ANALÍZIS III. ELMÉLETI KÉRDÉSEK

Hasonló dokumentumok
ANALÍZIS III. ELMÉLETI KÉRDÉSEK

Funkcionálanalízis. n=1. n=1. x n y n. n=1

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

Metrikus terek, többváltozós függvények

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

A fontosabb definíciók

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis I. beugró vizsgakérdések

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén

Programtervező informatikus I. évfolyam Analízis 1

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

f(x) a (x x 0 )-t használjuk.

Folytonos görbék Hausdorff-metrika Mégegyszer a sztringtérről FRAKTÁLGEOMETRIA. Metrikus terek, Hausdorff-mérték. Czirbusz Sándor

A Matematika I. előadás részletes tematikája

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Boros Zoltán február

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

Kiegészítő jegyzet a valós analízis előadásokhoz

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Numerikus módszerek 1.

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Modellek és Algoritmusok - 2.ZH Elmélet

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

Differenciálszámítás normált terekben

Matematika alapjai; Feladatok

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK

Analízis I. Vizsgatételsor

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

Sorozatok, sorozatok konvergenciája

1. Számsorozatok és számsorok

Tartalomjegyzék. 1. Előszó 1

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Analízis előadás és gyakorlat vázlat

2010. október 12. Dr. Vincze Szilvia

Függvény határérték összefoglalás

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Gyakorló feladatok I.

Mincsovics M. E. Havasi Á. Haszpra T. MATEMATIKA 3 és MATEMATIKA 4 GY Földtudomány és Környezettan BSc hallgatók részére

Komplex számok. A komplex számok algebrai alakja

INFORMATIKAI KAR. Funkcionálanalízis a jelfeldolgozás és a szimuláció matematikai alapjai

Felügyelt önálló tanulás - Analízis III.

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

FRAKTÁLGEOMETRIA Feladatok. Czirbusz Sándor április 16. A feladatok végén zárójelben a feladat pontértéke található.

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

Sorozatok és Sorozatok és / 18

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

MATEMATIKA 2. dolgozat megoldása (A csoport)

Függvények folytonosságával kapcsolatos tételek és ellenpéldák

Konvex optimalizálás feladatok

Kudela Gábor. Topológiai kisokos. matematika alapú szakok hallgatóinak. Freeware jegyzet,

Összeállította: dr. Leitold Adrien egyetemi docens

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

Matematika A2 vizsga mgeoldása június 4.

Többváltozós függvények Jegyzet. Pap Margit, Tóth László Pécsi Tudományegyetem

Numerikus módszerek 1.

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

ANALÍZIS TANÁROKNAK II.

Matematika I. NÉV:... FELADATOK:

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

Gazdasági matematika I.

Gazdasági matematika I.

Kalkulus I. gyakorlat Fizika BSc I/1.

harmadik, javított kiadás

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak tanév 2. félév

17. előadás: Vektorok a térben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Integr alsz am ıt as. 1. r esz aprilis 12.

Matematika A1a Analízis

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

Matematika A1a Analízis

Matematikai analízis 1. Szász Róbert

Függvények határértéke és folytonossága

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Matematika A1a Analízis

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

Valószínűségi változók. Várható érték és szórás

2014. november 5-7. Dr. Vincze Szilvia

Függvényhatárérték és folytonosság

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Átírás:

ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így add tovább! 3.0 Unported Licenc feltételeinek megfelelően szabadon felhasználható. 1

1. Definiálja a metrikus teret! Legyen M. Az (M, ϱ) párt metrikus távolságnak nevezzük, ha ϱ: M M R és 1. ϱ(x, y) 0 ( x, y M), 2. ϱ(x, y) = 0 x = y, 3. ϱ(x, y) = ϱ(y, x) ( x, y M), 4. ϱ(x, y) ϱ(x, z) + ϱ(z, y) ( x, y, z M). Ahol ϱ a metrika, ϱ(x, y) az x és y távolsága. 2. Hogyan értelmeztük az (R n, ϱ 2 ) metrikus teret? (R n n, ϱ 2 ) metrikus tér, ahol ϱ 2 (x, y) := (x i y i ) 2. 3. Fogalmazza meg a Cauchy-Bunyakovszkij-féle egyenlőtlenséget! a i, b i R i = 1,... n. Ekkor n a i b i n a 2 i n b 2 i b i = 0 i = 1,... n vagy λ R : a i = λb i i = 1,... n. 4. Irja le a normált tér definícjóját! (X, ) normált tér, ha 1. X lineáris vektortér R felett, 2. : X R és i, x 0 ( x X), ii, x = 0 x = 0, iii, λx = λ x ( x X, λ R), iv, x + y x + y ( x, y X). 5. Definiálja R n -en a 2 (1 p + ) normát! 6. Hogyan értelmezzük az (R n, 2 ) normált térben egy pont környezetét? (R n, 2 ) normált tér, a R n, r > 0. K r (a) := {x R n : x a 2 < r} az a r-sugarú környezete vagy az a közepű r-sugarú nyílt gömb. 2

7. Mit jelent az, hogy egy (R n, 2 )-beli sorozat konvergens? (R n, 2 ) normált tér, (a k ): N R n vektorsorozat konvergens, ha α R n, ε > 0 k 0 N, k k 0 : a k α 2 < ε. Jelölés: α = lim a k. 8. Milyen ekvivalens állításokat ismer normált térbeli sorozat konvergenciájára? (R n, 2 ) normált tér, (a k ): N R n. Ekkor a következő tulajdonságok ekvivalensek: 1. (a k ) konvergens, 2. α R n, ε > 0 k 0 N, k k 0 : a k K ε (α), 3. α R n lim a k α 2 = 0. 9. Fogalmazza meg normált térbeli konvergens sorozatok alaptulajdonságait! (R n, 2 ) norrmált tér, (a k ): N R n. Ekkor 1. Ha (a k ) konvergens és lim a k = α, akkor i,! α, ii, (a k ) korlátos, iii, ν : N N indexsorozatra lim a ν(k) = α 2. ν 1, ν 2 : N N indexsorozat. Ha lim a ν1 (k) lim a ν2 (k), akkor (a k ) divergens. 10. Milyen műveleti tételeket ismer normált térbeli konvergens sorozatokra? (R n, 2 ) normált tér, (a k ), (b k ): N R n sorozatok konvergensek, α = lim a k, β = lim b k. Ekkor 1. (a k + b k ) is konvergens, és lim(a k + b k ) = α + β, 2. (λa k ) is konvergens, és lim(λa k ) = λα (λ R). 11. Hogyan jellemezhető R n -beli sorozat konvergenciája a koordinátasorozatokkal? Ekkor (a k ): N R n, a k = (a (1) k, a(2) k,..., a(n) k ) Rn. lim a k = α, k α = (α (1),..., α (n) ) R n lim a (i) k = α (i) ( i = 1,... n). k 12. Mit jelent az, hogy egy normált térbeli sorozat Cauchy-sorozat? (a k ): N R n Cauchy sorozat, ha ε > 0, k 0, k, l k 0 : a k a l < ε. 3

13. Milyen kapcsolat van normált térben a Cauchy-sorozatok és a konvergens sorozatok között? (a k ): N R n konvergens Cauchy sorozat. 14. Definiálja a torlódási pont fogalmát! A R n, a R n az A torlódási pontja, ha K(a) : K(a) \ {a} A. Jelölés: A a torlódási pontok halmaza. 15. Milyen ekvivalens állításokat ismer a torlódási pontról? a A K(a) : K(a) A végtelen halmaz a A (a k ): N A injektív sorozat: lim a k = a. 16. Definiálja a belső pont fogalmát! a R n belső pontja A R n -nek, ha K(a) A. 17. Mi a nyílt halmaz definíciója? A R n halmaz nyílt halmaz, ha minden pontja belső pont. 18. Milyen állításokat ismer zárt halmaz jellemzésére? A R n zárt A A, A R n zárt (a k ): N A konvergens sorozatra lim a k = α A. 19. Fogalmazza meg a Bolzano-Weierstrass-féle kiválasztási tételt! Ha az (a k ): N R n korlátos sorozat, akkor kiválasztható egy (a k ) ν = (a νk ) konvergens részsorozat. 20. Definiálja a normált terek közötti leképezések határértékét! f R n R m (n, m 1), a D f. f-nek határértéke a-ban, ha A R m, ε > 0 δ > 0, x K δ (a) \ {a} D f : f(x) K ε (A) A R m, ε > 0, δ > 0, x D f, 0 < x a < δ : f(x) A < ε. 21. Definiálja a normált terek közötti leképezések pontbeli folytonosságát! f R n R m folytonos az a D f pontban, ha ε > 0 δ > 0, x K δ (a) D f : f(x) K ε (f(a)) ε > 0 δ > 0, x D f, x a < δ : f(x) f(a) < ε. Jelölés: lim f = A, f C(a). a 22. Hogyan szól a folytonosságra vonatkozó átviteli elv? f R n R m, a D f. Ekkor f C(a) (x k ): N D f, lim x k = a : lim f(x k ) = f(a). 4

23. Mit tud a korlátos és zárt halmazon értelmezett folytonos függvény értékkészletéről? Ha f R n R m folytonos függvény és D f korlátos és zárt, akkor R f is korlátos és zárt. 24. Mondja ki a Weierstrass tételt! Ha f R n R folytonos függvény, D f korlátos és zárt, akkor max f és min f. 25. Mit tud a korlátos és zárt halmazon értelmezett folytonos függvény inverzéről? Ha f R n R m folytonos függvény, D f korlátos és zárt, f injektív, akkor f 1 folytonos. 26. Definiálja az egyenletes folytonosságot! f D n D m függvény egyenletesen folytonos, ha ε > 0 δ > 0, x, y D f, x y < δ : f(x) f(y) < ε. 27. Mondja ki a Heine-tételt! Ha f D n D m függvény folytonos, D f korlátos és zárt, akkkor f egyenletesen folytonos. 28. Mi a kontrakció definíciója? X R n, f : X X kontrakció, ha 0 q < 1 : f(x) f(y) q x y ( x, y X). 29. Fogalmazza meg a Banach-féle fixpont-tételt! X R n, f : X X kontrakció, X zárt. Ekkor i, f-nek! fixpontja, azaz! x X : f(x ) = x, ii, Ha x 0 X tetszőleges, x n+1 := f(x n ), akkor (x n ): N X konvergens és lim x n = x, iii, x n x qn 1 q x 1 x 0 (n N). 30. Mit jelent az, hogy egy L: R n R m leképezés lineáris? L: R n R m lineáris leképezés, ha Jelölés: α(r n, R m ). L(αx + βy) = αl(x) + βl(y) ( x, y R n α, β R). 31. Milyen normát értelmeztünk lineáris leképezésekre? L α(r n, R m ) operátornormája L := sup{ L(h) : h 1}. 5

32. Milyen egyenlőtlenséget ismer lineáris leképezések normájára? L(h) L h (h R n ). 33. Írja le az f R n R m függvény pontbeli (totális) deriválhatóságának a definícióját! f R n R m deriválható az a int D f pontban, ha Ekkor L = f (a). L α(r n, R m ) : lim h 0 f(a + h) f(a) L(h) h = 0. 34. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra a lineáris közelítéssel? f R n R m, a int D f. f D(a) L α(r n, R m ), ε: R n R m, lim 0 ε = 0 : f(a+h) f(a) = L(h)+ε(h) h 35. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra mátrixokkal? f R n R m, a int D f. f D(a) A R m n f(a + h) f(a) Ah : lim = 0 h 0 h A R m n, ε: R n R m, lim ε = 0 : f(a + h) f(a) = Ah + ε(h) h. 0 Ekkor f (a) = A. 36. Milyen kapcsolat van a pontbeli deriválhatóság és folytonosság között? 37. A deriválhatóság és a koordináta függvények deriválhatósága közötti kapcsolat. 38. Adja meg a kompozíció függvény deriváltját! 39. Adja meg az R n R típusú függvény parciális deriváltjainak a fogalmát! 6