Faktoranalízis az SPSS-ben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Faktoranalízis az SPSS-ben"

Átírás

1 Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz

2 Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála)

3 Faktoranalízis folyamata

4 Feltáró = új faktorok létrehozására Közös faktroelemzés (közös variancia) Ha nem ismerjük a változókat Ha nem ismerjük a varianciákat DE: gyakorlat: Bonyolult, időigényes Főkomponens elemzés (teljes variancia) Lehető legmagasabb magyarázott varianciahányad Lehető legkevesebb faktor Általában ezt használjuk Megerősítő (konformatikus) Szubjektív = modell tesztelésére, bizonyítására

5 1. Elemzés érvényessége, változók alkalmassága 2. Metrikus változók / Dummy változók 3. A változók eloszlása normális Analyze / Regression / Linear / Plots / Histogram Stb.

6 2. Feltételek vizsgálata 4. Homoszkedaszticitás Analyze / Regression / Linear / Plots / Scatterdot Stb.

7 2. Feltételek vizsgálata 5. Multikollinearitás korrelációs mátrix Analyze / Correlate/ Bivariate Stb.

8 2. Feltételek vizsgálata 6. Nagyobb minta 7. Minta elemszáma / változók száma arány = 18,27 Min. 10-szer több válaszadó, mint változó

9 3. Adatok alkalmasságának vizsgálata a) Korrelációs mátrix Erős korreláció, de nem túl erős Analyze / Dimension Reduction / Factor / Descriptives Az értékek 75%-a szignifikáns.

10 3. Adatok alkalmasságának vizsgálata b) Anti-image mátrix nem magyarázott szórásnégyzet Analyze / Dimension Reduction / Factor / Descriptives Anti-image kovariancia mátrix Anti-image korrelációs mátrix ~ korrelációs mátrixának átlóbeli értékei függnek: Mintanagyság Változók száma Korrelációk átlagos mértéke Faktorok száma

11 3. Adatok alkalmasságának vizsgálata b)anti-image mátrix Kis érték (0,09 alatt az esetek min. ¾-ében) a variancia független a többitől nincs szoros kapcsolat MSA (Measure of Sampling Adequecy) Mennyire van szoros kapcsolatban a többi változóval 0,5 alattit kizárni Itt: 0,67-0,87

12 3. Adatok alkalmasságának vizsgálata c) Bartlett teszt H 0 : nincs korreláció H 1 : van korreláció Analyze / Dimension Reduction / Factor / Descriptives

13 3. Adatok alkalmasságának vizsgálata d) Kaiser-Meyer-Olkin kritérium MSA értékek átlaga (összes változóra) Analyze / Dimension Reduction / Factor / Descriptives KMO KMO KMO KMO KMO KMO 0,9 kiváló 0,8 nagyon _ jó 0,7 megfelel ő 0,6 közepes 0,5 gyenge < 0,5 elfogadhat atlan

14 4. Faktormódszer kiválasztása Analyze / Dimension Reduction / Factor / Extraction Ha a változók száma magas (sajátérték sorrendjében magyaráz) Nem kell ismerni az eloszlást DE: standardizálni Ha az anti-image mátrix átlójában levő elemek 1-hez, az azon kívüliek pedig 0-hoz közelítenek Ha a változók száma nő: maximum-likelihood, alfa, image módszer

15 5. Faktorok számának meghatározása Egy faktor által az összes változó varianciájából magyarázott variancia 3 2. Kaiser kritérium: ha 1 alatti a sajátérték, kevesebb információt hordoz a faktor, mint 1 változó Ha változónk van 1. A priori információk alapján Minél magasabb varianciahányadot tudunk magyarázni, annál, több információ marad meg az elemzés során 3. Varianciahányad-módszer

16 3. Varianciahányad-módszer Ahány kiinduló változónk volt Output Faktorelemzés után 1-nél nagyobb sajátérték! Csökkenő sorrend Magyarázott variancia %-a (Min. 60% kell) Faktorok száma

17 5. Faktorok számának meghatározása 4. Scree plot Sajátérték ábrázolása 5-6 faktor Könyökkritérium: ahol az egyenes meredeksége megváltozik

18 5. Faktorok számának meghatározása Maximum likelihood módszer 5 6 ~ H 0 : illeszkedik H 1 : nem illeszkedik 0,1 feletti α esetén jól illeszkedik 4 faktor 5 faktor 6 faktor

19 5. Faktorok számának meghatározása Módszer Faktorok száma A priori 3 Kaiser-kritérium 4 Varianciahányad-módszer (4) 5 Scree-teszt 5-6 Maximum-likelihood 6

20 6. Faktorok rotálása = A faktorok tengelyeinek elforgatása úgy, hogy egyszerűbb és értelmezhetőbb faktormegoldásokat kapjunk. Térben is látni Ferdeszögű forgatás A faktorok korrelálnak egymással A faktorok értelmezhetősége az elsődleges Használata Derékszögű forgatás A faktorok nem korrelálnak egymással Pl. regresszióhoz vagy más előrejelző technikához használjuk

21 6. Faktorok rotálása KMO&Bartlett; Anti-image Principal Components; faktorok száma (4) Varimax Faktorok mentése: Factor Analysis / Scores

22 Output x ;σ ; n érvényesség Kezdeti érték Mindig 1 (ha Principal Comp.) Egy változó varianciájának mekkora részét magyarázza az összes faktor (faktorsúlyok négyzetösszege) Hüvelykujjszabály: min. 0,25

23 Output Faktorszám meghatározása Kezdeti értékek

24

25 7. Faktorok értelmezése, jellemzése 1. faktor 2. faktor 3. faktor 4. faktor M14_HAPY M17_HAPY M15_HAPY M18_HAPY M16_HAPY HAPY -: Fontosak a tárgyak az élet élvezéséhez M4_SUCES M12_CENTR M2_SUCES M1_SUCES M10_CENTR M11_CENTR M7_CENTR M8_CENTR M9_CENTR M6_SUCES M3_SUCES M13_CENTR M5_SUCES SUCES CENTR Mások véleményének figyelmen kívül hagyása

26 8. Faktorelemzés érvényességének ellenőrzése Ne fogadjuk el az első megoldást: o Több rotációs eljárás o Változók elhagyása (alacsony faktorsúly) Keresztérvényesség-vizsgálat A mintát 2 véletlenül kiválasztott részre osztjuk - faktorelemzés

27 Köszönöm a figyelmet!

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Klaszterelemzés az SPSS-ben

Klaszterelemzés az SPSS-ben Klaszterelemzés az SPSS-ben Petrovics Petra Doktorandusz Klaszteranalízis Olyan dimenziócsökkentő eljárás, amellyel adattömböket megfigyelési egységeket tudunk viszonylag homogén csoportokba sorolni, klasszifikálni.

Részletesebben

Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz

Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz Esettanulmány Kvantitatív elemzési módszerek (GTÜSE3915) tantárgyhoz Az SPSS statisztikai program World95.sav nevű adatbázisa a világ 109 nemzetének 26 társadalmi-gazdasági és politikai helyzetét leíró

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Typotex Kiadó. Tartalomjegyzék

Typotex Kiadó. Tartalomjegyzék Tartalomjegyzék Bevezetés... 11 A hasznos véletlen hiba... 13 I. Adatredukciós módszerek... 17 1. Fıkomponens-elemzés... 18 1.1. A fıkomponens jelentése... 25 1.2. Mikor használjunk fıkomponens-elemzést?...

Részletesebben

Főkomponens és Faktor analízis

Főkomponens és Faktor analízis Főkomponens és Faktor analízis Márkus László 2014. december 4. Márkus László Főkomponens és Faktor analízis 2014. december 4. 1 / 34 Bevezetés - Főkomponens és Faktoranalízis A főkomponens és faktor analízis

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket

Részletesebben

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel Kovács Máté PhD hallgató (komoaek.pte) Pécsi Tudományegyetem Közgazdaságtudományi

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Faktor- és fıkomponens analízis

Faktor- és fıkomponens analízis Faktor- és fıkomponens analízis Informatikai Tudományok Doktori Iskola Adatredukció Olyan statisztikai módszerek tartoznak ide, melyek lehetıvé teszik, hogy az adatmátrix méretét csökkentve kisebb költséggel

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Standardizálás, transzformációk

Standardizálás, transzformációk Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Pszicho-szociális tényezők szerepe a koraterhességi várandósok egészségképére és életmódjára

Pszicho-szociális tényezők szerepe a koraterhességi várandósok egészségképére és életmódjára Pszicho-szociális tényezők szerepe a koraterhességi várandósok egészségképére és életmódjára Dr. Bödecs Tamás Pécsi Tudomány Egyetem ETK Szombathelyi Képzési Központ Szeged, 2010.06.10. Előzmények Alacsony

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Magyar hallgatók nemzetközi környezetben - Sikerkritériumok

Magyar hallgatók nemzetközi környezetben - Sikerkritériumok Magyar hallgatók nemzetközi környezetben - Sikerkritériumok Sasné Grósz Annamária Hargitai Dávid Máté Napjaink globális üzleti környezetében a végzett hallgatók álláskeresésének sikerében jelentős szerepet

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben

A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben Gere A., Losó, V., Györey, A., Szabó, D., Sipos, L., Kókai, Z. Budapesti Corvinus Egyetem, Élelmiszertudományi Kar Érzékszervi

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

ZSUPANEKNÉ PALÁNYI ILDIKÓ A magas növekedést elérő vállalkozások jellemzői Zala megye feldolgozóiparában

ZSUPANEKNÉ PALÁNYI ILDIKÓ A magas növekedést elérő vállalkozások jellemzői Zala megye feldolgozóiparában ZSUPANEKNÉ PALÁNYI ILDIKÓ A magas növekedést elérő vállalkozások jellemzői Zala megye feldolgozóiparában The specific characteristics of companies achieving high growth rates in the processing industry

Részletesebben

Az IDB Analyzer használata

Az IDB Analyzer használata Az IDB Analyzer használata Tartalomjegyzék 1. Első lépések 2. Az IDB Analyzer installálása 3. Adat-file-ok összefűzése 4. Az Analysis Module használata 2 Első lépések: a DVD tartalma, bemásolása ADVDtartalma

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

TÁMOP-4.2.2/B-10/1-2010-0002 Tantárgyi program (rövidített)

TÁMOP-4.2.2/B-10/1-2010-0002 Tantárgyi program (rövidített) TÁMOP-4.2.2/B-10/1-2010-0002 Tantárgyi program (rövidített) Szakkollégiumi műhely megnevezése: Meghirdetés féléve: Tantárgy/kurzus megnevezése: BGF GKZ Szakkollégiuma 2011/2012. tanév II. félév SZAKKOLLÉGIUM

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

MARKOLT NORBERT. Alegységszintű vezetők megítélésének pszichológiai dimenziói. Psychological dimension in subunit military leader s assessment

MARKOLT NORBERT. Alegységszintű vezetők megítélésének pszichológiai dimenziói. Psychological dimension in subunit military leader s assessment MARKOLT NORBERT Alegységszintű vezetők megítélésének pszichológiai dimenziói Absztrakt Psychological dimension in subunit military leader s assessment A kutatás célja, az alegységszintű vezetők megítélésében

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Többváltozós problémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Szent István Egyetem. Gazdálkodás és Szervezéstudományok Doktori Iskola A HELYI PÉNZ SZEREPE A KIS ÉS KÖZÉPVÁLLALKOZÁSOK KOCKÁZATKEZELÉSÉBEN

Szent István Egyetem. Gazdálkodás és Szervezéstudományok Doktori Iskola A HELYI PÉNZ SZEREPE A KIS ÉS KÖZÉPVÁLLALKOZÁSOK KOCKÁZATKEZELÉSÉBEN Szent István Egyetem Gazdálkodás és Szervezéstudományok Doktori Iskola A HELYI PÉNZ SZEREPE A KIS ÉS KÖZÉPVÁLLALKOZÁSOK KOCKÁZATKEZELÉSÉBEN DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI Horváthné Bácsi Judit Gödöllő

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN

LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN BUDAPESTI CORVINUS EGYETEM VÁLLALATGAZDASÁGTAN INTÉZET VERSENYKÉPESSÉG KUTATÓ KÖZPONT Gelei Andrea: LOGISZTIKAI KÉPESSÉGEK A MAGYAR VÁLLALATOK GYAKORLATÁBAN VERSENYBEN A VILÁGGAL 2004 2006 GAZDASÁGI VERSENYKÉPESSÉGÜNK

Részletesebben

Az energetikai faültetvények hozamának

Az energetikai faültetvények hozamának 4. évfolyam 1. szám 2014 109 120. oldal Az energetikai faültetvények hozamának vizsgálata Horváth-Szováti Erika és Vágvölgyi Andrea Nyugat-magyarországi Egyetem, Erdőmérnöki Kar KIVONAT A minirotációs

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

REL REL. Histogramok A második kép anormál eloszlással összevetve. minden változó értéket külön-külön vesz figyelembe

REL REL. Histogramok A második kép anormál eloszlással összevetve. minden változó értéket külön-külön vesz figyelembe Frequency Frequency 1. ALAPFOGALMAK Deduktív stratégia: Az általános elvekből, törvényszerűségekből, vagy egyéb tudományos megállapításból indul ki a kutató. Induktív stratégia: A konkrét tapasztalatokból

Részletesebben

HIERARCHIKUS FAKTORANALÍZIS SPSS SZOFTVERREL. Ottó István Mottó-Logic Bt., Kaposvár

HIERARCHIKUS FAKTORANALÍZIS SPSS SZOFTVERREL. Ottó István Mottó-Logic Bt., Kaposvár MAGYAR PEDAGÓGIA 103. évf. 4. szám 447 458. (2003) HIERARCHIKUS FAKTORANALÍZIS SPSS SZOFTVERREL Ottó István Mottó-Logic Bt., Kaposvár A pedagógiai és pszichológiai vizsgálatok során a kutatók különféle

Részletesebben

Az egészség- és környezettudatosság, mint új befolyásoló tényező az élelmiszerfogyasztói magatartásban

Az egészség- és környezettudatosság, mint új befolyásoló tényező az élelmiszerfogyasztói magatartásban Az egészség- és környezettudatosság, mint új befolyásoló tényező az élelmiszerfogyasztói magatartásban Brávácz Ibolya Budapesti Gazdasági Főiskola KVIK Bravacz.Ibolya@kvifk.bgf.hu Az élelmiszerfogyasztói

Részletesebben

Egészségmagatartás-modell tesztelése többváltozós technikákkal

Egészségmagatartás-modell tesztelése többváltozós technikákkal Egészségmagatartás-modell tesztelése többváltozós technikákkal Berend Dóra, a Budapesti Corvinus Egyetem PhD-hallgatója E-mail:dora@berend.hu Dr. Kotosz Balázs PhD, a Szegedi Tudományegyetem docense E-mail:

Részletesebben

A magyarországi nagyvállalatok kutatás-fejlesztési output aktivitásának vizsgálata, különös tekintettel a regionális különbségekre

A magyarországi nagyvállalatok kutatás-fejlesztési output aktivitásának vizsgálata, különös tekintettel a regionális különbségekre A magyarországi nagyvállalatok kutatás-fejlesztési output aktivitásának vizsgálata, különös tekintettel a regionális különbségekre Dr. Molnár László egyetemi adjunktus Fiatal Regionalisták VIII. Konferenciája

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

Dr. Szűcs Róbert Sándor,

Dr. Szűcs Róbert Sándor, Dr. Szűcs Róbert Sándor, főiskolai adjunktus, Ph.D. szucsrobert@szolf.hu A PÁLYÁZAT A NEMZETI EGYÜTTMŐKÜDÉSI ALAP TÁMOGATÁSÁVAL JÖTT LÉTRE. A tehetséggondozás mőhelyeinek (TDK és Szakkollégium) fejlesztése

Részletesebben

A TÁRSADALMI MARKETING MODELLJE ÉS HAZAI MŰKÖDÉSÉNEK FELTÉTELEI 1

A TÁRSADALMI MARKETING MODELLJE ÉS HAZAI MŰKÖDÉSÉNEK FELTÉTELEI 1 Gazdaságtudományi Közlemények 6. kötet, 1. szám (2012) pp. 75-92 75 A TÁRSADALMI MARKETING MODELLJE ÉS HAZAI MŰKÖDÉSÉNEK FELTÉTELEI 1 PISKÓTI ISTVÁN * 1. TÁRSADALMI MARKETING ÉS INTEGRÁLT MODELLJE A társadalmi

Részletesebben

Alkalmazott statisztika Feladatok

Alkalmazott statisztika Feladatok Alkalmazott statisztika Feladatok A feladatokhoz használt adatokat megtaláljátok itt: www.math.u-szeged.hu/ szakacs/oktatas/alkstat.html 1. óra (szept. 9.) Az óra anyaga: Követelmények ismertetése, az

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Pszichometria Szemináriumi dolgozat

Pszichometria Szemináriumi dolgozat Pszichometria Szemináriumi dolgozat 2007-2008. tanév szi félév Temperamentum and Personality Questionnaire pszichometriai mutatóinak vizsgálata Készítette: XXX 1 Reliabilitás és validitás A kérd ívek vizsgálatának

Részletesebben

Fiatal véleményvezérek a családban azaz a fiatal felnőttek befolyása a család környezettudatosságára: Egy skálatesztelés eredményei

Fiatal véleményvezérek a családban azaz a fiatal felnőttek befolyása a család környezettudatosságára: Egy skálatesztelés eredményei Fiatal véleményvezérek a családban azaz a fiatal felnőttek befolyása a család környezettudatosságára: Egy skálatesztelés eredményei Neulinger Ágnes Piskóti Marianna A véleményvezérek egy-egy termékkategóriáról

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

A másodlagos magyar államkötvénypiac Value at Risk főkomponens-elemzése

A másodlagos magyar államkötvénypiac Value at Risk főkomponens-elemzése 2011. TIZEDIK ÉVFOLYAM 6. SZÁM 595 LENCSÉS GYULA A másodlagos magyar államkötvénypiac Value at Risk főkomponens-elemzése Az alábbiakban főkomponens-elemzés segítségével vizsgálom a magyar másodlagos állampapír-piaci

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

A MARKETINGKOMMUNIKÁCIÓ ÉS PÉNZÜGYI EREDMÉNYESSÉGÉNEK MÉRÉSE MAGYAR BORÁSZATOK KÖRÉBEN TÓTH ARNOLD

A MARKETINGKOMMUNIKÁCIÓ ÉS PÉNZÜGYI EREDMÉNYESSÉGÉNEK MÉRÉSE MAGYAR BORÁSZATOK KÖRÉBEN TÓTH ARNOLD BUDAPESTI CORVINUS EGYETEM TÁJÉPÍTÉSZETI ÉS TÁJÖKOLÓGIAI DOKTORI ISKOLA DOKTORI ÉRTEKEZÉS TÉZISEI A MARKETINGKOMMUNIKÁCIÓ ÉS PÉNZÜGYI EREDMÉNYESSÉGÉNEK MÉRÉSE MAGYAR BORÁSZATOK KÖRÉBEN TÓTH ARNOLD TÉMAVEZETŐ:

Részletesebben

Alkalmazott statisztika

Alkalmazott statisztika 1. óra Alkalmazott statisztika Feladatok Nyissuk meg az IBM SPSS programot. Fájlokat, adatokat megnyitni a F ile Open Data parancsokkal lehet. Az SPSS saját kiterjesztése a.sav, de megnyithatunk más típusokat

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Szemle A rövidített WHO jól-lét kérdőív gyermekek körében való alkalmazásának lehetőségei

Szemle A rövidített WHO jól-lét kérdőív gyermekek körében való alkalmazásának lehetőségei Szemle A rövidített WHO jól-lét kérdőív gyermekek körében való alkalmazásának lehetőségei A WHO Jól-lét Skála öt tételből álló (WBI-5) rövidített változata az egyik leggyakrabban használt mérőeszköz, amelyet

Részletesebben

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21. Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis

Részletesebben

A nappali tagozatra felvett gépészmérnök és műszaki menedzser hallgatók informatikai ismeretének elemzése a Budapesti Műszaki Főiskolán

A nappali tagozatra felvett gépészmérnök és műszaki menedzser hallgatók informatikai ismeretének elemzése a Budapesti Műszaki Főiskolán A nappali tagozatra felvett gépészmérnök és műszaki menedzser hallgatók informatikai ismeretének elemzése a Budapesti Műszaki Főiskolán Kiss Gábor BMF, Mechatronikai és Autótechnikai Intézet kiss.gabor@bgk.bmf.hu

Részletesebben

The paper analysis the territorial distribution of Common Agricultural Policy (CAP) support at the level of 41 Romanian counties (NUTS3 regions)

The paper analysis the territorial distribution of Common Agricultural Policy (CAP) support at the level of 41 Romanian counties (NUTS3 regions) Közgazdász Fórum Forum on Economics and Business 16 (4), 3 21. 2013/4 7 Clusters of Romanian counties according to CAP support MÁRIA VINCZE ELEMÉR MEZEI GYÖRGYI MARTON EMESE SZÕCS The paper analysis the

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

A SERVQUAL (szolgáltatás-minőség) modell alkalmazhatóságának elemzése sokváltozós adatelemzési módszerekkel. Becser Norbert

A SERVQUAL (szolgáltatás-minőség) modell alkalmazhatóságának elemzése sokváltozós adatelemzési módszerekkel. Becser Norbert Műhelytanulmányok Vállalatgazdaságtan Intézet 1053 Budapest, Veres Pálné u. 36., 1828 Budapest, Pf. 489 (+36 1) 482-5901, fax: 482-5844, www.uni-corvinus.hu/vallgazd Vállalatgazdaságtan Intézet A SERVQUAL

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Hátrányok: A MANOVA elvégzésének lépései:

Hátrányok: A MANOVA elvégzésének lépései: MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k populációban a függő változók egy lineáris kombinációjának

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség

8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség 8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség Az IALS kutatás során felmerült egyik kulcskérdés az alapkészségeknek az egyéb készségekhez, mint például az Információs

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben