EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths."

Átírás

1 mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ gnráló lm gnráló lm sorá loszjuk gnráló lmml z oszlopo lhgyjuk z összs öi lmml z örénik: i.lépés: MEGINT GENERÁLÓ ELEM ÉS BÁZISTRANSZFORMÁCIÓ ismé álszunk gy gnráló lm és légzzük ázisrnszformáció. A - ngyon csáíó, d nm álszhjuk mr csk -s soról álszhunk, így ráfnylodunk -r gyühó-mári -k jo oldli számok A A EGYENLETRENDSZEREK MEGOLDÁSA VAL

2 mk ilágos oldl symhs.hu érdms olyn gnráló lm álszni, hogy során és oszlopán jó sok null lgyn..lépés: AZ UTOLSÓ BÁZISTRANSZFORMÁCIÓ ÉS UTÁNA LEOLVASSUK A MEGOLDÁST EGY TANULSÁGOS ESET

3 mk ilágos oldl symhs.hu VÉGTELEN SOK MEGOLDÁS, NULLA MEGOLDÁS, SZABADSÁGFOK n z gynlrndszrn lóján csk ké gynl n, mr hrmdik gynl z lső kő összg. gyis ö ismrln n, min hány gynl, és ilynkor z gynlrndszrnk nincs gyérlmű mgoldás. z lső ké gynl összd kpjuk hrmdik gynl n z gynlrndszrn hrmdik gynl szinén z lső kő összg, d jo oldl nm simml, mr hly n. ilynkor nm ud gyszrr mindgyik gynl ljsülni, gyis nincs mgoldás. z lső ké gynl összd kpjuk hrmdik gynl, d jo oldlon hly n HA AZ -S SOR ILYEN, AKKOR VÉGTELEN SOK MEGOLDÁS VAN -s oszlop HA AZ -S SOR ILYEN, AKKOR NINCS MEGOLDÁS -s oszlop NEM NÉZZÜK MEG, HOGYHA ELKEZDJÜK MEGOLDANI EZEKET AZ EGYENLETRENDSZEREKET AZ ELEMI BÁZISTRANSZFORMÁCIÓVAL, VAJON HOGYAN FOG KIDERÜLNI, HOGY AZ EGYIKNEK VÉGTELEN SOK MEGOLDÁSA VAN, A MÁSIKNAK MEG NINCS MEGOLDÁSA. ITT KEZDŐDNEK A PROBLÉMÁK - nm udjuk lhozni, mr - nm álszhunk gnráló lmnk, ázisrnszformáció úgy ér ég, hogy mrd gy -s sor. HA MARADNAK -S SOROK, AHOL MÁR NEM TUDUNK GENERÁLÓ ELEMET VÁLASZTANI, OLYANKOR MINDIG VÉGTELEN SOK MEGOLDÁS VAN, VAGY NINCS MEGOLDÁS.

4 mk ilágos oldl symhs.hu A MEGOLDÁS LEOLVASÁSA A TÁBLÁZATBÓL fn mrd álozók úgynz szd álozók, ők, s és gyé nén szrplnk oá örénn. A MEGOLDÁS: AZ ÁLTALÁNOS MEGOLDÁS: R SZABADSÁGFOK=hány i fön mrd (mos szdságfok ) RANG=hány i lihő (mos rng ) A MEGOLDÁS LEOLVASÁSA A TÁBLÁZATBÓL ilynkor már nincs oái ndő SZABADSÁGFOK=nincs RANG=hány i lihő (z i is ) VAN MEGOLDÁS NINCS MEGOLDÁS lkzdjük mgoldni ázisrnszformációl. olyn sorn és oszlopn, hol prmér n, nm jánlos gnráló lm álszni Az és prmérk milyn érékir lsz null dr, gy dr ill égln sok mgoldás kökző gynlrndszrnk?

5 mk ilágos oldl symhs.hu.eset és égln sok mgoldás míg lh, lkrüljük prmérk.eset és NEM nincs mgoldás.eset és ármi BÁRMI NEM ilynkor lihő és gy mgoldás n.eset NEM nincs mgoldás.eset és égln sok mgoldás, szdságfok kő, ármnnyi lh..eset és lihő, égln sok mgoldás, szd-ságfok gy Az, és prmérk milyn érékir lsz null dr, gy dr ill égln sok mgoldás kökző gynlrndszrnk?

6 mk ilágos oldl symhs.hu Számísuk ki korokól álló korrndszr rngjá, ill állpísuk mg, hogy lőállíhó- sgíségükkl z ill Akkor állíhó lő z ill kor, h léznk olyn számok, hogy ill Ez uljdonképpn ké gynlrndszr: mgoldjuk: n mgoldás, így z kor lőállíhó. Például z is: nincs mgoldás, zér kor sjn nm állíhó lő

7 mk ilágos oldl symhs.hu Az függln korok, és Mkkor korrndszr rngj, ill lőállíhó- lük kor? A kor kkor állíhó lő, h n olyn mir mindnki lcsrélünk z korokkl flír álozár: jo oldl árndzzük úgy, hogy lássuk mnnyi n z korokól mil függln korok, h z gynlőség l oldlán gy dr n, jo oldlon is gy dr kll, hogy lgyn, h l oldlon ké n, kkor jo oldlon is és zér mgoldjuk A kor lőáll: korrndszr rngj pdig három.

8 mk ilágos oldl Fldok.. Adjuk mg kökző gynlrndszr 9 9 symhs.hu A álozosság kdéér z is lmi ázisrnszformációl számoljuk ki. Flírjuk máriunk mllé z gységmário: Azán jöh ázisrnszformáció. H nm udjuk mindgyik - linni, kkor nincs inrz. H mind l udjuk inni, kkor n inrz és z -s sorok sorrk kpjuk mg: A A I ) állános mgoldásá ) szdságfoká és z gyühó-mári rngjá c) gy olyn prikuláris mgoldásá, hol d) gy olyn prikuláris mgoldásá hol INVERZ MÁTRIX KISZÁMOLÁSA A A

9 mk ilágos oldl 9.. Adjuk mg kökző gynlrndszr 9.. Oldjuk mg kökző gynlrndszr:.. Adjuk mg kökző gynlrndszr.. Az prmér milyn érékér lsz null dr, gy dr ill égln sok mgoldás kökző gynlrndszrnk? 9.. Az, prmérk milyn érékir lsz null dr, gy dr ill égln sok mgoldás kökző gynlrndszrnk?.. Oldjuk mg kökző gynlrndszr: ) állános mgoldásá ) szdságfoká és z gyühó-mári rngjá c) gy olyn prikuláris mgoldásá, hol d) gy olyn prikuláris mgoldásá hol 9 ) ké ázismgoldásá ) állános mgoldásá ) szdságfoká és z gyühó-mári rngjá

10 mk ilágos oldl.. Az és prmérk milyn érékir lsz égln sok mgoldás kökző gynlrndszrnk?.9. Az, és prmérk milyn érékir lsz null dr, gy dr ill égln sok mgoldás kökző gynlrndszrnk?.. Számísuk ki korokól álló korrndszr rngjá, ill állpísuk mg, hogy lőállíhó- sgíségükkl z ill.. Az függln korok, és Mkkor korrndszr rngj, ill lőállíhó- lük kor?.. Az függln korok, és Mkkor korrndszr rngj, ill lőállíhó- lük kor?

MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA

MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA MÁTRIXOK DETERMINÁNS, SJÁTÉRTÉKE ÉS SJÁTVEKTOR DEFINÍCIÓ: H z gy d( ) p I ( p) i ip( i) -s mári, kkor drmiás hol p mári lmik oszlopidik prmuációi, I(p) pdig zkk prmuációkk z irziószám. Ez gy igzá rmk dfiíció,

Részletesebben

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

VÁRHATÓ ÉRTÉK, SZÓRÁS, MARKOV ÉS CSEBISEV EGYENLŐTLENSÉGEK

VÁRHATÓ ÉRTÉK, SZÓRÁS, MARKOV ÉS CSEBISEV EGYENLŐTLENSÉGEK VÁRHATÓ ÉRTÉK SZÓRÁS MARKOV ÉS CSBISV GYNLŐTLNSÉGK A VÁRHATÓ ÉRTÉK gy mgsugró vrsnyn vrsnyzők 8 vlószínűséggl ugorják á lé. Mindn vrsnyző háromszor próálkozh. Mivl könnyn mgsh hogy nm rjongunk mgsugró

Részletesebben

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY

ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara 5 cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.

Részletesebben

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtl sok vlós számból álló összgkt sorokk vzzük. A sorb szrplő tgokt képzljük l úgy, mit gy bolh ugrásit számgys. A sor összg h létzik ily z szám hov bolh ugrási sorá ljut. Nézzük például kövtkzős sort:...

Részletesebben

KOD: B377137. 0, egyébként

KOD: B377137. 0, egyébként KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

Ö ő ü ő Í ó ő ü ó ó ó ó ó ő ő ü ő ó ó ő ő ü ó ó ő í ó ó ó ó ó ü ü ó í ő ő ő ü í í ő í í ó í í ó ő ő ú ó ó ő ú Í í í ó í í ó ő í ő ő ü í í ü í ó í ő ü ő ó í ó í í ü ő í í í ó í í í í í ó ü í ő ó ú ő ó ő

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

ó ö ú í Ú Á ó ö ú ö ú í ó ő ő í ó ű í ó ö ű ő ó ó ó ö ő ű ő í ó ű í ó Ü ő ö Ö Á Á Á ó ó Ö Ö Á Á Á ű í ó Á ö ö ő ő ő ö ó í óá ÚÁ í Á Ú Á Á Ö Á Á í Á Ü Ü Ü Ü Ü Ú Á Á Á Í Ü Ü Í Á í Ü í ó Ő Ó Ö ó ó ó Ö Ö Á

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2017. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)

Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció) lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap

FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap 200. jnuár-fruár FELVÉTELI FELADATOK 8. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen 10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,

Részletesebben

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) 5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá

Részletesebben

A radioaktív bomlás kinetikája. Összetett bomlások

A radioaktív bomlás kinetikája. Összetett bomlások A radioakív bomlás kinikája Össz bomlások Össz bomlások: lágazó bomlás B A B 40 K,EX 40 40 Ca Ar 0 B B Lvzés mgalálhaó az Izoópia I. 4. fjzébn! U-38 bomlási sor fonosabb agjai U-38 Th-34 Pa-34 U-34 Th-30

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1

Részletesebben

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Á Ö Á Á Á Ü ő Ó Ü Ó Á Ü Á Ü Ó Ö ű Á Ü Ű Ó Ö Á Ü Ü Ü Á Ó ű Ü Ü ű ő Ü Á ő Á Á ő Á Á ő ő ő ő Á Á ő ő ő Á Á ű ő ő ő ő Á Á ő Á ő Á Ó ő ő ű Á ő ő Á ő ő ő ő ő Á ő Á ő ő Á Ü Á Á ő ő ő Á Á ő ő ő Á ő ő ű ő ő Ü Á

Részletesebben

ő ó Í Á Ö í ö ü ü ö ó ó í ó ü ó ö ú ü ö ü ü ö ő ó ó ö ö ó ö ő ó ő ű ö ü ő ü íó ó ü í ü í ű ö ö í ó í ó ő ö ó ü ö ó ő ó í ü ö ó ú ö í ó ő ü ő ö ú ö ü ő ú ö í ó ü í ó í ó í ű ó ó ó öá ú ó ö í ó ó ó í ó ó

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/ . Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (

Részletesebben

ő ú Á Á É ö ő ő ő É í ő ő ő ő ö ö ő ö ö í ő ő í í ő ű ö ű ő ű í ő í ő ö ü ü í ű í ő ü ö ü í ü ü í ő ő í ű í ő ö Á ö ö í í ő ő ő í ő ö ő ű ú ö ü ö ö ö ö ö ő ü ö ö ő í ü ö ú ö ü ő í ö ö ő ő ő í ö Á ö í ű

Részletesebben

Á Á ö Á ö ö ö ő őí ö ö ö ő ö ö ő ü ö ó ő ő ö í Ö ö ő í ó ö ő ő ö ö ö ő í í ó ó ö ö ő ó ő ö í ő ö ö ő ő ö ő ö ü ü Ö Ö Ö Ö ö ó ő í ő ő ő ö ö ő őí ő ő ö ö ú ö ő í ő í í ó ó ö ö í Á Á ó ö ó ö ó ö ő ö ö ó ö

Részletesebben

í ű ü ű ó í Ü ö ö ó ó í ü ü Í ú ő ő ő í ó ő í ő ó ó ú ő ó ó ö ő ó ö Ü ö ú ő ö ó ő ó ó ó ű ó ó ü Ü ó ó í ő ó í ő í ő ó őí ü ő ó ő ő í Í ö ő ó ö ő ő í ó Ü ö ö ő ó í ó ő ó ó í ö ü ö ő ö ü ő í Ü ő í ü ö ő

Részletesebben

Á É Í ő ő ő ó ő ó ő í ü ó í ó í Í ő í ó í í í ö ő ő ű í ő ö ő ő ó ó ő í ő ő ó í ő ó ő í ü ü ó ú ő í ő ó ö ö ő ü ö ő í ő ő í í ő ö ő ü ö ő ő ő í ó ő ő í ő í ő ü ü ö ö ü ó ő í í Í í í Ó ö ö ő ő ó ö í ö ö

Részletesebben

ő ő ö ő ü ö ő ő ö Ö ő ü ő ő ő ö ő ü ő ö í ö ő ő ö ö ö ő ő ő ü ő ő ü í ő ő ö ő ü ő ö ő ü ö ő ü ö ő ü ü í Ő ü ö ö ö í Ő ü ö ő ö ö í ö ü í í ö í ő í ö ö ö ő ő ü ö ő ü ő ü ú í ü ö ő ö í ö í ö ö í őí ü í ü

Részletesebben

ú ő ú ú í ö ú ö ű ű ö ő í í Ú ó í ö í ő ő ü ű ö ő í ü ü ű ö ő ű ó í ö ö ü ú ö ö ő ó ü ú ő ű í ő ű í ü ö ú ó ő ü ő ü ö ö ő í ő ü ö ú ö ö ő í ü í ő ú ő í ö ö ú í í í ú ő í ö ú ő ő Á Á ó ö ú í ó ö ó ó őí

Részletesebben

ő ő ő ü É Á Á É ő ő ő ü í ő ű í í í í í í í í Í Í ű Í ü Í ű í ü í ő ő ü ő í í í ő ű í ő ő ü ő ő ü í ő í í ő ü í ő ő őí í í ő í ő í Ü ü í ő ü í í í ő í ő í ü ú í ő ü Í ő ő ő ő É Ó Ó É Í É í Í Í őí ő ő Ó

Részletesebben

ö ú Á ő ö í ő ú í ő ö Ö ő ü ö Ö ő í ő ü ő ő í ő ő ü ü í í ő ü ű í ö ú í ö ö Ö ü ű ő ő í ö ő ű ő ö ő ü ö í Í ü ö ő ö ö ő í ű ö ö ű ö ü ö ő í ú ű ű ű ö ő ü ő ü ö ő í í í ő ö í ő Í Ö Ö Ü ő ő í ő Ő ő ő í ü

Részletesebben

ü í í ű ű í ü ü í ő ú ü í ő ú í í ü í ü í ő ü í í ő ő ü í í ú ú ő ő ü ú ü ű ű í ű í ü ű ú ü í ü í ő ő ű ő ő í ű í ő í ő ü ő ű ű í ű ú ű í ú í ő ü ú ú ő ő í ü ú ü ő ő ő ü í ú ő ő í í ő ú ú ő ú ő ü ő í ő

Részletesebben

Á í Á í ó í í ó ö ö ő ő ő ö í í ó É Á í ó í ó ó ü ű ö í ó í ő ö ö ö ü í ó ü ü ü ö í í ő í ő í í Á í í í í ő ő í í ú í ó ö ö ö í ó í í ő ó í ű ö ö ó í ö ő ö ú ö ö ű ő ő ő ö ö ó í ő ó í ű ű ö ő ű ó í ű ő

Részletesebben

ó ü Á Ó Ó ó ó ú ó ú í ó ű ü í ú í ő í ú í ó ö ó ó ő ő ö É í ú í ű ő ű í ü í ó ö í í í ő ó ö í ú ó ó ö í ó í ó í ü í ó í í í ű í ú ű í ö ő í í í í í í ő ö ö í í í í í í ó ö ő í ü ü ö í í ó ó ó í ö ű ű ó

Részletesebben

ő Ú Ú ú ó ú Ó í ő ő ű ú ó ő ú ü ü ő ő ő ó í ó ü ó ő í ű ő ű í ó ü ű ő Ü ő ő ű ő ó í í ű ű ó í ű Ü ó ű Ü ű ű ó Ü ő ű ő í ó ó í ó ó Ü ó ó ó ó í ő ú ű ó ó ő ő ő ő ó í ő ó ó ó í ó í Ü ő ó ú í ó ő ü ú ő ű í

Részletesebben

Ü Á í É Ü Ó Ü Ü ú ú Ó í Ű Ó ö ű Ö Ó Ó Ú ű Ü í ö Ó Ó ö Ü ü ő Ó Ó í í Ú í Ú Ü Ö ő Ő ő ú Ó Ó ü ö ö ö ö ú í ő ő ő ú í ü ő ő ő ő ő Á Ő ú í í ő ü ö ö ö ü ü ü ő í ő ű ö Í ú ü ú ú ö ü ö ő ü ü Ó Ó ö ö ö ú ő ő

Részletesebben

ű ö ö ő ő ő ö í ő ö ö Ö Ö ő ő ö ő ö ű í ő ö ö í ő ö ü í ő ö í ű ő ö ő ő ő ö ő ü ü Í ő ö í ő í ö ö í ö ö ű ö ő ő ő ő í ü ö ö ő ü ő ő ő ö ő í ö ö ö í ő ű ő í í ö ü í ő ő ö ű Á í ö ö ö ü í ő ö ü ő ő ö ő í

Részletesebben

ó ő ő í ó ó í í ő ó ő ő Á ü ó Á Á Á Á Ö Á É Ó ó Á É í É Á É É í ó É ó É ü É Á í í ő ó ü í ú í í ó ő ő ü ü ó ó ü ű ó ő ő ő í ű ő ú ő í í í ü ő ű ő í í ű ő ő í ő ó ő ő í ó í ő ü í ó ő ű ó ű ő ó őí ü í őí

Részletesebben

í ő í ü í í í ú ű í í í ü í ő í Í í í ő í ő Í ü Ó ő í ő í Ü í í í ú ű í í í í Ó í Ö ő ü í ü Ö Ö ő í ő í ü ő í ő ü ő ü ü í í ü í ü í ő ő őí í í í í ü í ő ú ű í í ő ü ü í Ö Ú ú í Á É Ö Ö ű Ü í Ö í Ö ő ő

Részletesebben

ő ö ő ő ö ő ő ö ö ő ő ü ő ö ő í ő í ö ő ö ö ü í ő ö ö ü ö Í ő ö ő ú ő ü ü ő ő ű í ö ö í ü Ö ő í ö ő ő ö ű ö ű ö ö ü ő ö ő ő ö ö ű ú ö ű ő ő í ő í ő ú ő ő ö í ő ú í ő ő ö ű í ö ő ú í ü ö ű í ú ö ű í ő í

Részletesebben

ó ó É Á É ü ű ő ő ó í ő ő ő í ó ó ő í ő ő ő Í ő ő í ü ü Í í ő ó í ő ő ó ű ü ő ó í ő ó ó í ó í ű ő ő ő í í ő ő ó ő í ü ű ó í ő í ú ő ó ő ű í ő ő ú ő ó í ő ű ó í ő ő í ő ó í ő ő Í ű í ó ő ó ő ő í ű ó í ó

Részletesebben

Á É É Í Ü É É Á Ú É É É É Í Ü Ü ő É Ü Ü Ú ő í í ő í ü Á í Í ü ű í í í í í ő ö í ü í ú í í í ő ü ő Ü í ö ő ű ó ű ü ú í í ú ő ő ő í ó ő ő ő í ő í í í ő í ő ű ő ő ö ü ő ő ú í Ü ő ü Í ő ö ö í ó ó ó í í í ú

Részletesebben

Á Ü Ü ó É ű ö ő Á ű ö ó í Á í ó ó ö ő Á ö ó í ó ö í ó ó ó Á í ó ő ő ü ó í ó ü ü ő ó í ü ű ö ó í ó ő ű ö ó ű ö ő ő ó ű ö ó ű ö ő ű ő í ü ó í í ó ó ó ü í í ő í ö ő ü ü ü ü ó ó ö ő ö ö ü ü ő ő ű ö í Á ű ö

Részletesebben

ö Ö ő ö ó ö Ö ő ö ó ö ő ő ó ó ö ö ó ó ó ö ö Á ó ö ű ő ű ő ő ö Ö ö É ő ő Á ű ő ú Ú ő ó ö ő ó ö ú ő ő ó ó ó ó ő ó ö ö ö ö ö ú ő ö ö ű ó ó ö ő ó ó ó ő ő ó ó ó ö ő ó ó ó ó ö ő ó ö ő ő ö Á ő ó ó ó ó ó ö ő ő

Részletesebben

ö ő ü Ö ö ő ö ó ö Ö ő ü ö ő ő ő ö ö ö ö ő í ő ő ő í ő ö ü ö ö ü ő ó ö ü ő Ö ö ü ó í ő ő ő ő ő ő ő í ő ö ó ö ó ó ó í í í ó ő ő ö ő ő ú ó í ö ü í í ő í ő ő ó ó ü í ő ő ö ű ó ó ö ő ő í ó í í ő ú ö ö í í ü

Részletesebben

Ü ű ő Á Í ü ű ő ő ő ő ó ó ü ü ő ű í ő ó ü ű ő ó ó ü í ó ó ő ő ő ű ő í í í í ó ő ú ó í ű ü í ü ő ő í í ó ó ó ó ő ő ő ő ü ő í ő ó ó ő ő ó ó ü ú ó ő ő í ó ü ó í ő ó ü ű ő í ő ü ő í ő í ő ő ó ü í ü Í í ü í

Részletesebben

ó ó ó ű ó í ő í Á ő ű ő ő í í ű ó ú ő ű ő ő ú ő ő ó í ő ű í ű ű ő ó ó ő ő ó ó í ű ú ű í ű ű ű í ó í ó ó í ő ó ű ű í ő ű ő ó ű ű í ű í í í ó ű ő í í ó ű ő ő í ű ű ű í ú í ó ó í ű ó ú ű ó ő ó ő ő ó ó ó ó

Részletesebben

ö í ü ü ö ö í ú í ö ö ű ö ö ö í ö ö í í ü ö ö ü í ö ö ú ö ö ö ö í í í ü ö ű í í ü ö ö í ö ö í ú ü ö ü ö ö í ö í ü í ö ü ö ö ű ö ö ü ö í ö ö ö ö ü ö ű ü í ö ö ű í í í ú ű ö í ö ö í í ö ö ö ö ü É í ö ű ö

Részletesebben

Ú Ö Ú Ü ú í í ú í ú í í ú ő í í ő ú í ű í ő í ő ő ő ő í í Ö í Ü í Ö í Í Í í Ö Ö Í ő Ö Ö Ö ú í ű í í ő ő ő ő í ő Ő Ó Ö Ö í Ú Ú Ö Ú Ö í í Í í ő ú Í ű í í ő ő ő ő í í í í ű í ű í í í ű ű í í Í í í Ó Ó ú Ü

Részletesebben

Í Ö ő ő ó Í ü ü ü ó ű ő ó ű ű ü ü ü ó ó ü ó ó ü ú ó ó ü ó ó ó É ó Ö Í ó ü ó ű ó ó ü ő ó ü ü ó Í ó Í ó ó ó ó ó ű ó É ó ű ő ó ő ó ű Í ó ó ő ü ő ó ó Í ő ó ő ő Á Ö ő ő ü ő ú ó ú ü ő ü ő ó Í ú ő ő ű Á ü ü ó

Részletesebben

ú í ő ö ö ö ö ö ő í ö ö ö ő ő ö ő ö ú ö ő ö ú í ő ö ö ő őí ü ú ő ü ő ö ü í ő ü ü í ő ö ő ü í ő ö ö í ű ú ö ö ö ő ő í ő Ű ő ü ő ő ö ö ő í í ö ö ü ö ű ö ö ö ü ő ö ö ü Á í ő ö í ü ő ő ü ö ű ö ö ö ű ö ö ö

Részletesebben

Ü Ú ő É É í ü íí ő ö ö Ö Á É ő ö ö ö ö ő ú ő ó ö í ó ő ú ö ó í í ó ö ö ö ü ö ó ö ö ő ö ő í ú ő ü ö ö ö ö ó ó í ű ő ö ö í ö ö ő ö ö ö ö ö ö ű ö ö ű ő ö ő í ö ő ú ö ö ö ó ű ö ő ű ö ő ú ü ő í ü ü ü ü ő ó

Részletesebben

Ó ó ű ő ű ő Ó ő É ő ő ó ű ő ó ó ű ü í ü ű í ü ő ő ő ű ó ő ó ü ő ő ő ó í í ő ó ű ő ó ű ő ó ü ó ő ő ó ő í ü ő ó ó Á ó ő ó í ű ú ő ő ó ő ó ü ő ő Á í ó ó í ő í ó ő ő ő É ő ü ó ü ő í Á ó ó ő ü ő ó ű ű ó í ü

Részletesebben

ű í í ű í őí ő ű í í ő í í í í ő í í í ő ő ő ő í í í ú ő í ő ú ő í ú í í í ű í Á í ő ő í ő í ő ű ő ű í ő ú í ú í ű ő ű ú í í í ő í ő í ő ő ű ú ő í ő ő ő ű ő Ö ő ű ő í ő ú í ő í í ú ú É ő Ö ú ő ú ú Ő ő

Részletesebben

ü ű í Í íí ü ü ű í ú Ó í Ó ú ő ü ü őí ű í í ő Í ő ő ü í Ő í ő ü ü ü í ü ú ő ú ü ő í í ú ú í í ű í ő í ő ű Ü ü Ü ü ü ü ú Í í í ű ü ő ü í ű ő ü ü ü í ü ü Í í ü ü ű í í ő ő ü ü ü ü ü ő ő ű Í ü ü ü ú ú ü ü

Részletesebben

Á Á Ü Ö Ú Á É í Ú Á Ö Á Ü É ó ü ó ó ó őí ő ű í ó í ő ü ő ú ó í ő ő ő í ü ü í í ő ú ő ú ő ő ó í ú í ü ő ő ú ő ü í ó ó ü ó ő ü ő í ú ú ő ő ú ő ő ü ú ő ó í ü ű í í í ü ú ó ő ő ő ő ő ő ű í ó í í ó ő í ó ő

Részletesebben

Á Á Á í ő Ö Ö Á Á Ó Ö Á Ő ő ü ő ő ő Ö Í ő ő ő ő Ö ú Ö ő í ő Ö ü ű ú ő í Ü Ö Í Ö Ö ő ő ű Ő ű ő ü ű ő í ő í ő ü Ö Ü Ö ő Ö ő Ő ő í ű É Ű Ö ő ő í ő ü ő í ű ü ő ő ü ő Ü ő ő ü ű ő ú ü í ő ü ü Ö ő í Ü ő í ü ő

Részletesebben

Á Á É ö ú Ö ó ú ó ó É ó ó ö öí ú Ö ö ú ú ó ü ö Í ó ö ú Í ö ó ó Ú Ö ö Ö ö ú ö Ó ú ú ú ö ó Í ó É ú ú ü ö ö ó ü ö ó ü ö ö ű ó ó ó ö ö ö ű ú Á ó ö ö ü ó ó ó ó ó ö ű ö ö Á ó ö Á ó ö ó ó Á Ö Í ó ü ű ó ó ó ó

Részletesebben

Ö Ő Ő Ő Ő Ö Ö Ő Í Í Á Ö Ő Ö Ú ŐÍ Ú Í Ő É É Í Í Í É Ő ö Ú Í Ő ö É É É Í É Ő Í Í Í Í ö Í Í Ö Í Ö É Í É É É Í Í ö É Ö Ö Í Í É É Ő Í É Ő Ö É ÖÍ Í Í Ő Í Í Ö Í É Ő Í Í ü É É É ö É É É ö Í É ö Í Ő Ő Ö É É Í Í

Részletesebben

Ú Ó í ó ú ú ó ő ü ó ő ó ó ü ú ó ő ü í ó ó ó ő ó ő ő ú ó ú ó ú ú ó ú ó ú ó ó ó ó őí ő ú í ó í ő ő ü ő ú ó ó ó ó ó í ő ő í ú ü ó í ő ő ű ü ű ü ó í ü ő ű ü ü ű ő ő ó ú ü ó ú ó ú í ü ő ő ő ó í ó ó ő ű ó ő

Részletesebben

ö ű é ö é é é é é ő Ö é ö é í ű ö é é é é é é é ö é é é ű ö é í ű ö é é í é í é é é é é é ő ö é é é ő é ö ő ő Ü ő ö é Ü ő é í é ö ö é é Ü ő é Ü é ö ű é í ö é é ü ű ö é é ö Ü ö ű é é Ü Ü ö í é ö é ö ű é

Részletesebben

ö Ö ö ő ö ü ö Ö ő í ü ő ü Ö ő ő ő ő ő ő ó ő ő ü ő ő Á í ó ő ö ö ü ö ö ö í ü ü ő ö ö ő ő ö í ő ő ő ő ü í ő ő ő ü ő ü í ő ö ő ö ő Á ó ü ó ö í ó ö Ö ö ő Ö ű ö ő ö í ó ó ó ö í í ó í ü ő ő í ó í í í í ö ő ü

Részletesebben

É É ó í í ö ö Í ö ó ó ó ó ó Á ö ú í ó Ö ó ö ö ó ó ö ö í ö É ö Á ú Á ö ú ö ú ű ú ú í ö ö í Ü í í Ó ö ú Ü í Ü í í Ú ö ö í Í ü Ó ö Ü ú ü ü í Ó í ö í ó Ó ó ö ó ö ó ű ö ú Í í ü ö í í Í í ü í ó Ó í ó Ó Ó Í Ó

Részletesebben

í ő ü ö ú ü ö í ő ü í ó í í ü í ó ő ű ö ö ó ü ö Á ü ö ű ő ö ü ö ű ü ü ó ő ő ö ö ű ő Í ö ő ö ü ü ö ő ó ő ő ő ó ú ó ü Í ó ó ó ó ó ö ű ó őí ő ü ö ú ű í ő ő ő ö ő ö ú ű í ó ő ö ő ö ú ű í ó ü ó ő ö ö ö í í

Részletesebben

Ó É É ö É ö É Ó ó Í ő í ó í Ó í í Ó í Ö í ó Ó Í í Ó ő í í ó Ö í ö í ó í ó ö í Í ö ö í Ő ó ó ó Í í ó ö ó í ö í í ó ó í ó Ö ó ó í Ó Í Í ó í í í í ö í óí óí í í í ö íí íí ó Ő í Ó í Ő Ö í ó í í í ó í í Ó í

Részletesebben

Ó Ü ö ö ö ö ö ű ö ü ü ö í ö ö Ü ö í ű ö í ö Ö í ü ö ö ö ü ü ü í ú ö ú ú í ö ö í ö ö ö ö í í ú ö í ö í ö ü ú í í í í ú í ü ö ö í í í ö í ú í í í í ö ö ö ö í ú ö ö ü ö ö ö ö ö ö Ö ú ü í ü ü ü ö ö í ü í ö

Részletesebben

Ü Íí É Ü Í É É Á ü ü ű ő í ó ó ó ő ó ó Í É É É É Á É ó ő í ó í ü ó ó ő ő í ű í í ó í í ő ő í ó ő ó í ü í ő ü ő í í ő ő ú ű ü ó í ő ő ó ú ó ó ő í ü ő ű ő ő ú ő í í ő ü í ő É É É Á Ó É Á Á ó í ő ó ó ó ü

Részletesebben

Ö ó Ö í ó ú ő ö ó Ö ő ü ú ü ő ü ő ő ő ö Ö ö ó ő ü Ö ö ó ó ó í ő ő ó Ö ö ö ő ó í ő ó ó ö Ö ő ú ö ő ó ó ó ő ú í ö ó ú ö ü ü í í Ö ü ü ö ő í ó ő í ö ő ü ö ő ö ü ö í ö ö ö ú í ö ő ö ő ó ö Ö ü í ö í ő ő ű ö

Részletesebben

ö ő ü É Ü É ö ö ő ö Ö ő ü ó Í ö ő ő ő ö ö ö ő ó ó ö í ö ó ö ő ö ő Á ö ó ü ő ő ó ö ő Í í ö ű ó ö ű í ó ö ő Í ü ö ö ó ü ő ü ü ó ü ő ó ü ö ü ö ü í ö í ó ő ó ó ö ü ö ő ö ü ú ö ü í ó í í í ö ü ő ö ö ő í ő ö

Részletesebben

ü Í Á É ö ő Í í ö ű ő ú ó í ő í í Í í ű Í ő ü ő ó í í ö ö í í ő í ó ö í ó Í ú í Í ő Á ő ö ő ő ő ö ü ó ö ö ő í ó í ő ö ö ö ő í ö ü ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő ö í ü ő í ö ö ö ő ü ű ö í ő ó í ő ő ú

Részletesebben

ö ü ö ú ü Ó ö ú ü ö ó ö ü ö ö ö ö ö í í ó ó ó ö ú ó ö ó ö ö ö ö í ö ú ó ö ó ü ö í ó ű ö ó í ó ö ü ü ű ö í ú í ó ó ú í ó ö ü ö ö í ö ö ö í í ü ó Ó ö ö ó í í ö ö ó ó ö ó í í ó ö í í í ö í ü í ű ö ó í ö í

Részletesebben

Ü Ú ö ö ö ö ö ö ö Ó Ó Ó ö Í Ó ö Ó ö ö Ó ö ö Ó ű Ó ő Ó Í ű ö Ó ú ő Í ö Ó ű ö ö Ó ő ő ő ű Í ő ö ö ű Ű ú ő ö ö ú ö ű ő Í ő Ó Í Ú ő Ó ő ö ő ö ü Ó Ó ö Í Ú ő ű ű ő ő Ó Í ú Ú ú ú Ó Ó Ó Ó ö ú ö ü ö Í ö Ü ö Í Í

Részletesebben

ö ő ő ő ó ő ő ü ó ü ö ö ó í ö ö ü ő ű ö ő ő ö ő Ó ő ó ó ü ű ö ó í ö ő ő ü í ú ö ú ü ó ó ő í ú ó ö ö ü í ő ő í ő í í ó ő ő í ő ű ő ó ü ű ő í ő ü ő í ő í ű ő í ű ő ű ű ű ó ü ő í ü ő ó ó ó ó í ő ő ö ó ó ü

Részletesebben

ö ó ü ö ö ű ö ű ű ó ö ó ö Ö ü ö Ö Ű ö ű ű ó ö ó Ö Ö ó ó ó ö ö ö ó ó ó ö ó ö ö ó ü ö ö ü ö ű ö ű ö ö ö ö ö ü Ó ö ű ó ö Ö Ö ö ó ö ö ó ó ö ö ü ö ű ö ű ö ö ö ö ö ó ö ö ö ü ö ű Ö ö ű ó ö ó ö ö ö ö ö ö ö ö ö

Részletesebben

í Ó ú Ö í ó ó ó í ú ő ó ű ö ö ő ó ó ö ó ó ó ö ö ú ó ó ö í ő ó ű ö Ú ő ű í í ő ű ű ö í ű í Á ó í ó ú Ö ó í í ó í í í í ú ó í ű í ú í ű ö ó í í Í ű Ó ő ő ű ó ö ö ű í í ö ö ö ö ő ó ó ó í ú í ő í í í ú ó ó

Részletesebben

Ü ő ö ő í ö Ö ó ó ö Í ó ő ő ő Á Ú í í ő ú ó ö ü ő ó ő ó ő ó ü ö ö ö Ö ő ö ő ő ő ö ö í í ú ú í ü ö í ó í É ö É í ő ö ő ő Á Ú í í ő ő ü í ö ö ő í ó í ő ó í ő ő ö Ő É Á ő í ú í í í ö ö ő ő ó ő í ó ő ó ő í

Részletesebben

ő ő ő ő Í Ó Á Ó Á Ó Ő Ü ű ő ő ó Á ő ú Ö Ó Á Á ő í ű ó ó ő ó ó ó ü í ű Ö Á ő őí í ő ő í ő í ü ó ő ő ó ő ő ő ő ő ő ő ő Ö ő í ű ő ő í ű ó ó Ö ű ő ő í ő ü í ű ó ó ó ő í ő ő Ü ű ó ó ó ő ő ő ó ő ó ő ő ó ó ő

Részletesebben

Á Ő í ö ő ő ő ő ő ő ő ó ó ő ó ő ő ó ő ö í í ő ő ő ö ő ó ő ő ő ő ő ö ö ő ő ő ó í í ő ó ó ő ő ő í ó ó ő í ó ű ő ó ö ő ő őí ő őí ő ő ű í ó í ő ő í ő ő ó ű ö ő ó Á ó ő ö ö ö í ő ó ő őí ó ő í ö ő ö ő őí ó ő

Részletesebben

í É É í É ő É ő ö É Á É Á Á Ó ö ő ő ö É ó ő ó ő ó ő ú ó ó ö ő ö ö ő ő ö í ő ő íí ö Ő É í ő ú ó ű ö í ó ő ú ó ű ú ő ő ő í ü ő ö ő ű ö í ő ü ő í ó ó ó ó Ü É Ü Ü ő ó í ő ó ó ó ő í ó ó ő ő í Á Á ő É É ő Í

Részletesebben

É í Í Í ő ö í ű ö í í ö öí í ö ő ő ő ő ő ő í ő ő í í ő í ő ü í Ő ő Á Á É Á Ö Ö Á Á Á É Á É É Ö É É Á Ö ö Á Ő É Í É Á Ö Ö Á Ó ö ö ö í ö őí ő í ú ö ő ö ö ő ö ö Ö ő ő ő ő ő ő ő ö ő í ő ö ö ö ő í í ű ő ö ü

Részletesebben

ó É ő ö ü ö ú ü ö ű ő ú ú ő í ö ü ü ó ó ö ű ü ő ö ö ö ö ő í ö íí ü ó í ó ö ő ő ü ó ö ű ü ó ö í ó ö ő ö ű ö í ú ó í ü ő ú ő í ó ú í ó ö ó ö ö ű ö ó ö ó ö ő ö í ó ő ő ú ő ő ű ú ó ö ú ó Ó ó ú ü í ó ő í í

Részletesebben

Ü Í ö ő Í í ö ű ő ú ó ő í ó Ö í ü ő ó ó ő í í ö ö ő í ó ö í Í ú í ő Á ő ö ő ő ö ö ó ö ö Í ő í ó í ő ö ú ö ö ő í ö ú í ó ö ö ő í í ő ő ő ő ö ő í ő ő Ó í ü ú ú ő í ö ö ö ő ü ű ö í ő ö ó í ő ő ú í ó ő í ó

Részletesebben

ö Ö ö Ö ő ü ö ö ő ö Ö ő í ó ó ó ö ö ő ő ő ö ö Á ü ö ö ü ö ö ü ő ü ű í ő ü ó ő ó ö ó ő ü ü í ő ö ö ö ö í ö ő í ő ö í ő ó ö ü ö ű ö ü ő ó ó ö ő ö í ö í ö ü ö ő ö í í í ó ö ö ő í ő í ö ő ű ö í ő ő í ó ö í

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k t u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y. I I I.

D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k t u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y. I I I. D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y A S E M L E G E S S É G > d A L A K U L Á S Á N A K F O L Y A M A T A

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő A 10/007 (II. 7.) SzMM rndlttl módosított 1/006 (II. 17.) OM rndlt Országos Képzési Jgyzékről és az Országos Képzési Jgyzékb történő flvétl és törlés ljárási rndjéről alapján. Szakképsítés, szakképsítés-lágazás,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

1. FELADATLAP TUDNIVALÓ

1. FELADATLAP TUDNIVALÓ 0851 modul: GEOMETRII ISMÉTLÉS z alakzatokról tanultak ismétlés 135 TUDNIVLÓ Egy alakzatot akkor nvzünk tnglysn szimmtrikusnak, ha létzik lgalá gy olyan gyns, amlyr az alakzatot tnglysn tükrözv önmagát

Részletesebben

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak 1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2007. fruár 1. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. fruár 1. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon

Részletesebben

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció 7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 fltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben