vonalak pedig az egyes pontokra vonatkozó 95%-os konfidenciasávot. Figyeljük meg, hogy az X tartomány szélei felé haladva a becslések egyre bizonytalanabbak. (A legkisebb a bizonytalanság az X értékek átlagánál.) day body weight (kg) Birth weight (kg)

11 11 Regressziós modellek Egy regressziós modell legfontosabb összetevői a változók közötti kapcsolatot leíró függvény típusa (lineáris, négyzetes, exponenciális, stb.) és a feltevések arról, hogy hogyan befolyásolja a véletlen az adatokat (pl. hogy az Y véletlen komponense additív-e vagy multiplikatív). A regressziószámítás végrehajtásának lépései 1. Informális modell (mik a fontos változók mi mitől függ ; grafikon-rajzolás). Formális modell (a függvénytípus megválasztása, a véletlenség a modellben) 3. A modell-paraméterek becslése (a legjobban illeszkedő görbe/felület megkeresése) 4. A modell jóságának vizsgálata - F-próba (az illeszkedés globális vizsgálatára), - t-próba (az egyes paraméterek egyenkénti vizsgálatára), - R (a kapcsolat szorosságát, a függő változó meghatározottságát méri), - a regressziószámításhoz szükséges feltételek ellenőrzése (reziduumok vizsgálata, regressziós diagnosztika) Fontos, hogy lássuk a különbséget az alábbi fogalom-párok között: valódi összefüggés feltételezett modell (a reziduális elemzés segít megtalálni a helyes modellt) valódi becsült paraméterek (konfidencia-intervallumok, standard hibák) megfigyelt számított Y érték (konfidencia-sávok) véletlen faktor (ε ) reziduum (e i )

12 A változók transzformálása A transzformációk olyankor segíthetnek, amikor a megfigyelt adatokra a lineáris regresszió közvetlenül nem alkalmazható. Néha elméleti megfontolásokból következik, hogy a változók közötti kapcsolat nem lineáris: Tumor átmérője térfogata ( gömb / ellipszoid térfogata hatványfüggvény) Gyógyszer dózis hatás görbéje (logisztikus görbe vagy hasonló S-alakú görbe) Máskor a megfigyelt adatok ugyan egyértelműen arra utalnak, hogy az X és az Y között van összefüggés, de ha a pontokra egyenest illesztünk, az illeszkedés nagyon rossz. Antibiotikum koncentrációja baktériumkultúrák átlagos átmérője Antibiotikum koncentrációja baktériumkultúrák átlagos területe Antibiotikum koncentrációja baktériumkultúrák átlagos száma Szerv területe az ultrahang-készülék képernyőjén a szerv térfogata Tumor térfogata túlélési idő hossza Az első esetben az elméleti megfontolások arra vonatkozóan is útmutatást adnak, hogy milyen függvénytípust válasszunk, a másodikban pedig az adatok grafikus ábrázolása segíthet: - a kétváltozós szórásdiagramok a modell-választáshoz nyújtanak segítséget, - a hisztogram, boxplot, stb. az adatok eloszlásának vizsgálatában (szükséges feltevések!). 1

13 Azokban az esetekben, amikor az X és Y közötti összefüggés nem lineáris, lineáris összefüggés állhat fenn valamely X és Y transzformált változók között. Ha elméleti megfontolásokból nem következik, hogy milyen transzformációval érdemes próbálkozni, akkor szórásdiagramok segítségével választhatjuk ki a legmegfelelőbbet. Mivel a legtöbb számítógépes programban egy gombnyomással kérhető, a logaritmus-transzformációt próbáljuk ki rutinszerűen! NB. A logaritmus csak pozitív számokra van értelmezve! Ha vagy negatív X és/vagy Y értékek is előfordulnak, szokás egy alkalmas állandót hozzáadni az értékekhez, mielőtt a logaritmus vesszük, például log(x+1)-et venni log(x) helyett. Mindig gondoljuk végig, hogy egy ilyen transzformáció interpretálható-e, meg tudjuk-e magyarázni, mi az értelme. exponenciális görbe log. skála az y tengelyen egyenes

14 14 logaritmus-görbe log. skála az x tengelyen egyenes hatványfüggvény log. skála mindkét tengelyen egyenes

15 A transzformációk érinthetik mind a regressziós függvényt, mind a véletlenséget a modellben (utóbbit akkor, ha a függő változót transzformáljuk). Példák: 1. Ha a regresszió lineárissá válik az Y log-transzformálásával: log Y = β + β 1 X + ε akkor a függvény exponenciális, multiplikatív hibával: Y = e β e β 1X e ε Multiplikatív hiba: a véletlen faktor nem hozzáadódik a függvényértékhez, hanem összeszorzódik vele. Ekkor nagyobb függvényértékhez nagyobb Y szórás tartozik. (NB. a relatív szórás állandó!). Ha a regresszió lineárissá válik X és Y log-transzformálásával: log Y =β +β 1 log X +ε akkor a függvény hatványfüggvény, multiplikatív hibával: Y = e β x β 1 e ε 3. Ha a regresszió lineárissá válik az X log-transzformálásával: Y =β +β 1 log X +ε akkor a függvény logaritmus-függvény, additív hibával. Ugyanilyen elterjedt a hatvány- és a gyök-transzformáció. A gyökök (relatíve) összehúzzák a nagy értékek tartományát, az (egynél nagyobb) hatványok pedig a kis értékekét. Ha a mért értékek helyett rangokkal dolgozunk, a változót teljesen skála-függetlenné tehetjük. Megjegyzések: A fent említettek mind monoton transzformációk. Ha a változó értéktartománya szűk, a rangok kivételével az összes többi kb. egyenértékű. Gyakorisági adatokra az arcus sinus transzformációt is szokták alkalmazni. 15

16 A transzformációk statisztikai modell hiányában is hasznosak lehetnek. Segíthetnek az adatok jobb megismerésében és ábrázolásában, szebb grafikonok készítésében, stb. Példa a transzformációs lehetőségekre az összefüggés linearizálásában: eredeti összefüggés négyzetgyök Y 4-ik gyök Y logaritmus Y Megjegyzések: A transzformációkat nemcsak az összefüggés linearizálására, hanem szórás-kiegyenlítésre és az eloszlások szimmetrizálására is szokták használni. (Persze előfordulhat, hogy az a transzformáció, amely linearizálja az összefüggést, elrontja a szórások egyenlőségét, stb.) A transzformáció megválasztásánál fontos szempont az interpretálhatóság. A transzformáció útján történő linearizálás nem az egyetlen lehetőség a nemlineáris összefüggések kezelésére. Léteznek eljárások lineárissá nem transzformálható ( intrinsically nonlinear ) modellek illesztésére is.

17 Többszörös (multiple) regresszió Gyakran indokolt a függő változót egyszerre több magyarázó változóval is (X 1, X,..., X r ) összefüggésbe hozni. A teljesen általános modellben azt tételezzük fel, hogy az Y kifejezhető, mint az X-ek valamely függvénye plusz egy véletlen faktor (=additív hiba!): Y = f (X 1, X, X 3,..., X r ) + ε. Többszörös lineáris regresszióról akkor beszélünk, ha a függvény lineáris: Y = β + β 1 X 1 + β X + β 3 X β r X r + ε. megfigyelt számított hiba Hogy a borjak 3 napos súlyára pontosabb előrejelzést kapjunk, ésszerűnek tűnhet további magyarázó változóként az első 6 napi súlygyarapodást is bevonni. Az így kibővített modell WEIGHT3 = f (SZÜLETÉSI_SÚLY, SÚLYGYARAPODÁS_6) + ε, vagy ha a lineáris modellt választjuk WEIGHT3 = β + β 1 SZÜLETÉSI_SÚLY + β SÚLYGYARAPODÁS_6 + ε. A paraméterek becslését itt is a legkisebb négyzetek módszerével szokás végezni. A becsült paramétereket szokásosan b, b 1,..., b r jelöli, azaz a becsült regressziós egyenlet alakja Y = b + b 1 X 1 + b X + b 3 X b r X r + e, megfigyelt számított reziduum ahol a reziduum (=maradéktag) a véletlen faktor (ε ) becslésének tekinthető. 17

18 A lineáris függvény grafikonja (a valódié is és a becsülté is, de az ε vagy e tagoktól eltekintve) egy r-dimenziós sík (= hipersík ) az (r+1)-dimenziós térben. A megfigyelt Y értékek e hipersík körül helyezkednek el. A következő ábra két magyarázó változó (X 1 és X ) esetén szemlélteti a fentieket, amikor a regressziós felület egy közönséges kétdimenziós sík a háromdimenziós térben. Ezen az ábrán a becsült regressziós síkot ábrázoltuk. A kék pontok a megfigyelt adatoknak felelnek meg, a kék vonalak pedig a megfigyelt és a számított (=a felületen lévő) értékek eltérésének, azaz a reziduumoknak. A grafikonról azt az összefüggést olvashatjuk le, hogy ha X 1 nő, akkor a számított Y csökken, azaz az Y az X 1 -nek csökkenő függvénye. Ez azt is jelenti, hogy a becsült b 1 regressziós együttható negatív (számszerű értéke a sík meredeksége az X 1 irányában a grafikonról leolvasva körülbelül.5). Hasonló a helyzet X -vel is (a grafikonról leolvasva b értéke is körülbelül.5). A b regressziós együttható (amelyet konstans tag -nak is neveznek) jelentése: az Y számított értéke az X 1 = X = pontban (értéke a grafikonról leolvasva körülbelül 14). 18

19 Példa (borjak növekedése) Ha a születési súly mellé az első 6 napi súlygyarapodást is bevonjuk a regressziós modellbe, azt kapjuk, hogy a 3 napos súly gyakorlatilag nem függ ettől a változótól, azaz az előrejelzés nem válik pontosabbá. Ezt mutatja a becsült regressziós függvény grafikonja is. 19 (Megjegyezzük, hogy a grafikonok sok magyarázó változó esetén kevésbé szemléletesek.)

20 A hipotézisvizsgálatok lényegében ugyanazok itt is, mint egy magyarázó változó esetén. t-próbák az Y egy-egy magyarázó változótól való függésének tesztelésére: H i : β i= ahol i=1,,..., r (β i= azt jelenti, hogy az Y nem függ X i-től a modellben) próba-statisztika: b i / SE ( b i ) ahol SE ( b i ) -t az adatokból becsüljük null-eloszlás: Student-t eloszlás ( n r 1 ) szabadsági fokkal F-próba az Y összes X-ektől való (együttes) függésének tesztelése H együttes : minden β i = (ez azt jelenti, hogy az Y a modellbeli egyik X i -től sem függ) Az F-próba itt is az Y szórásának (tkp. eltérés-négyzetösszegének) felbontásán alapul Az Y teljes szórása = Az Y-nak a magyarázó változóktól való függéséből eredő szórása + Az Y egyéb hatások miatti szórása ("véletlen hiba") Teljes SSQ = Regressziós (modell, magyarázott) SSQ + Hiba (reziduális) SSQ próba-statisztika: a Regressziós SSQ / r osztva a Hiba SSQ / ( n r 1 ) -gyel null-eloszlás: F-eloszlás ( r és n r 1 ) szabadsági fokokkal. Konfidencia-intervallumokat is a szokásos módon adhatunk a β i regressziós együtthatókra: b i t krit SE ( b i )... b i + t krit SE ( b i ), ahol t krit az (n r 1) szabadsági fokú t-eloszlás megfelelő kritikus értéke, SE(b i)-t pedig az adatokból becsüljük. Konfidencia-sávok is hasonlóan kaphatók a valódi regressziós felületre és az egyedi pontokra is (ezeket már nem szokták kézzel számolni). A szükséges feltételek is a szokásosak (a tesztekhez is): független, normális eloszlású ε.

21 Többszörös és parciális korreláció A többszörös korreláció a függő változó és több magyarázó változó összessége között mért korreláció. Definíciója R ( Y, {X 1, X,..., X r }) = R ( Y, Y (becsült) ), ahol Y (becsült) a többszörös lineáris regresszióval Y-ra nyert becslés. Jegyezzük meg, hogy Y (becsült) az X -eknek az a speciális lineáris kombinációja, amelynek a megfigyelt Y változóval a legnagyobb a korrelációja. Általában a többszörös korreláció egy valószínűségi változó és valószínűségi változók egy halmaza között hasonlóképpen definiálható. Ennek négyzete (R ) az úgynevezett determinációs együttható, amely azt mutatja meg, hogy a magyarázó változók a függő változó igadozásának hány százalékát magyarázzák. Az Y 1 és Y változók közötti parciális korreláció a köztük levő korreláció, miután valószínűségi változók egy X 1, X,, X r halmazának a korrelációjukra vonatkozó (lineáris) hatását kiküszöböltük. Definíciója R ( Y 1, Y X 1, X,..., X r ) = R ( Y 1 - Y 1 (becsült), Y - Y (becsült) ) (becsült) (becsült) ahol Y 1 és Y az Y 1 és Y változó többszörös lineáris regresszióból származó becslése az X 1, X,, X r magyarázó változók mellett. Más szóval, a parciális korreláció Y 1 és Y között a köztük lévő reziduális korreláció, miután néhány egyéb változó hatását többszörös lineáris regresszióval kiküszöböltük. 1

22 Polinomiális regresszió Az egyszerű lineáris regresszió úgy is általánosítható, hogy a modell a magyarázó változó magasabb hatványait is tartalmazza. A polinomiális modell szoros kapcsolatban áll a többszörös lineáris regressziós modellel, de itt r különböző magyarázó változó helyett ugyanannak a magyarázó változónak r egymást követő hatványa szerepel a regresszióban. Valójában X különböző hatványait különálló magyarázó változóknak tekintjük: Y = β + β 1 X + β X + β 3 X β r X r + ε A polinomiális regressziót tipikusan olyankor alkalmazzuk, amikor a várt görbének minimuma vagy maximuma van. A fokszám legyen a lehető legalacsonyabb! Harmadfokúnál magasabb fokú polinomokat ritkán használunk, mert a paraméterek értelmezése csaknem lehetetlen (az értelmezhetetlen modelleknek nincs gyakorlati értékük, még akkor sem, ha jól illeszkednek). Ha a fokszám megközelíti a megfigyelések számát, a szignifikancia-teszt problematikussá vagy lehetetlenné válik ( overfitting ). Ha van egy, az adatainkra esetleg kevésbé jól illeszkedő modellünk, amely jobban értelmezhető, mint a polinomiális, használjuk inkább azt! Itt nem vizsgálunk minden együtthatót, csak egy általános ellenőrzés történik F-próbával, valamint a legnagyobb fokú tag együtthatójának tesztelése (H: β r = ) annak az eldöntésére, hogy a polinom fokszáma helyesen lett-e megválasztva.

23 3 Multikollinearitás (vagy egyszerűen kollinearitás ) Multikollinearitásról akkor beszélünk, ha a magyarázó változók nem függetlenek egymástól, hanem erősen korreláltak. Ez akkor is előfordulhat, ha a páronkénti korrelációk kicsik ezért a többszörös korrelációkat kell vizsgálnunk. Ez kizárólag a magyarázó változók tulajdonsága semmi köze a függő változóhoz! Kollinearitás esetén - az egyes magyarázó változók hatását a függő változóra nem lehet szétválasztani, - a magyarázó változók átvehetik egymás szerepét a regressziós egyenletben, - következésképp a regressziós együtthatók becslésekor növekszik a bizonytalanság: magas SE értékek jelentkeznek, az együtthatók nem-szignifikánssá válhatnak, - sőt a számítási folyamat lefagyhat. Szokásos mérőszámok az érintett változók meghatározására - négyzetes többszörös korreláció az i-ik magyarázó változó és a többi magyarázó változó között: R i (1-hez közeli érték kollinearitást jelez fontoljuk meg a változó kihagyását!), - tolerancia: 1 R i (-hoz közeli érték kollinearitást jelez) - VIF (variancia infláció faktor): 1/(1-R i ) (nagy értékek { >1? } kollinearitást jeleznek)

24 Példák a multikollinearitásra Tegyük fel, hogy meg akarjuk jósolni a borjak 3 napos testsúlyát a születési súly és a 6 napos korban mért súly alapján. A születési súly és a 6 napos súly közti szórásdiagram nagy korrelációt mutat, ezért ezek használata kollinearitási problémákat okozhat. A természetes megoldás a 6 nap alatti súlygyarapodás használata a 6 napos súly helyett. A második szórásdiagramon látható, hogy a 6 napos súlygyarapodás és a születési súly gyakorlatilag korrelálatlanok day weight (kg) 3 6-day weight gain (kg) 4 Birth weight (kg) Birth weight (kg) A kollinearitás fenti mértékei ebben az esetben: R =.97, tolerancia=.78, VIF= R =.81, tolerancia=.9919, VIF= 1.8

25 A kollinearitás tipikusan előfordul a polinomiális regresszióban is, ahol a magyarázó változók ugyanannak a változónak a hatványai, pl. x, x, x 3 stb., ezért erősen korreláltak lehetnek. Ilyen esetekben segít a centrálás. Például x és x helyett használható x és ( x - x ). Hasonló kérdéseket az ortogonális polinomok elmélete tárgyal. 5 4 x = x x = ( x 1 - x 1 ) x 1 1 x A kollinearitás mértékei: R =.9583, tolerancia =.417, VIF = 3.98 R =, tolerancia = 1, VIF = 1.

26 Logit és probit modellek Egyes vizsgálatokban a célváltozó bináris, azaz lehetséges értéke van, mint például túlélés vagy halál, siker vagy kudarc, stb. Ezekben az esetekben csaknem természetes feltételezni, hogy a magyarázó változók az eredmény bekövetkezési valószínűségében játszanak szerepet, ezért a bekövetkezés valószínűségét tekinthetjük függő változónak. Folytonos magyarázó változók esetén, amelyek és + között értelmezettek, a legegyszerűbb modell, a többszörös lineáris regresszió alkalmazhatatlan, mert a becsült értékek nem feltétlenül fognak és 1 közé esni. A logit modell alapgondolata a valószínűség logit értékének használata függő változóként. A logit transzformáció a és 1 közötti intervallumot képezi le és + közé. Képlete logit (Y ) = ln ( Y / (1 Y ) ) lásd a grafikont Így a regressziós egyenlet logit (Y ) = β + β 1 X 1 + ε egyszerű regresszió (1 magyarázó változó) esetén vagy logit (Y ) = β + β 1 X 1 + β X β r X r + ε többszörös regresszió (több magyarázó változó) esetén logit probab.,5 1 6

27 7 A logit transzformáció inverzét használva 1 probab. invlogit (U) = exp(u) / (1 + exp(u) ) felírhatjuk a regressziós egyenletet közvetlenül a valószínűséget használva függő változóként (természetesen ebben a formában a regresszió nem lesz lineáris). exp( β + β1x1 + β X β r X r ) Y = 1+ exp( β + β X + β X β X 1 1 r r + ε ) Megjegyezzük, hogy az egyenletnek ez a formája másfajta véletlenszerűséget feltételez egy additív hibatagot Y-ban mint az előző, amelynél logit (Y) tartalmazott egy additív hibatagot. A grafikonon látható, hogy X azonos mértékű megváltozása Y különböző mértékű változását eredményezheti X értékétől függően. A szélek felé haladva a függőség egyre gyengül. Az általános logisztikus regresszió bármilyen függő változóval használható, nem csak valószínűséggel. A függő változó minimuma és maximuma paraméterként megadható ebben a modellben. A regressziós egyenlet a következő: Y = MIN + ( MAX exp( β + β1x1 + β X βr X r ) MIN) + ε 1+ exp( β + β X + β X β X ) 1 logit ,5 r r

28 8 Az általános logisztikus regresszió főbb alkalmazási területei a a) növekedési görbék, b) dózis-válasz összefüggések, és a c) bioassay típusú vizsgálatok. A probit egy másik transzformáció, mely a logit transzformációhoz hasonlóan a és 1 közötti intervallumból képez a és + közti tartományba. Ez a standard normális eloszlás eloszlásfüggvényének (Φ) inverz függvényét használja a transzformációhoz. probit (Y ) = Φ -1 ( Y ) lásd a grafikont Jegyezzük meg, hogy sem Φ, sem Φ -1 nem írható fel analitikus alakban, azaz nincsen képletük, értékeik csak numerikus módszerekkel számíthatók ki. A probit modell a valószínűség probit értékét használja függő változóként. Ez annak a feltételezésnek felel meg, hogy a bináris kimeneti változó értékét egy, a háttérben lévő normális eloszlású valószínűségi változó határozza meg. A grafikon hasonló a logit-éhoz, sőt a regressziós eredmények -4 is többé-kevésbé azonosak a legtöbb esetben probit probab.,5 1

29 Regressziós diagnosztika Regressziós diagnosztikán a regressziós eredmények vizsgálatát értjük. Ide tartozik - az illesztett modell jóságának vizsgálata, - a regressziószámítás alkalmazhatóságához szükséges feltételek meglétének vizsgálata, - olyan adatpontok keresése, amelyek eltorzíthatják a regressziós eredményeket. A regressziós diagnosztika nagyrészt a reziduumok elemzéséből áll. Reziduumnak a megfigyelt értéknek a számítottól való eltérését nevezzük. Hogy lássuk, mi a reziduumok szemléletes jelentése, készítsünk ugyanazokról az adatokról két ábrát! Regressziós ábra Reziduumok ábrája y 5 1 x resid. x 5 1 zero residual = perfect fit

30 Ha a modell megfelelő, akkor a reziduumok olyanok, mintha csupán a regressziós egyenes (vagy felület) körüli véletlen eltérések lennének. Ha nem, próbáljunk egy jobb modellt találni (válasszunk másik regressziós függvényt, vagy használjunk további magyarázó változókat)! Regressziós ábra Reziduumok ábrája 3 8 y 6 4 x y x resid. 5 1 resid. horseshoe -pattern Residuals look random here! Residuals show rather systematic pattern here check the model! 5 1 x x

31 Ha a reziduumok nagyságrendje függ X nagyságától, az azt jelzi, hogy a hiba (ε) szórása nem állandó. Például a következő ábrán növekvő X esetén a reziduumok is egyre nagyobbak y 15 resid x x (Többszörös regresszió esetén, ha ugyanerre kíváncsi valaki, a reziduumokat a számított Y értékek függvényében érdemes ábrázolni. lásd ) Ha a hiba szórása nem állandó, akkor próbálkozhatunk transzformációkkal, vagy használhatjuk a súlyozott legkisebb négyzetek módszerét (WLS) a becslésre (a súlyokat a varianciával fordítottan arányosan kell megválasztani). Többszörös regresszió esetén, ha a reziduumokat az egyik x i magyarázó változó függvényében ábrázolva patkó alakú mintázatot kapunk, próbáljuk meg az x i kvadratikus tagot bevenni a modellbe (mint magyarázó változót). Ha a reziduumok két magyarázó változó (x i és x k ) szorzatával korrelációt mutatnak, megpróbálhatjuk a szorzatot is bevenni a modellbe resid. predicted

32 3 A reziduumok normalitásának tesztelése A regressziószámítás esetén alkalmazott klasszikus statisztikai tesztek (mint például a t- és F- próbák) alkalmazhatóságának szükséges feltétele a véletlen tag (=a hibatag, ε) normalitása. Ezt a feltételt a reziduumokra alkalmazott közönséges normalitás-vizsgálattal (pl. khi-négyzet próba) lehet ellenőrizni. NB. Ennek a próbának csak akkor van értelme, ha a reziduumok véletlenszerűnek tűnnek, azaz nem mutatnak szisztematikus mintázatot. Outlierek és torzító pontok Egy megfigyelést akkor nevezünk outliernek, ha az adott X érték mellett Y értéke kiugró, és így a reziduum értéke különösen nagy (összehasonlítva a többi adatpontéval). Ezen az ábrán a pirossal jelölt pont tűnik outliernek. (Megjegyezzük, hogy az Y=1.36 érték csak a hozzátartozó X=5.77 értékkel kapcsolatban kiugró). A fekete egyenes az egész adathalmazra illesztett regressziós egyenes, a zöld pedig az outlier nélküli adatokra illesztett. Ebben a példában az outlier nem nagyon befolyásolja a becsült regressziós együtthatókat y 5 1 x

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

A lineáris regressziót befolyásoló esetek diagnosztikája

A lineáris regressziót befolyásoló esetek diagnosztikája A lineáris regressziót befolyásoló esetek diagnosztikája Dr. Zrínyi Miklós PhD, a Debreceni Egyetem Egészségügyi Karának vendégtanára E-mail: zrinyim@yahoo.com Dr. Katona Éva PhD, az I. sz. Belgyógyászati

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Radioaktív anyag felezési idejének mérése

Radioaktív anyag felezési idejének mérése A pályázótársam által ismertetett mérési módszer alkalmazásához Labview szoftverrel készítettem egy mérőműszert, ami lehetőséget nyújt radioaktív anyag felezési idejének meghatározására. 1. ábra: Felhasználói

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Kísérlettervezési alapfogalmak

Kísérlettervezési alapfogalmak Kísérlettervezési alapfogalmak Tényező, faktor factor független változó, ható tényező (kezelés, gyógyszer, hőmérséklet, stb.) aminek hatását a kísérletben vizsgálni vagy összehasonlítani kívánjuk. Megfigyelési

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben