Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények"

Átírás

1 Korreláció és Regresszió (folytatás) 12. elıadás ( lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független változós regressziós felületek Lineáris eset, illesztés, többszörös korreláció és determináció Értelmezési kérdések

2 3) Logisztikus (autokatalitikus) függvény y = A/(1 + Be -cx ), (A,B,c pozitívak) x=0-nál y=a/(1+b), majd a görbe S-alakban emelkedve közeledik az A telítıdési szinthez Az A/2 szintig fokozódó ütemben nı, innen kezdve csökkenı ütemben nı (a váltás-pont neve: inflexiós pont) A kapcsolat differencia-alakja: y/y = ca(a-y) x, azaz y relatív növekedési üteme arányos A és y különbségével (innen c szakmailag értelmezhetı) Ilyenek a szaporodási dinamikák a környezet korlátozott eltartó-képessége mellett (Verhulst-modell), ilyenek az organikus növekedések is

3 Több (független) változós Regresszió Egyetlen Y változó kialakításában több X változó is részt vehet. Mint említettük, megeshet, hogy eme X változók mindegyike csak gyengén korrelál az Y változóval, de együttesen jelentıs a hatásuk Bıvebben foglalkozunk a lineáris esettel és kitérünk a nemlineáris esetre is

4 Több- (független) változós LINEÁRIS regresszió A modell a sokaságban: Y = a +b 1 x 1 + b 2 x 2 + +b p x p + e mintavétel után: y i = a +b 1 x 1i + b 2 x 2i + +b p x pi + e i tömören: y i = ŷ i + e i A b k (b k ) paraméterek a parciális regressziós együtthatók, az e (e i ) tag az eltérés (hiba), a regressziós felület p=2 esetén 3- dimenzióban ábrázolható sík, p>2 esetén hipersík A paraméterek becslése az eltérés-tagok négyzetösszegének minimálásával történik

5 Többszörös lineáris regresszió (folytatás) A becslések után SS: SS össz {=SS y } = SS regr {=SS ŷ } + SS elt {= e i2 } df: n-1 = p + n-p-1 Majd F = MS regr / MS elt., a szabadságfokok p és n-p-1 A (korrigálatlan) determinációs együttható (regr.illeszkedés): R 2 = SS regr / SS össz = 1 SS elt. / SS össz statisztikai próbája megegyezik az F statisztika szignifikancia vizsgálatával A további taglalás elıtt egy számpéldát nézzünk

6 Többszörös lineáris regresszió Extrém fiktív számpélda (n=7, p=2) y x1 x2 Elıször nézzük x1 és x2 hatását külön-külön r(y,x1) = 0,3072 r(y,x2) = -0, egyik sem szignifikáns! De ne adjuk fel!: Nézzük az együttes hatást (excel, adatelemzés,leíró statisztika, regresszió) df SS MS F P-érték Regresszió 2 20,10 10,05 11,11 0, Maradék 4 3,62 0, s 1,99 3,98 3,83 Összesen 6 23, b 2,64 2,62 R 2 = 20,10/23,72 = 0,847 = 85% (R = 0,92) A regressziós sík egyenlete: ŷ = -10,1 + 2,64x 1 + 2,62x 2

7 Többszörös lineáris regresszió A számpélda megbeszélése(1) A két X változó együttes hatása jelentıs (R 2 =84,7%, P=2,3%) következésképpen mindkét ható változónak van szerepe, amint az alábbi séma mutatja: A veszteség X1 Y r 2 = 0, = 9,4% X1-et elhagyva 84,7%-2,3% = 82,4% X2 Y r 2 = 0, = 2,3% X2-ıt elhagyva 84,7%-9,4% = 75,3% {X1,X2} Y R 2 = 84,7% mindkét veszteség jelentıs!

8 Többszörös lineáris regresszió A számpélda megbeszélése(2) A parciális korrelációs együtthatók ugyanúgy jelzik X1 és X2 hatását, mint az elıbbi eszmefuttatás. Számításukhoz szükséges X1 és X2 korrelációja is (r(x1,x2)= ) A korrelációk mátrixa {r ij } /Excel, Adatelemzés, korreláció analízis/: Y X1 X2 Y 1 0,3072-0,1532 X1 0, ,9851 X2-0,1532-0, A parciális korrelációs együtthatók r yx1.x2 = [ 0,307- (-0,153 (-0,985)]/ {(1-0,153 2 )(1-0,985 2 )} = 0,95 r yx2.x1 = [-0,153- (-0,307 (-0,985)]/ {(1-0,307 2 )(1-0,985 2 )} = 0,95 (Statisztikai próbáikat ld. fentebb, mindkettı szignifikáns)

9 Többszörös lineáris regresszió: Kiegészítések Természetes a kérdés: az egyes X változók milyen mértékben járulnak hozzá az R 2 determinációhoz, illetve melyek elhanyagolhatók? 1) Ha az X változók korrelálatlanok,azaz r(x j,x k )=0 ha j k, akkor R 2 felbontható az egyes X k változók hatására: R 2 = r 2 y,x1 + r 2 y,x2 + + r 2 y,xp (p az X változók száma), ez az eset azonban gyakorlatilag csak akkor fordul elı, ha az X k változók nem véletlenek, értékeiket a kutató célszerően beállíthatja

10 Többszörös lineáris regresszió: Kiegészítések (folytatás) 2) Az X ható-változók általában összefonódottak (egymással korrelálnak), ezért együttes hatásuk szétbontása az egyes változókra nemigen lehetséges: az egyedi r 2 determinációk összege lehet kisebb is, nagyobb is R 2 -nél Az egyes X változók hozzájárulásáról némi tájékoztatást kaphatunk a standardizált regressziós együtthatók (b k ) révén, illetve R 2 alábbi algebrai felbontása alapján R 2 = b 1 r y,x1 + b 2 r y,x2 + + b p r y,xp ahol b k = b k s xk /s y a standardizált regressziós együttható (k=1 p) Nézzük mindezt a számpéldánkban:

11 Többszörös lineáris regresszió: Kiegészítések (folytatás) Visszatérve extrém számpéldánkra, illusztráljuk az elıbb mondottakat Y X1 X2 szórás (s) 1,988 3,976 3,830 regr.együttható (b) 2,636 2,617 r y,x (r) 0,307-0,153 (négyzetük összeg 11,8%<84,7%=R 2 ) ================================ stand.regr.eh. (b ) 5,273 5,041 b *r 1,620-0,772 (Összegük 0,85 =R 2 ) A standardizált regressziós együtthatókat így számoltuk: b 1 = b 1 *s x1,y /s y = 2,636*3,976/1,988 = 5,273 b 2 = b 2 *s x2,y /s y = 2,617*3,830/1,988 = 5,041

12 KÖSZÖNÖM TÜRELMÜKET

13 24. lecke Az R 2 felbontásának értelmezése A lényeges változók kiválogatása Nem lineáris több X-változós regressziós függvények

14 Többszörös lineáris regresszió: Kiegészítések (2.folytatása) Értelmezzük az extrém számpélda utóbbi mutatóit A standardizált regressziós együtthatók (b ) az X változók közvetlen hatásait jelzik arányukban Esetünkben b 1 és b 2 közel azonos, a két X változó közvetlen hatása Y-ra azonos mértékő (amint azt a korábban felírt parciális korrelációs együtthatók is jelezték) A b r szorzat-mutatók a közvetlen hatásokon kívül beszélnek a közvetett hatásokról is, ami az X változók közötti kapcsolatok áttételes eredménye Esetünkben e két mutató: X1-re 1,620 X2-re -0,772 ami úgy értelmezhetı, hogy X1 (közvetlen+közvetett) hatása Y-ra kétszer akkora és ellentétes irányú, mint X2 hatása

15 Többszörös lineáris regresszió: Kiegészítések (folytatás) 3) Az X ható-változók szelekciója Ha sok X változónk van, a regresszió szempontjából ezek között lehetnek jelentéktelenek és olyan jelentısek, amelyek az összefonódottság miatt másokkal helyettesíthetık Az X változók közötti válogatásra több eljárás ismert, ezek elméleti hátterére itt nem térünk ki, az SPSS programcsomag ajánlható Az ajánlott eljárások listája (lényegüket tanulmányozzuk a szakirodalomban): - minden lehetséges regresszió - backward módszer - forward módszer - stepwise módszer - stagewise módszer

16 Több X-változós NEMLINEÁRIS regresszió (I) Két gyakori Linearizálható kapcsolat 1) Többváltozós hatvány- (Cobb-Douglas-)függvény ŷ = A*x 1 b1 x 2 b2...x p bp, logaritmizálva log ŷ = log A + b 1 log x 1 + b 2 log x b p log x p amely a változók logaritmusai között már lineáris 2) Többváltozós exponenciális függvény ŷ = A*B 1 x1 B 2 x2...b p xp, logaritmizálva log ŷ = log A + (logb 1 )x 1 + (logb 2 )x (logb p )x p amely log y és az x-ek között már lineáris

17 (II) A kvadratikus felület (Nem linearizálható) Gyakran a sík (hipersík) nem kielégítı, a modell bıvítésre szorul, például négyzetes és szorzatos tagokat csatolhatunk hozzá Például a kétváltozós ŷ = a+b 1 x 1 +b 2 x 2 modell bıvítése: ŷ = a+b 1 x 1 +b 2 x 2 + b 11 x 12 +b 22 x 22 +b 12 x 1 x 2 Ebben a másodrendő felületben a b 11 és a b 22 paraméterek a felület görbüléseit mérik, a b 12 együttható pedig X1 és X2 kölcsönhatásának eredménye, a felület győrıdése A modell a változóiban nem lineáris de a paramétereiben igen, ezért illesztése megoldható az Excel Regressziójával

18 Másodrendő regressziós felület (illusztráció) z = x ^ x - 2 y ^ y

19 A kvadratikus felületnek maximuma vagy minimuma van ha a D = 4b 11 b 22 - b 12 2 érték pozitív, éspedig maximumot találunk, ha b 11 és b 22 negatív, minimumot, ha ezek pozitívak A felület max/min pontját az x 10 = (b 2 b 12 2b 1 b 22 )/D, x 20 = (b 1 b 12 2b 2 b 11 )/D értékpárnál találjuk Ha D negatív, a másodrendő felület nyereg alakú

20 Számpélda kétváltozós kvadratikus hatásfelületre Adatok (y mért, x1 és x2 mért vagy beállított, a többi számított) y x1 x2 I x1 2 x2 2 x1 x2 Etessük be e táblázatot 10,8 0,5 0,5 I 0,25 0,25 0,25 az excelbe (Adatelemzés, 10,7 0,5 1 I 0,25 1 0,5 Regresszió) 9,5 0,5 2 I 0, Mindent megkapunk, 11,3 1 0,5 I 1 0,25 0,5 ami kell (ld. a következı 11,5 1 1 I dia) 11,5 1 2 I ,5 2 0,5 I 4 0,25 1 9,7 2 1 I ,1 2 2 I 4 4 4

21 Kvadratikus felület (a példa folytatása) Varianciaanalízis SS df MS F P-érték Regresszió 8, ,653 23,3 0,013 szign. Maradék 0, , Összesen 8, Determinációs együttható: R 2 =8,267/8,48=97,5% Együtthatók becslése P-érték 95%-os konfidencia határok a 8,46 0,002 5,95 10,96 szign. b 1 5,0 0,017 1,71 8,29 szign. b 2 0,6 0,60-2,69 3,89 nem szign. b 11-2,8 0,005-4,02-1,58 szign. b 22-0,76 0,14-1,98 0,47 nem szign. b 12 1,2 0,013 0,47 1,93 szign.

22 Kvadratikus felület (a példa megbeszélése) Az illesztett felület y variabilitásának szignifikáns hányadát magyarázza (P=0,013; R 2 =97,5%) Ez azonban nem jelenti azt, hogy nincs még jobban illeszkedı regressziós felület. A becsült regressziós felület egyenlete: y = 8,46 + 5,0x 1 2,8x ,6x 2-0,76x 22 +1,2 x 1 x 2 ábrája hasonló a néhány diával korábbi felülethez A felület maximum pontjának becslése: D = (4-2,8-0,76)-1,2 2 = 7,07, pozitív, tehát van szélsıérték x 10 = (b 2 b 12 2b 1 b 22 )/D =(0,6*1,2-2*5,0*(-0,76))/7,07 =1,17 x 20 = (b 1 b 12 2b 2 b 11 )/D =(5,0*1,2-2*0,6*(-2,8) )/7,07 =1,32 ŷ max =11,8

23 a példa megbeszélésének folytatása A b 2 = 0,6 és a b 22 = -0,76 regressziós együtthatók nem szignifikánsak (ez utóbbi azt jelenti, hogy az x 2 változónak nincs depresszív hatása), a lényeg azonban az, hogy ez a két tag talán kihagyható a regressziós felület formulájából: Azaz megpróbálkozhatunk az y = a + b 1 x 1 + b 11 x 12 + b 12 x 1 x 2 felület illesztésével Gyakorlásként végezzük el az illesztést és ellenırízzük az illeszkedés csökkenésének szignifikanciáját a fentebb ismertetett módon. Ha ez nem szignifikáns, maradhatunk a felírt redukált egyenletnél, különben tegyük vissza a b 22 x 2 2 tagot (mert ennek P-értéke 0,14,kisebb b 2 P-értékénél)

24 KÖSZÖNÖM TÜRELMÜKET

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az 1 6. LECKE: REGRESSZIÓ -- Elıadás 6.1. A regresszió feladata és módszerei [C4] A módszer lényege, hogy arányskálán mért magyarázó változók (x 1,,x k ) segítségével közelítjük a számunkra érdekes, ugyancsak

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN Mika János 1, Csabai Edina 1, Molnár Zsófia 2, Nagy Zoltán 3, Pajtókné Tari Ilona 1, Rázsi András 1,2, Tóth-Tarjányi Zsuzsanna 3, Wantuchné Dobi Ildikó

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX SZIGETI Cecília Széchenyi István Egyetem, Kautz Gyula Gazdaságtudományi Kar, 906 Győr, Egyetem tér 1. e-mail: szigetic@sze.hu

Részletesebben

Hunyadi János Általános Iskola

Hunyadi János Általános Iskola 4 Hunyadi János Általános Iskola Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon. osztály szövegértés 1 Standardizált átlagos képességek szövegértésből Az Önök iskolájának átlagos

Részletesebben

Kijelző...P.39 Kezdeti Lépések Be-és Kikapcsolás...P.40 Kijelző Kontrasztjának Beállítása...P.40 MÓD Kiválasztása... P.40-41 Alkalmazások Funkció

Kijelző...P.39 Kezdeti Lépések Be-és Kikapcsolás...P.40 Kijelző Kontrasztjának Beállítása...P.40 MÓD Kiválasztása... P.40-41 Alkalmazások Funkció Kijelző...P.39 Kezdeti Lépések Be-és Kikapcsolás...P.40 Kijelző Kontrasztjának Beállítása...P.40 MÓD Kiválasztása... P.40-41 Alkalmazások Funkció Menüje... P.41-42 Számológép Beállítása Menü... P.42-44

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus Két kapcsolatának vizsgálata Minden összefügg mindennel!? Komputerstatisztika kurzus Barczy Mátyás Informatikai Kar Debreceni Egyetem 1 A témái 1 2 3 4 5 6 2 A kapcsolat természete A statisztikai k (adatbázisok

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Dr. Kanyó Ferenc, Bauer Márton. A tűzoltók fizikai állapotfelmérések új alapjai

Dr. Kanyó Ferenc, Bauer Márton. A tűzoltók fizikai állapotfelmérések új alapjai Dr. Kanyó Ferenc, Bauer Márton A tűzoltók fizikai állapotfelmérések új alapjai A tűzoltók fizikai állapotfelmérésének helyzetét napjainkban az teszi kivételesen aktuálissá, hogy jelenleg is folyik az előkészítése

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6.

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA BGF PSzK Módszertani Intézeti Tanszéki Osztály GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet A PIAC VIZSGÁLATA A jegyzetet a BGF Módszertani Intézeti Tanszékének oktatói készítették 001-ben, és frissítették

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Fáy András Református Általános Iskola és Alapfokú Művészeti Iskola 2217 Gomba, Iskola utca 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dunabogdányi Általános Iskola és Alapfokú Művészeti Iskola 2023 Dunabogdány, Hegyalja utca 9-11. Létszámadatok A telephely létszámadatai az általános

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Grassalkovich Antal Német Nemzetiségi és Kétnyelvű Általános Iskola 2220 Vecsés, Fő utca 90-92. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet 2040 Budaörs, Ifjúság u. 6. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2014 6. évfolyam :: 8 évfolyamos gimnázium Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Vörösmarty Mihály Általános Iskola, Gimnázium és Alapfokú Művészetoktatási Intézmény 2475 Kápolnásnyék, Gárdonyi u. 29. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. OM azonosító: 035165 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Tátra Téri Általános Iskola 1204 Budapest, Tátra tér 1. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

FIT-jelentés :: 2011. Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. OM azonosító: 035007 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. OM azonosító: 035007 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Zugligeti Általános Iskola 1121 Budapest, Zugligeti út. 113. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Bethlen Gábor Általános Iskola és Újreál Gimnázium Keveháza utcai telephely 1119 Budapest, Keveháza utca 2. Létszámadatok A telephely létszámadatai

Részletesebben

A parciális korrelációs együttható értelmezési problémái a többdimenziós normalitás feltételének sérülése esetén

A parciális korrelációs együttható értelmezési problémái a többdimenziós normalitás feltételének sérülése esetén A parciális korrelációs együttható értelmezési problémái a többdimenziós normalitás feltételének sérülése esetén egyetemi tanár, az MTA doktora, Károli Gáspár Református Egyetem Pszichológiai Intézete,

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Fazekas Utcai Általános Iskola és Alapfokú Mûvészeti Iskola 3525 Miskolc, Fazekas utca 6. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés

FIT-jelentés :: 2010. Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. OM azonosító: 200909 Telephely kódja: 011. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Pallavicini Sándor Iskola 6762 Sándorfalva, Alkotmány krt. 15-17. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. OM azonosító: 035200 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Rózsakerti Általános Iskola 1223 Budapest, Rákóczi u. 16. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005

FIT-jelentés :: 2011. Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: 027246 Telephely kódja: 005 FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2010. Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: 033392 Telephely kódja: 003. Telephelyi jelentés

FIT-jelentés :: 2010. Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: 033392 Telephely kódja: 003. Telephelyi jelentés FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve

Részletesebben

A Páratlanklub 2010 Áprilisi Kérdıíves Felmérésének Kiértékelése

A Páratlanklub 2010 Áprilisi Kérdıíves Felmérésének Kiértékelése A Páratlanklub 2010 Áprilisi Kérdıíves Felmérésének Kiértékelése Készítették: Galli Tamás Nater Ulrike Dátum: 2011. 04. 01. 1 Tartalomjegyzék TARTALOMJEGYZÉK 2 BEVEZETİ 3 PÁRATLANKLUB KÉRDİÍV 4 Elıadás

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2010. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2010 6. évfolyam :: Általános iskola """Magyar-kút"" ÁMK Etyek, Német Nemzetiségi Általános Iskolája, Nemzetiségi Alapfokú Művészetoktatási Intézménye, Könyvtár-közművelődés" 2091 Etyek,

Részletesebben

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001

FIT-jelentés :: 2012. Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. OM azonosító: 201629 Telephely kódja: 001 FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Szent Imre Katolikus Általános Iskola 6792 Zsombó, Móra Ferenc utca 8. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002

Telephelyi jelentés. Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. OM azonosító: 037158 Telephely kódja: 002 FIT-jelentés :: 2010 6. évfolyam :: Általános iskola Mészöly Géza Általános Iskola Tagiskola 8171 Balatonvilágos, József Attila utca 119. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2010 10. évfolyam :: Szakközépiskola Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye 6724 Szeged, Kálvária tér 7. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

FIT-jelentés :: 2011. Zimándy Ignác Általános Iskola 2045 Törökbálint, Dózsa Gy. u. 15. OM azonosító: 032456 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Zimándy Ignác Általános Iskola 2045 Törökbálint, Dózsa Gy. u. 15. OM azonosító: 032456 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Zimándy Ignác Általános Iskola 2045 Törökbálint, Dózsa Gy. u. 15. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

Együttmőködés és innováció

Együttmőködés és innováció Vállalkozói innováció a Dunántúlon Pécs, 2010. március 3. Együttmőködés és innováció Csizmadia Zoltán, PhD tudományos munkatárs MTA RKK Nyugat-magyarországi Tudományos Intéztet Az előadás felépítése 1.

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2012 10. évfolyam :: Szakközépiskola Sághy Mihály Szakképző Iskola, Középiskola és Kollégium, a Csongrádi Oktatási Központ, Gimnázium, Szakképző Iskola és Kollégium Tagintézménye 6640 Csongrád,

Részletesebben

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2011 6. évfolyam :: Általános iskola Figedy János Általános Iskola, Óvoda, Alapfokú Művészetoktatási Intézmény 3325 Noszvaj, Kossuth L. u. 12. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2011. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2011 6. évfolyam :: Általános iskola VIK Általános Iskolák Intézményegysége Széchenyi István Általános Iskola 3390 Füzesabony, Kossuth út 1-3. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola

FIT-jelentés :: 2011 Telephelyi jelentés 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola FIT-jelentés :: 2011 10. évfolyam :: Szakközépiskola Közgazdasági Szakközépiskola 4200 Hajdúszoboszló, Gönczy P. u. 17. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban a 10. évfolyamon

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás,

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

1. ábra: Az egészségi állapot szubjektív jellemzése (%) 38,9 37,5 10,6 9,7. Nagyon rossz Rossz Elfogadható Jó Nagyon jó

1. ábra: Az egészségi állapot szubjektív jellemzése (%) 38,9 37,5 10,6 9,7. Nagyon rossz Rossz Elfogadható Jó Nagyon jó Fábián Gergely: Az egészségügyi állapot jellemzői - 8 A nyíregyházi lakosok egészségi állapotának feltérképezéséhez elsőként az egészségi állapot szubjektív megítélését vizsgáltuk, mivel ennek nemzetközi

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Felhasználói tulajdonú főtési rendszerek korszerősítésének tapasztalatai az Öko Plusz Programban

Felhasználói tulajdonú főtési rendszerek korszerősítésének tapasztalatai az Öko Plusz Programban Felhasználói tulajdonú főtési rendszerek korszerősítésének tapasztalatai az Öko Plusz Programban Várt és elért megtakarítások Némethi Balázs Fıtáv Zrt. 2009. szeptember 15. 1 Elızmények A Fıtáv az Öko

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

FIT-jelentés :: 2009. Karinthy Frigyes Általános Művelődési Központ 1046 Budapest, Hajló u. 2-8. OM azonosító: 034874 Telephely kódja: 001

FIT-jelentés :: 2009. Karinthy Frigyes Általános Művelődési Központ 1046 Budapest, Hajló u. 2-8. OM azonosító: 034874 Telephely kódja: 001 FIT-jelentés :: 2009 6. évfolyam :: Általános iskola Karinthy Frigyes Általános Művelődési Központ 1046 Budapest, Hajló u. 2-8. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Hriszto Botev Német Nemzetiségi Nyelvoktató Általános Iskola 8200 Veszprém, Botev utca 2. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: 2009. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2009. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2009 8. évfolyam :: Általános iskola Budapest Főváros X. kerület Kőbányai Önkormányzat Keresztury Dezső Általános Iskola 1106 Budapest, Keresztúri út 7-9. Létszámadatok A telephely létszámadatai

Részletesebben

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001)

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001) A regressziószámítás gyakorlati kérdései A Szent István Egyetem Állatorvosi Kar Biomatematikai és Számítástechnikai Tanszék, Budapest és az Bécsi Állatorvosi Egyetem Biofizika és Biostatisztika Tanszék,

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben