Az el adás anyagának törzsrésze

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az el adás anyagának törzsrésze"

Átírás

1 Az el adás anyagának törzsrésze 1. Halmazok, elemi logika, valós számok I. Halmazok. 1. "Halmaz" és "eleme": alapfogalmak. Halmaz kritériuma: egyértelm en eldönthet, mik az elemei. 2. Halmaz megadása: (i) Elemekkel, pl. A := {3, 5, 2}. (ii) Más halmazokból. M veletekkel: pl. A B, A B, A \ B. Tulajdonsággal: pl. R + := {x R : x > 0} II. Elemi logika. 1. Matematikai állítás: amir l eldönthet, igaz-e. 2. Fontos szabályok. (i) (A B) = ( B A). Vigyázat! (A B) ( A B). (ii) Tagadás. (a) de Morgan: (A vagy B) = ( A és B), (A és B) = ( A vagy B) (b) Kvantorok: legyen T egy tulajdonság (pl. T (x)= "x pozitív"). ( x T (x)) = ( x T (x)) (szabály ellentéte: kivétel); ( x T (x)) = ( x T (x)) III. Valós számok. 1. Szemléletes számfogalmak. Pozitív egészek: N + = {1, 2, 3,...} Természetes számok: N = {0, 1, 2,...}. Egész számok: Z = {..., 2, 1, 0, 1, 2...} Racionális számok: egész számok hányadosai, jele Q. Valós számok: a racionális és irracionális számok együtt, jele R. számegyenes. Formálisan: a (véges vagy végtelen) tizedestörtek. Szemléletesen: 2. Fontos számhalmazok. (i) Intervallumok deníciója. Legyenek a < b valós számok: Korlátos intervallumok: [a, b], (a, b), [a, b), (a, b]. Félegyenesek: pl. [a, + ), (, b). R is nem korlátos intervallum. (ii) Korlátos számhalmazok. Deníció: H R felülr l korlátos, ha M R: x R x M. Alulról korlátos, ha... x M. Korlátos, ha alulról és felülr l is korlátos. Pl. [a, b] korlátos, N felülr l nem. 1

2 2. Algebrai alapismeretek. I. Nevezetes kifejezések, azonosságok. (i) Egyváltozós polinom : p(x) := n i=0 a i x i = a 0 + a 1 x + a 2 x a n x n, ahol n N (a polinom foka) és a 1,..., a n R (együtthatók) adott számok. (ii) Racionális törtfüggvény v. algebrai tört: polinomok hányadosa, p(x) q(x). Racionális törtfüggvények összeadása, szorzása: ahogy a törteket kell, azaz p(x) r(x) = p(x)r(x) q(x) s(x) q(x)s(x), p(x) + r(x) = p(x)s(x)+r(x)q(x). Ezek is rac. törtfüggvények. q(x) s(x) q(x)s(x) (iii) Többváltozós polinomok és algebrai törtek. Pl. a 2 b 2ab 3 + b 4 polinomja a, b-nek, ab a 2 +b 2 algebrai tört. (iv) Nevezetes azonosságok több határozatlannal. Legyenek most pl. a, b R tetsz. (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b)(a + b), II. Hatványozás, logaritmus 1. (i) Hatvány értelmezése a > 0 pozitív alap esetén. Egész kitev : a n := a a... a, a n := 1, a 0 := 1. Rac. kitev : a m a n n := n a m. Irracionális kitev, pl. t: a t az az egyetlen szám, amely mindig a r 1 és a r 2 közé esik, ha t az r 1 és r 2 rac. számok közé esik. (Itt a t létezése a fontos, de csak közelít leg számíthatjuk ki az ilyen a r -ekb l.) (ii) Exponenciális függvény: rögzített a > 0 esetén x a x. Ez pozitív érték ; szigorúan növ, ha a > 1 és szig. csökken, ha a < 1. (Ha a = 1, akkor konstans 1.) (iii) A hatványozás azonosságai: legyenek a, b > 0, x, y R. Ekkor: Különböz kitev k: a x+y = a x a y, a x y = ax a y, (a x ) y = a xy. (Vigyázat: általában a x a y a xy, (a x ) y a (xy)!) Különböz alapok: (ab) x = a x b x, ( a b )x = ax b x. Megj.: az a 0 = 1 def. az azonosságokból is szükségszer. 2. (i) Logaritmus értelmezése (a > 0, a 1 pozitív alap esetén): Legyen b > 0. Ekkor log a b az a szám, amelyre a-t emelni kell, hogy b-t kapjunk. Azaz: x := log a b az egyetlen valós szám, melyre a x = b. Röviden: a log a b = b. 2

3 Megj.: log a b csak akkor értelmes, ha a és b is pozitív, de maga log a b negatív is lehet. Nevezetes alapok: lg b := log 10 b; ln b := log e b (ún. természetes alapú logaritmus), ahol e 2.71 (def. kés bb). (ii) A logaritmus azonosságai: legyenek a, x, y > 0. Ekkor log a xy = log a x + log a y, log a x y = log a x log a y, log a (y c ) = c log a y. (2. és 3. spec.: log a 1 y = log a y.) Vigyázat! log a (x + y) =... képlet nincs! Pl. log 2 x = lg x, azaz egymás konstansszoro- lg 2 Áttérés más alapra: sai. log a x = log b x log b a. 3. Számok normálalakja. Ha x R +, akkor egyértelm en felírható x = r 10 k alakban, ahol 1 r < 10 és k Z. Pl = III. Egyenletek. 1. Másodfokú egyenletek megoldása. Rendezve: ax 2 + bx + c = 0 (ahol a, b, c R adott, a 0, x =?) Megoldóképlet: x 1,2 = b± b 2 4ac 2a A valós megoldások száma (2,1 v. 0) a D := b 2 4ac diszkrimináns el jelét l függ. 2. Kétismeretlenes lineáris egyenletrendszerek megoldása Legyenek a, b, c, d R, ill. u, v R adott számok. Keresend x, y R: ax + by = u cx + dy = v. (Megj.: szokásos feltevés: a vagy b 0, c vagy d 0.) A megoldás elve: beszorzás azonos együtthatóra. Pl. y-t eliminálhatjuk, ha az 1. sort d-vel, a 2. sort b-vel szorozzuk, majd kivonjuk. 3

4 3. Lineáris algebra/1. Mátrixok, determináns 1. Mátrixok és oszlopvektorok fogalma. Mátrix-vektor szorzás: 2-dimenziós esetben ( a b c d ) ( x y ) := ( ax + by cx + dy Általában: a szorzat i-edik eleme a mátrix i-edik sorának és az adott vektornak a skalárszorzata. 2. Négyzetes mátrix determinánsának értelmezése. Jelölés: det(a) vagy A. (i) 2 2 eset: det(a) := ad bc. (ii) 3 3 eset. (Szemléletesen: Sarrus-szabály) a 1 a 2 a 3 Def.: b 1 b 2 b 3 := a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 a 1 b 3 c 2 a 2 b 1 c 3 a 3 b 2 c 1. c 1 c 2 c 3 (iii) n n eset. Egy determinánsban valamely elem aldeterminánsának nevezzük az adott elem sorának és oszlopának elhagyásával keletkez kisebb determinánst. A determináns kiszámolása rekurzív módon aldeterminánsokkal: tetsz legesen választott sorban vagy oszlopban minden elemet megszorzunk a hozzá tartozó aldeterminánssal, majd a kapott szorzatokat a,,sakktáblaszabály szerinti el jellel ellátva összeadjuk M veletek vektorokkal és mátrixokkal. (i) Vektorok és mátrixok összeadása és számmal való szorzása: elemenként. (ii) Mátrixok sor-oszlop-szorzása: a szorzat minden elemét úgy kapjuk meg, hogy az els mátrix megfelel sorát skalárisan szorozzuk a második mátrix megfelel oszlopával. ("Megfelel " = annyiadik, mint a vizsgált elemnek.) ( ) ( ) ( ) a b e f ae + bg af + bh A 2 2 esetben: =. c d g h ce + dg cf + dh ). Megj.: (i) Általában AB BA. (ii) Azért ilyen bonyolult, mert így lesz (AB)x = A(Bx) x vektorra. (iii) Fogalmak négyzetes mátrixra. Egységmátrix: I := Az I-vel való szorzás helybenhagy: IA = A = AI. 0 1 Inverz : A inverze az az A 1 -gyel jelölt mátrix, melyre A 1 A = AA 1 = I. Nem minden mátrixnak van inverze. Tétel: A 1 det(a) 0. 4

5 4. Lineáris algebra/2. Függvények I. Mátrixok sajátértékeinek, sajátvektorainak értelmezése és kiszámítása. (i) Def.: Az A R n n mátrixnak λ R sajátérték e és v R n \ {0} egy hozzá tartozó sajátvektor, ha Av = λv. Szemléletes jelentés: az A-val való szorzás a v sajátvektornak csak a hosszát befolyásolja, az irányát nem. (ii) Hogyan találhatók meg a sajátértékek? Észrevétel: λ sajátérték (A λi)v = 0, ahol v 0. Ekkor (A λi)-nak nincs inverze, kül. v = (A λi) 1 0 = 0 lenne. Állítás: λ pontosan akkor sajátértéke az A mátrixnak, ha det (A λi) = 0. II. Függvények fogalmai 1. Függvény=hozzárendelés, megadása: értelmezési tartomány és hozzárendelési szabály. Jelölés: f : A B, x f(x). Itt D f := A jelöli az értelmezési tartományt. Értékkészlet: amiket felvesz, R f B. 2. Injekció, szuperjekció (vagy szürjekció), bijekció. (Rajzok) Def.: egy f : A B függvény (i) injekció, ha különböz khöz különböz ket rendel, (ii) szuperjekció, ha R f = B, (iii) bijekció, ha injekció és szuperjekció (azaz kölcsönösen egyértelm A és B közt). (Jelz ként: injektív függvény stb.) 3. Kompozíció, inverz. (Rajzok) Def.: (i) Kompozíció: egymás utáni elvégzés. Ha g : A B, f : B C, akkor f g : A C, D f g := {x D g : g(x) D f }, x f(g(x)). (ii) Inverz: visszairányú hozzárendelés. Ha f : A B injekció, akkor f 1 : B A, D f 1 = R f, y f 1 (y) pedig az f(x) = y egyenl ség egyetlen x megoldása. 5

6 I. Monotonitás, inverz. 5. Egyváltozós valós függvények. Monoton, szigorúan monoton függvény fogalma. (Rajz is.) Szigorúan monoton függvény injektív. Inverz grakonja: tükrözés a 45 -os tengelyre. Ui. f : x y f 1 : y x, így a két tengely szerepet cserél. Pl. f(x) = x 2 R + -on: inverzének (a gyökfüggvénynek) ábrázolása. II. Elemi függvények és grakonjaik. (a) Hatványfüggvények: f(x) := x α (α R adott kitev ). Most csak x > 0 változóval (ill. x 0, ha α 0) rajzoljuk fel általánosan. Rajzok: α > 1, α = 1, 0 < α < 1, α = 0, α < 0 esetek. Szigorúan monotonak (kivéve, ha α = 0). Megj.: x α értelmes x < 0 esetén is α = p, ahol q {1, 3,...} páratlan. q Ilyenkor a grakon az x > 0 eset tükörképe az origóra (ha p páratlan) vagy az y tengelyre (ha p páros). Rajzok: pl. x 3, x 4. (b) Exponenciális függvények: f(x) := a x (a > 0 adott alap). Rajzok: 0 < a < 1, a = 1, a > 1 esetek (lásd ea.) Szigorúan monotonak (kivéve a = 1). Inverzeik: a logaritmusfüggvények, azaz az a alapú exp. függvény inverze az a alapú log. függvény (x log a x). Rajzok (tükrözéssel): 0 < a < 1, a > 1 esetek (lásd ea.) Szigorúan monotonak. (c) Trigonometrikus függvények. Rajzok: sin, cos, tg, ctg (lásd ea.) III. Exponenciálisból származó nevezetes függvények (rajzokkal) e x (e 2.71) e x (tükrözéssel vagy közvetlenül) e x2 e x2 /2 e (x σ)2 /2 (ahol σ > 0): eltolással. Általános elv: f(x c) és f(x + c) grakonja az f(x)-éb l jobbra/balra való eltolással. 6

7 6. Geometria, trigonometria, vektorm veletek I. Pithagorasz-tétel, pontok távolsága síkban ill. térben. Pith.-tétel (síkban, derékszög háromszögre): a 2 + b 2 = c 2 (rajz). Térben a 2 + b 2 + c 2 = d 2 (rajz). Következmények: 1. Pontok távolsága. Síkban d(a, B) = (a 1 b 1 ) 2 + (a 2 b 2 ) 2, térben ugyanez 3 taggal. 2. Kör egyenlete (a 1, a 2 ) középponttal: a P = (x, y) pontokra d(p, A) = r, azaz (négyzetre emelve): (x a 1 ) 2 + (y a 2 ) 2 = r 2. II. Trigonometria. 1. Szögfüggvények értelmezése. (a) cos α, sin α: az x tengellyel α szöget bezáró egységvektor koordinátái. (b) Derékszög háromszögben: cos α = b c, sin α = a c, tg α = a b. (c) tg α := sin α 1, ctg α := = cos α, ha a nevez nem 0. cos α tg α sin α (d) Ha α nem 0 és 360 közé (azaz radiánban nem 0 és 2π közé) esik: periodikus kiterjesztés. 2. Polárkoordináták: bármely (x, y) (0, 0)-hoz! r > 0 és φ [0, 2π) : x = r cos φ, y = r sin φ. 3. Nevezetes azonosságok (bármely α, β R esetén). sin 2 α + cos 2 α = 1 (Pithagoraszból), sin 2α = 2 sin α cosα, cos 2α = cos 2 α sin 2 α. IV. Vektorm veletek cos α = sin( π 2 α), Az n-dimenziós R n tér: a = (a 1, a 2,..., a n ) szám-n-esek (vektorok). Gyakorlatban n = 2, 3 (sík, ill. tér). Nagyobb n: pl. állapottér, pl. egy térben mozgó részecske helye és sebessége együtt egy 6-dimenziós állapotvektorral írható le, az összes lehet ség alkotja R 6 -ot. A továbbiakban legyenek a = (a 1, a 2,..., a n ) és b = (b 1, b 2,..., b n ) R n -beli vektorok. A gyakorlatban n = 2, 3 (sík, ill. tér). (Nagyobb n el fordul pl. állapottér esetén.) 1. Összeadás és számmal való szorzás: a + b := (a 1 + b 1, a 2 + b 2,..., a n + b n ), c a := (ca 1, ca 2,..., ca n ). Geometriai jelentése 2 és 3 dimenzióban (rajzon: illesztés ill. nyújtás). 2. Vektorok szorzása egymással. Két különböz értelemben deniáljuk: skalárszorzat: 2 és 3 dimenzióban (ill. formailag akármennyiben) is értelmezzük, értéke valós szám; vektoriális szorzat: csak 3 dimenzióban értelmezzük, értéke is 3-dimenziós vektor. 7

8 (i) Skalárszorzat. Motiváló példa: er munkája, komponens számít. W = F s cos γ, azaz csak a párhuzamos A skalárszorzat értelmezése: a, b R n esetén a b := a b cos γ. Hasonló tulajdonságok, mint a számok szorzásánál: (a + b) c = a c + b c, ta b = a tb (t R), a b = b a, a a = a 2. Viszont: általában (a b) c a (b c); a b = 0 a b. A skalárszorzat koordináták segítségével való kiszámítása: Pl. síkon (azaz ha a, b R 2 ): a b = a 1 b 1 + a 2 b 2, térben (azaz ha a, b R 3 ): a b = a 1 b 1 + a 2 b 2 + a 3 b 3. a b = n a i b i. i=1 Cauchy-Schwarz-egyenl tlenség: a b a b. (ii) Vektoriális szorzat. Értelmezése: ha a, b R 3, akkor a b R 3 az a vektor, melyre 1. a b mer leges a-ra és b-re is, 2. a, b és a b jobbrendszert alkot, 3. a b = a b sin γ. Tulajdonságok. Mint a számok szorzásánál: (a + b) c = a c + b c, ta b = a tb (t R). Viszont: a b = b a, a a = 0 (és általában a b = 0 a b). Itt tehát a mer leges komponens számít. A vektoriális szorzat koordináták segítségével való kiszámítása: egy i, j, k jobbrendszer derékszög koordináta-rendszerben a b = i j k a 1 a 2 a 3 b 1 b 2 b 3, azaz a b = a 2 b 3 a 3 b 2 (a 1 b 3 a 3 b 1 ) a 1 b 2 a 2 b 1. 8

9 7. Végtelen számsorozatok és sorok I. Sorozatok. 1. Sorozat és határérték fogalma. Sorozat: N + R leképezés. Jelölés: tagjait a 1, a 2, a 3... indexekkel, a sorozat (a n ). Példa: az 1 n sorozat, azaz 1, 1, 1,.... Közelít a 0-hoz, de 0 nem tagja, hanem mije? 2 3 Deníció (sorozat határértéke). lim a n = A R, ha ε > 0 N = N(ε) N + : n > N esetén a n A < ε. Szemléletesen: A " N = N(ε) N + : n > N esetén" kitétel helyett lazábban "elég nagy n-re" mondható. Az " a n A < ε" tulajdonság: a n (A ε, A + ε). Gyakori jelölés: a n A. Ha van ilyen A, akkor (a n ) konvergens. Példa: az a n := 1 n sorozat, azaz 1, 1 2, 1 3,.... Ekkor lim a n = 0, másképpen a n Tétel (határérték és m veletek). Ha lim a n = A és lim b n = B, akkor: lim(a n + b n ) = A + B, lim(a n b n ) = A B, lim(a n b n ) = A B, ha B 0: 3. mint határérték. lim a n bn = A B, ha a n 0 és α R: lim a α n = A α. Példa: az n 2 sorozat, azaz 1, 4, 9, 16,... "hova tart"? Def. (i) lim a n = +, ha K > 0 N = N(K) N + : n > N esetén a n > K. (Azaz "elég nagy n-re" a n > K.) (ii) lim a n =, ha K < 0... "-... a n < K. M veletek: az el bbi tétel értelemszer en kiterjeszthet limeszre, lásd gyakorlat. 4. Def.: e := lim ( n) n ( 2.71, irracionális). II. Sorok. 1. Téma: hogyan lehet sok szám összegét értelmezni? Példa (rajzon, számegyenesen): n +... = 2. Def. Legyen (a n ) adott sorozat, n N + esetén s n := n a k = a 1 + a a n. Azt mondjuk, hogy a a n végtelen sor konvergens, ha az (s n ) sorozat konvergens (azaz lim s n = S R). A sor összege S. További elnevezések: a végtelen sor n. tagja a n, n. szelete vagy részletösszege s n. Megj.: a sor indexelése nemcsak 1-t l, hanem más egészt l is indulhat. 2. Fontos példa: mértani sor, q n, ahol q < 1. Ekkor s n := n így q n konvergens és összege k=1 k=0 q k = 1 qn+1 1 q 1 1 q, q n = 1. (A fenti példa: q = 1/2 eset.) 1 q 9

10 3. A konvergencia szükséges feltétele. Állítás: ha a n konvergens, akkor lim a n = 0. Elégséges-e? Pl: 1 n divergens. Tehát a lim a n = 0 feltétel csak szükséges, de nem elégséges. A konvergencia azon múlik, milyen gyorsan tart a n 0-hoz. 4. Konvergenciakritériumok. Tétel. (1) (Gyökkritérium). Ha lim n a n =: q, akkor q < 1 esetén a n konvergens, q > 1 esetén a n divergens. (2) (Hányadoskritérium). Ha lim a n+1 a n =: q, akkor q < 1 esetén a n konvergens, q > 1 esetén a n divergens. Ha q = 1, egyik sem ad információt. 10

11 8. Függvények folytonossága és határértéke 1. A f deníciók. Többféle ekvivalens deníció létezik, mi itt sorozatokat használunk. Def.: (a) Legyen a D f. f folytonos a-ban, ha x n a D f -beli sorozatra f(x n ) f(a). (b) Legyen a D f, b R. lim a f = b, ha x n a, x n a D f -beli sorozatra f(x n ) b. 2. A két fogalom kapcsolata. Legyen most I intervallum, f : I R, a I. Áll. f folytonos a-ban lim a f = f(a). Köv.: folytonosság lim a f; visszafelé: csak ha ez épp f(a). 3. Folytonosság halmazon. Def.: f : H R folytonos, ha a H pontban f folytonos. Tétel (elemi függvények, biz. nélkül): az f(x) := x α, a x, log a x, sin x, cos x függvények folytonosak teljes D f -jükön. 4. M veletek. (a) Értelmezésük: pontonként, azaz pl. (f + g)(x) := f(x) + g(x), (f g)(x) := f(x) + g(x) stb.; valamint f g H-ban, ha f(x) g(x) x H. (b) Tulajdonságok: részben a sorozatoknál látottak megfelel i. Határértékre: Tétel. Legyen lim a f = b, lim a g = c. Ekkor lim a (f ± g) = b ± c; lim a (f g) = b c; ha c 0: lim a f g = b c ; ha b > 0: lim a f α = b α. Folytonosságra: Tétel. Legyen f és g folytonos a-ban/egy H halmazon. Ekkor f ± g, f g, (ha értelmes:) f g és f α is folytonos a-ban/a H halmazon. 5. Limesz és végtelen. Def.: (i) lim a f = +, ha x n a, x n a D f -beli sorozatra f(x n ) +. ( -re hasonlóan.) (ii) lim + f = b, ha x n + D f -beli sorozatra f(x n ) b. (Itt b lehet véges vagy végtelen is.) Pl.: f(x) := 1 x 2, ekkor lim 0 f = + és lim + f = 0 (rajz is). 11

12 9-10. Egyváltozós függvények deriválása. 1. Bevezet példa: mekkora egy szabadon es test pillanatnyi sebessége a t 0 id pillanatban? (Feltevés: a 0 id pontban elejtjük.) (i) Kiszámítás. A test által megtett út: s(t) := g 2 t2. Itt g 10, így tekintsük az s(t) := 5t 2 út-id függvényt. s Átlagsebesség a [t 0, t] id intervallumban: = s(t) s(t 0) t t t 0 = 5t2 5t 2 0 t t 0 = 5(t + t 0 ). Pillanatnyi sebesség t 0 -ban: amihez ez közelít t t 0 esetén. Azaz: s(t) s(t v(t 0 ) = lim 0 ) t t0 t t 0 = 10t 0. (ii) Értelmezés: 2. A derivált fogalma. v(t 0 ) az s függvény pillanatnyi megváltozása. Ehhez szükséges def.: egy H R halmaznak a H bels pontja (jelölés: a int H), ha az a pont körül valamely nyílt intervallum is része H-nak. (Rajz: H = [ 1, 1] esetén 0 int H, 1 int H.) Def. Azt mondjuk, hogy az f : R R függvény az a int D f pontban dierenciálható és a-beli deriváltja f f(x) f(a) (a) := lim, ha ez a limesz létezik x a x a és véges. Megj. Az x f(x) f(a) (ha x a) függvényt a-beli különbségihányados-függvénynek x a hívjuk, jelentése f/ x az a pont körül. A példában ez az átlagsebesség az id függvényében. Ennek limesze az a-beli derivált; ez a példában a pill. sebesség, azaz út-id függvény t 0 -beli deriváltja: v(t 0 ) = s (t 0 ). 3. A derivált szemléletes jelentése. Itt f(x) f(a) x a az (a és x pontokhoz tartozó) szel meredeksége, így a derivált értéke ezek limesze. Ebb l következ en: Az f (a) derivált értéke az a-beli érint meredeksége (rajz). Ennek jelentése az f függvény a-beli "pillanatnyi" változásának mértéke. 4. A derivált jelentése közelítés szempontjából. (i) x = a + h helyettesítéssel kapható a fentivel ekvivalens def.: f (a) := lim f(a+h) f(a) h 0 h, ha ez a limesz és véges. (ii) Inhomogén lineáris függvénynek hívunk egy l(x) := mx + b függvényt, ahol m, b R állandók. A derivált fenti deníciója alapján: ha h 0, akkor f (a) f(a+h) f(a), azaz f(a+h) f(a)+f (a)h =: l(h) inhom. lin. függvény. h Geometriai jelentés (rajzzal): h 0 esetén a két függvény kb. azonos, s t itt m = f (a), így a-beli meredekségük azonos. 12

13 5. További fogalmak. (i) Egyoldali derivált: az a D f pontban f +(a) f(x) f(a) := lim, ha ez a limesz létezik és véges. x a+ x a (Ugyanígy f (a) :=..., ahol x a.) Áll.: f (a) f +(a), f (a) és ezek egyenl k. Példa: f(x) := x és a = 0. Ekkor f +(0) x 0 := lim x 0+ x 0 f (0) = 1, így f nem dierenciálható 0-ban. = lim 1 = 1, ugyanígy x 0+ Rajz: a grakonnak "törése" van (míg dierenciálható esetben "sima"). (ii) Deriváltfüggvény. Ha f : H R dierenciálható a H halmazon (azaz H minden pontjában), akkor az x f (x) függvényt f deriváltfüggvényének hívjuk, jelölése f : H R. (Pl. a fenti s(t) = 5t 2 esetén s (t) = 5t t R, rajz.) 6. Kapcsolat a folytonossággal. Áll.: Ha f dierenciálható a-ban, akkor ott folytonos is. Visszafelé ez nem igaz, vagyis ha f folytonos a-ban f dierenciálható a-ban. Például f(x) := x folytonos a = 0-ban, de ott nem dierenciálható. 7. A derivált kiszámítása: deriválási szabályok. Deriváltfüggvényre írjuk fel, pontonként is érvényes. Tétel. Legyenek f, g : H R dierenciálhatóak a H halmazon. Ekkor (f ± g) = f ± g, (cf) = cf (ha c R állandó), (f g) = f g + fg, Vigyázat! f g ( f g ) = f g fg (ha g 0),... f g 2 g (f g) = (f g) g ( pontonként: (f(g(x)) = f (g(x)) g (x) ). f g Tétel (inverz deriváltja). Legyen f 0 az I intervallumon. Ha x I és y = f(x), akkor (f 1 ) (y) = 1 f (x). (Rajzon: a meredekség a másik irányból reciprok.) 8. Elemi függvények deriváltjai. Deriválttáblázat: lásd pl. benedek/analizis/pdf/seged/derivalttablazat.pdf Fejb l tudni kell: f(x) := x α, a x, log a x, sin x, cos x, (tg x, ctg x), sh x, ch x, (th x, cth x) deriváltját. (Az arc és az area függvényekét csak táblázatból.) A zárójelesek könnyen ki is számíthatók az el ttük lev kb l. 13

14 9. Magasabbrend derivált. Def. Ha f : I R dierenciálható egy I intervallumban és f dierenciálható a inti-ben, akkor f kétszer dierenciálható a-ban és f (a) := (f ) (a). n-edik derivált: hasonlóan, rekurzióval, f (n) (a) := (f (n 1) ) (a). f akárhányszor dierenciálható, ha n-re n-szer dierenciálható. 14

15 11. Hatványsorok, Taylor-sor 1. Hatványsorok. (a) Bevezet példa. Mely x R esetén konvergens a x k sor? Tudjuk: (x helyett q-val): ha x < 1, és ekkor összege Itt n-re s n (x) := n x k egy függvény a ( 1, 1) intervallumban, amely x-enként k=0 konvergál az f(x) := 1 1 x (b) Def. és alaptulajdonságok. k=0 1 1 x. függvényhez, az ún. összegfüggvényhez. Def. Adott (c n ) számsorozat esetén 0 közep hatványsornak hívjuk a sort. Általában, a közep hatványsor: c n (x a) n. c n x n Tétel. Tegyük fel, hogy létezik és véges α := lim n c n vagy α := lim c n+1 c n. Legyen R := 1 α (ha α = 0, akkor R := + ). A c n x n hatványsor konvergens, ha x < R, és (véges R esetén) divergens, ha x > R. (c) Hatványsorok deriválása. Tétel. Legyen f(x) = c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x valamely R > 0 esetén x < R mellett. Ekkor az f összegfüggvény dierenciálható, és f (x) = c 1 + 2c 2 x + 3c 3 x ( x < R). Köv.: Taylor-féle együtthatóképlet: c n = f (n) (0) n! ( n N). 2. Taylor-sorok. Adott f függvény el áll-e alkalmas hatványsor összegeként? A Taylor-féle együtthatóképletb l következik: Tétel. Ha f(x) = c n x n ( x < R valamely R > 0 mellett), akkor f akárhányszor dierenciálható, és c n = f (n) (0) n! ( n N). Def. Az f függvény 0 közep Taylor-sora a f (n) (0) n! x n hatványsor. Példa: f(x) := e x. Ekkor n N esetén f (n) (x) = e x, így f (n) (0) = 1. Ezért e x Taylor-sora 1 n! xn. Hányadoskritériummal a n+1 a n = n! x x = 0 < 1, így (n+1)! n+1 x R esetén a sor konvergens. Hasonló számolással kapható sin x és cos x Taylor-sora. Tétel. x R esetén e x = x n n!, cos x = ( 1) n x2n Megj.: a közep Taylor-sor: 3. Közelítés Taylor-polinommal. f (n) (a) n! (x a) n. (2n)!, sin x = ( 1) n x2n+1 (2n+1)!. f Legyen f(x) = (n) (a) (x a) n az (a R, a + R) intervallumon. E sornak kiszámítani csak a szeleteit tudjuk, n! ezekre: 15

16 Def. Az f a-beli n-edfokú Taylor-polinomja T n (x) := n f (k) (a) (x a) k = f(a) + f (a)(x a) + f (a) (x a) f (n) (a) (x a) n. k! 2 n! k=0 Ezek n növelésével egyre pontosabban közelítik f-et az a pont körül. Szemléltetés (rajzzal). Legyen x = a + h, ekkor T 0 -nál: T 0 (a + h) = f(a) T 1 (a + h) = f(a) + f (a)h f(a + h) T 2 (a + h) = f(a) + f (a)h + f (a) h stb.... egyre jobb közelítés. f(a+h) f(a) is érvényes közelítés (bár elég durva), ez épp a folytonosság. T 1 -nél: f(a + h) f(a) + f (a)h lineáris közelítés, amit a deriváltnál láttunk. T 2 -nél: parabolával közelítjük. 16

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1 Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

1. Analizis (A1) gyakorló feladatok megoldása

1. Analizis (A1) gyakorló feladatok megoldása Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

1. Számsorozatok és számsorok

1. Számsorozatok és számsorok 1. Számsorozatok és számsorok 1.1. Számsorozatok A számsorozatok egyszer függvények, amelyek hasznos épít kövei lesznek a kés bbi fogalmaknak. 1.1 Deníció. Az a : IN IR típusú függvényeket (valós) számsorozatoknak

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Matematika elméleti összefoglaló

Matematika elméleti összefoglaló 1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a 1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása . tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben