A rekurzív módszer Erdős Gábor, Nagykanizsa

Hasonló dokumentumok
Mérések, hibák. 11. mérés. 1. Bevezető

Független komponens analízis

Kidolgozott minta feladatok kinematikából

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

A figurális számokról (IV.)

Laplace transzformáció

GÉPÉSZETI ALAPISMERETEK

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

1. Gyors folyamatok szabályozása

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

ξ i = i-ik mérés valószínségi változója

Nevezetes sorozat-határértékek

6. MÉRÉS ASZINKRON GÉPEK

Mindennapjaink. A költő is munkára

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Véges matematika 1. feladatsor megoldások

I. FEJEZET BICIKLIHIÁNYBAN

2. fejezet. Számsorozatok, számsorok

KOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen,

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Ingatlanfinanszírozás és befektetés

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

VII. A határozatlan esetek kiküszöbölése

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

VI.Kombinatorika. Permutációk, variációk, kombinációk

Egyenáramú motor kaszkád szabályozása

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Maradékos osztás nagy számokkal

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

Villamos gépek tantárgy tételei

Dinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg

A várható érték vizsgálata u és t statisztika segítségével

Populáció nagyságának felmérése, becslése

Sorozatok A.: Sorozatok általában

Eseme nyalgebra e s kombinatorika feladatok, megolda sok

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I.

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

DIFFERENCIÁL EGYENLETRENDSZEREK DR. BENYÓ ZOLTÁN

Matematika I. 9. előadás

Feladatok és megoldások a 11. heti gyakorlathoz

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

18. Differenciálszámítás

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

Gyakorló feladatok a mozgások témaköréhez. Készítette: Porkoláb Tamás

A kémiai kötés magasabb szinten

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni.

Jeges Zoltán. The mystery of mathematical modelling

Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Családi állapottól függõ halandósági táblák Magyarországon

1-1. számú melléklet PÁLYÁZATI FELHÍVÁS

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

Prímszámok a Fibonacci sorozatban

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

PISZKOZAT. 1Érkezett : 1. A KÉRELMEZŐ ADATAI. A kérelmező szervezet rövidített neve: CKSE 2Gazdálkodási formakód:521 3Tagsági azonosítószám 1322

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

A Venn-Euler- diagram és a logikai szita

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Eseményalgebra, kombinatorika

A Cauchy függvényegyenlet és néhány rokon probléma

Stabilitás. Input / output rendszerek

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag

Máté: Orvosi képalkotás

Diszkrét matematika II., 3. előadás. Komplex számok

Tetszőleges mozgások

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Általános taggal megadott sorozatok összegzési képletei

Egyedi cölöp süllyedésszámítása

Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

2.1. A sorozat fogalma, megadása és ábrázolása

Gyakorló feladatok Az alábbiakon kívül a nappalis gyakorlatokon szereplő feladatokból is lehet készülni.

ÓRATERV Felhasznált irodalom:

Komplex számok (el adásvázlat, február 12.) Maróti Miklós

10.M ALGEBRA < <

1. Gyökvonás komplex számból

Átírás:

Maga zitű matematikai tehetéggodozá A rekurzív módzer Erdő Gábor, Nagykaiza Gyakra találkozuk olya feladatokkal, amelyekbe agy zámok zerepelek: pot, zámkártya, tb. Az ilye eetekbe kézefekvő ötlet, hogy az eredeti feladat helyett előzör egy jóval egyzerűbb problémát kezdük vizgáli. Mi a helyzet, ha a potok záma, 3, 4, Ha ézrevezük valami zabályoágot, akkor azt megpróbáljuk igazoli, majd alkalmazi az eredeti problémába zereplő agy zámokra. Termézetee általáo ikolai zite agyo gyakra megelégzük a ejté megfogalmazáával é alkalmazáával, é em mide eetbe kell hogy törekedjük a bizoyítára. Vaak azoba calóka feladatok. Olyaok, amelyekbe látzólag em olya agy zámok zerepelek: yolczög cúcai, idiá, építőkocka. Cábító, hogy azoal az eredeti problémával kezdjük foglalkozi, ez azoba agyo okzor regeteg eet vizgálatával jára. Ilye eetekbe okkal ehezebbe adódik az előbbi ötlet: próbálkozhatuk ilyekor i kiebb zámokkal, egyzerűbb eetek vizgálatával. Előadáomo ilye jellegű problémákat zereték bemutati.. feladat Egy építőkézletbe háromféle zíű építőkocka található: a árgák é a kékek cm magaak, a piroak cm-eek. Háyféle cm maga toroy építhető, ha mide zíből kellő zámú elem áll redelkezére? (3 cm maga toroyból 5 féle építhető: PPP, PK, KP, PS, SP.) A probléma émi kombiatorikai imerettel yíltiako rohammal i támadható. Vizgáljuk az eeteket a cm-e darabok záma zerit, ez lehet 5, 4, 3,, é. Midegyik cm-e darab kétféle zíű lehet, így ha a cm-e darabok záma k, k akkor ezek zíezée -féle lehet. Ha a cm-e darabok záma k, akkor az cmeeké -k, vagyi az öze darabok záma -k. Ezek közül a cm-e darabok helyét kell kiválaztai, aháyféleképpe ezt megtehetjük, ayi a lehetége k orredek záma, vagyi. A cm-e toryok záma tehát k 5 k= k k k = + 9 + 8 4 + 35 8 + 5 6 + 3 = 683. Ez a megoldá azoba a biomiáli együtthatók imeretét igéyli, általáo ikolai zite ehéz. Vizgáljuk hát rekurzíve, mi a helyzet, ha a toroy em ilye

Erdő Gábor: A rekurzív módzer maga? Jelöljük az cm maga toryok zámát t -el, kereük t értékét. Nyilvá t =, t = 3, é mit a feladatál zereplő példából látzik, t 3 = 5. Nyugodta próbálkozhatuk tovább, felírva az öze eeteket érettégibe, kompeteciaméréek orá látzik, okakak em i olya egyzerű módzeree özegyűjtei az öze lehetége eetet. Hagyjuk a gyerekeket, míg rá em jöek valami zabályoágra, egedjük, hogy gyűjteek újabb eeteket, de egítük abba, hogy midezt módzeree tegyék! Mi azoba mot megpróbálhatjuk megmodai az eddigiek alapjá, háy 4 cm-e toroy va. Milye zíű lehet a legfelő darab? Lehet piro. Háy ilye 4 cm-e toroy va? A piro alatt egy zabályo 3 cm-e toroy látható. Mit láttuk, ilyeből 5 va, vagyi piro tetejű 4 cm-e toroyból i 5 va. É kék tetejűből? Ez alatt egy cm-e toroy va, ami cak háromféle lehet, vagyi ilyeből 3 va, mit ahogy árga tetejűből i. Vagyi a 4 cm-e toryok záma. Midezt úgy kaptuk, hogy t4 = t3 + t. Ez a rekurzív formula általáoítható, azaz t = t + t. A kezdeti értékekből a orozat elő éháy eleme egyzerű zámítáal megkapható:, 3, 5,,, 43, 85, 7, 34, 683. Nem várható el általáo ikolai zite az általáo képlet megejtée, de a máodfokú rekurzióál hazálato módzerrel megkapható, hogy A képlet középikolába telje idukcióval igazolható. t = ( ) + + 3.. feladat Az ABCDEFGH zabályo yolczög cúcait 3 zíel zíezzük úgy, hogy a zomzédo cúcok e legyeek azoo zíűek. Háy külöböző zíezé va? Két zíezé külöböző, ha bármely betűvel jelölt cúc a két zíezébe külöböző zíű. Itt i létezik kombiatoriku megoldá, ami ezúttal em köyű. Legye előkét az A pot piro, é vizgáljuk az eeteket azerit, hogy eze kívül háy piro pot va még. Ha ic, akkor a B pot kétféle lehet, ha vizot ezt kizíeztük, akkor ie kezdve a C, D, potok zíezée egyértelmű, hize felváltva kell imétlődie a két máik zíek, azaz ilye zíezé va. Ha még egy piro pot va, akkor az lehet a C, D, E, F vagy a G, ez eddig 5 eet, midegyik eetbe a piro potok közti két íve a többi pot zíe - féle lehet, így ekkor 5 az eetek záma. Ha még két piro pot va, akkor ezek lehetek a C é az E, a C é az F, a C é a G, a D é az F, a D é a G, valamit az E é a G, ez 6 eet, a többi potok zíét az előző módo zámolva 6 3 = 48 eetet találuk. Végül további három piro pot cak =

Maga zitű matematikai tehetéggodozá úgy lehet, ha ezek a C, az E é a G, a máik égy pot zíe miatt ez 4 = 6 újabb eet. Özee tehát + + 48 + 6 = 86 olya eet va, amikor az A pot piro. Nyilvá ugyaeyi eetet találuk, ha az A pot zíe a máik két zí valamelyike, így az öze megegedett zíezéek záma 3 86 = 58. Nézzük mot a rekurzív megoldát! Sokzög helyett tekitük egy körvoalat, amelye potot kell zíezi a megadott módo, jelöljük a zíezéek zámát c - el! Az elő éháy érdeke eetbe c = 3 = 6 é c 3 = 3 = 6. Mi a helyzet, ha a potok záma, ahol 4? Válazuk ki az egyik potot (P), eek két zomzédja legye Q é R. Ha Q é R külöböző zíű, akkor P zíére cak lehetőég va, a harmadik zí, vizot P-t elhagyva egy zabályoa zíezett ábrát kapuk pottal, ez c eet. Ha Q é R azoo zíű, akkor P zíe kétféle lehet, továbbá ha P é Q potokat elhagyjuk, akkor egy zabályoa zíezett ábrát kapuk pottal, ez c eet. Mide eetet potoa egyzer zámoltuk, így c = c + c kifejezéhez jutuk. Az előző feladatál tárgyalt módo kapjuk a c orozat elemeit a máodiktól kezdve: 6, 6, 8, 3, 66, 6, 58. Itt akár meg i ejthető egyfajta általáo képlet, hize em ehéz ézrevei, hogy a hatváyaiál felváltva -vel agyobb vagy kiebb zámokat látuk, azaz ( ) c = +. Az özefüggé telje idukcióval igazolható. Eek a megoldáak a zépége, hogy a rekurzív formula akkor i hazálható, ha a zíek c p c + ( p c, melyből általáoa = ) záma em 3, haem p, ekkor ( ) c ( p ) + ( p ) ( ) = adódik. Nem rézletezzük, de az eredeti feladat általáoítáából adódik például a következő özefüggé: k= k + 4 + k+ =. k 3 3. feladat Egy kerek aztal körül -e ülek. Háyféleképpe foghat hat pár kezet egymáal úgy, hogy a kézfogáok e kereztezzék egymát? (Egyzerre mideki cak egyvalakivel fog kezet.) Ha az emberek záma, akkor jelölje k azt, hogy az zámú kézfogát háyféleképpe lehet kereztbeyúlá élkül megtei. Feladatuk a k 6 meghatározáa. Nyilvá k = k é k. Az = 3 eetbe az egyik ember, = =

Erdő Gábor: A rekurzív módzer evezzük Jókáak, vagy valamelyik zomzédjával, vagy a zembe ülővel foghat kezet. Ha valamelyik zomzédjával, akkor a máik égy emberek kell a két kézfogát egymá között zabályoa leredezi, erre az előbb már láttuk, hogy midkét eetbe k lehetőég va. Ha a zembe ülővel fog kezet, akkor = kézfogáuk midkét oldalá a két-két ember k = lehetége módo tud kezet fogi, azaz k 3 = k + k k = + = 5. Máképpe: Meggodolható, hogy általába i k = k k + k k + k k = k i k. 3 k = i= i k k i i= i adódik, amivel a orozat elemei redre kizámolhatók:,, 5, 4, 4, 3. A kapott értékeket Catala zámokak evezzük, bizoyítható, hogy általáo alakba k =. + 4. feladat A hét törpe elhatározza, hogy Mikulákor megajádékozzák egymát. Midegyikük evét felírják egy cetlire, é midegyikük húz egy evet. A orolát akkor evezzük jóak, ha eki em húzza a aját evét. Háy jó orolá lehetége? Kezdjük ezúttal i egyzerűbb problémával, de egyzerre általáoítuk i a kérdét: Ha a törpék záma t, akkor háyféleképpe húzhatja közülük potoa k a aját evét, ahol k értéke lehet,,,, t? Az eredeti kérdé mide t eeté a k = -hoz tartozó érték. Ha t =, akkor yilvá a k = eet em lehetége, a k = pedig egyféleképpe. Haolóa yilvávaló, hogy t = eeté a k = é a k = eetek egyféleképpe lehetégeek, ez azt jeleti, hogy vagy egymá evét húzzák, vagy a ajátjukat. Ugyaekkor yilvá em valóulhat meg a k = eet. Általáoa i megállapíthatjuk, hogy a k = t eet em lehetége, hize ha egy kivétellel mideki a aját evét húzza, akkor már az az egy törpe em tud mát tei, mit hogy a aját evét húzza. Az elő érdeke eet a t = 3. Mit midig, a k = t eet, vagyi ezúttal a k = 3 egyféleképpe lehetége, ha mideki a ajátját húzza, míg az előbb elmodottak miatt a k = eet em lehetége. Ha k =, 3

Maga zitű matematikai tehetéggodozá akkor 3-féleképpe tudjuk kiválaztai, ki húzta a aját evét, míg a máik két törpe egymáét húzta, ami egyféleképpe lehetége, amit ezt a t =, k = eetbe már láttuk. Mivel az öze eetek záma yilvá t!, azaz jele eetbe 6, így kizáráo alapo a k = eetre lehetőég maradt. Lépjük tovább, legye t = 4! A k = 4 -re egy, a k = 3 -ra ulla lehetőég va. Ha k =, akkor a aját evüket húzókat 3 4 5 6 7 4 = 6 -féleképpe 9 44 65 854 3 8 45 64 855 válazthatjuk ki, míg a 6 35 94 máik két ember 3 4 35 egymáét húzza, ami egyféleképpe lehet, így 4 5 7 ez 6 lehetőég. 5 Ha k =, akkor a aját 6 evüket húzókat 7 4 = 4 -féleképpe öz: 6 4 7 54 válazthatjuk ki, míg a máik három ember közül egyik em húzza a aját evét, ez em má, mit a t = 3, k = eet, amire lehetőég va, ez özee 4 = 8 lehetőég. Az eredeti feladat felé haladó t = 4, k = eetre így 4! 6 8 = 9 lehetőég maradt. A feti módzert folytatva a jobb oldali táblázatot ozlopról ozlopra, az ozlopo belül pedig alulról felfelé haladva ki tudjuk töltei. A kitölté elvét, amit yilvá általáo ikolá gyerekekek ebbe a formába em íruk fel, de a jobb megérté miatt itt közlük, a következő özefüggéek adják: t f ( t; k ) = f ( t k;), ha k =,,..., t, k továbbá f ( t; t ) =, f ( t; t ) =, illetve f ( t k ) 4 t ; = t!, ahol f ( t; k ) yilvá azt jelöli, háyféleképpe húzhatja t törpe közül k a aját evét. A táblázat kitöltéét a 7. ozlopig folytatva megkapjuk az eredeti feladatba f 7; = 854. kereett értéket, mely zerit ( ) Egy elég tetzető trükkel é émi kombiatorikai ezközkézlettel direkt rohammal i zép eredméyt kaphatuk. Képzeljük el, hogy megpróbáljuk leülteti a 7 törpét éháy aztalhoz úgy, hogy mideki mellé jobbról ülteük azt, akiek a evét húzza. Az a kérdé, háyféleképpe lehet őket leülteti úgy, hogy eki em ül magába. Két üléred akkor külöböző, ha valakiek má a jobb oldali zomzédja. Ha egyetle aztalhoz ülek le, akkor ezt 6! = 7 -féle módo tehetik meg, hize k =

Erdő Gábor: A rekurzív módzer eyi a 7 cikliku permutációiak a záma. Ha egy 4 é egy 3 fő aztalhoz ülek, 7 akkor 3!! = 35 6 = 4 lehetőég adódik, míg ha egy 3 fő é két fő 3 7 4!!! 3 35 6 aztaltáraág alakul, akkor = = lehetőég va. Egy eet lehet még, ha egy 5 fő é egy fő aztalt hazáluk, ekkor a lehetőégek 7 záma 4!! = 4 = 54. 5 Az öze lehetőégek 7 + 4 + + 54 = 854. A cikkbe em rézletezett módo újabb megoldához juthatuk zitaformula alkalmazáával: 7 7 7 7 7 7 7! 7 6! + 5! 4! + 3!! +!! = 3 4 5 6 7 = 35 4 + 35 6 + 7 = 5 84 + 4 + 7 = 854. 5. feladat Egy 8-a táblát hézagmetee, átfedé élkül lefedük -e domiókkal. Háy külöböző lefedé va? Mi a helyzet, ha -e domiókat i hazálhatuk? Köye végiggodolható, hogy vízzitee cak úgy helyezhető el domió, ha egymá alatt ugyaazt a két ozlopot fedik. Így tulajdoképpe azt kell eldötei, hogy háyféleképpe lehet elhelyezi ozlopot lefedő függőlege domiókkal é ozlopot lefedő vízzite domiópárokkal a 8 ozlopot. Az elő feladatba zereplő elő, direkt módzerek megfelelőe ezúttal i oztályokba orolhatjuk az eeteket pl. a ozlopo párok záma zerit, majd az így kapott értékeket özegezhetjük. Midezt végiggodolva a következőt kapjuk: 4 k= 8 k = + 7 + 5 + + = 34. k De ha már megimerkedtük a rekurzív módzerrel, próbáljuk hazáli ebbe a feladatba i. Jelöljük a -e tábla lehetége parkettázáaiak a zámát p -el! 5

Maga zitű matematikai tehetéggodozá Nyilvá p = é p =. Mit tuduk modai p -ről? Oztályozzuk a lehetége parkettázáokat azerit, milye parketta va a tábla végé (jobb zélé)! Ha egy ozlopo álló domió, akkor előtte egy zabályoa parkettázott hozú tábla található, ilyeből p -féle va. Ha vizot egy ozlopot fedő vízzite domiópár, akkor előtte egy zabályoa parkettázott hozú tábla található, ezek záma p. Azt kaptuk, hogy p = p + p. A rekurzív formula adja a orozat elemeit:,, 3, 5, 8, 3, é p 8 = 34. A rekurzív formulából é a kezdőelemekből már látzott, hogy a jól imert Fiboacci-orozat elemeit kaptuk, p = f +. A két megoldáal egy zép általáo özefüggét i bizoyítottuk a Fiboacci-orozat elemei é a Pacal-háromzög között: k + f =. k k= A feladat máodik kérdée a 9--e taévbe az iformatika OKTV programozói kategóriájába az elő fordulóba zerepelt, ahol a orozat., 3., 4., 5., 7. é 8. elemét kellett kizámoli, majd a máodik fordulóba a vereyzőkek programot kellett íriuk, amely a orozat -edik elemét tudja megadi. A ki módoítá kellőe megöveli a feladat ehézégét. Már az elő éháy eetbe i zép é általáo ikoláokak agyo érdeke feladat a lehetége megoldáok özegyűjtée! Nyilvá l (hazáljuk máik evet a orozatra, hize máik = feladatról va zó), de már kevébé yilvávaló megtaláli az l 7 -hez tartozó = eeteket, mégikább az l -höz tartozókat! A következő elemek megtaláláa az 3 = eetek módzere özegyűjtéével már zite reméytele ( l 7 é főleg l 5 = 8 ). Próbáljuk találi egy rekurzív formulát! Milye domiók állhatak a or végé? Ha egy álló -e, akkor ilyeből l eet va, mit ahogy akkor i, ha két -e áll ott. Egyzerű még az az eet, amikor két fekvő -e áll a or végé, ilyeből l eet va. Mi a helyzet, ha a végé felül egy fekvő -e domió va, alatta meg egy -e? A probléma itt kezd érdeke lei. Ha ezt a két domiót elvezük, akkor egy olya alakzatot kapuk, amelyek az aló ora -gyel hozabb, mit a felő. Az ilye alakzatok hoza alatt értük a hozabbik oruk hozát, é a lehetége lefedéek zámát jelöljük 4 = a -el, az olyaokét, amelyekek meg a felő ora hozabb eggyel, b -el! Az utoljára említett eetbe tehát a - féle lehetőég va a lefedére. Végül a fordított eetbe, ha a végé alul egy fekvő -e domió va, felette meg egy -e, akkor b a lehetége lefedéek záma. 6

Erdő Gábor: A rekurzív módzer A következő rekurzív formulát kaptuk: l = l + l + a + b Ezt a formulát vizot cak akkor tudjuk hazáli, ha az a é b orozatokra i meghatározzuk a kezdeti elemeket é találuk rekurzív formulát. Szimmetriaokokból yilvá mide -re a = b, az elő két elem pedig a é a = 3. Nézzük meg itt i az utoló, coka ozlopba lévő, azaz az aló orba lévő utoló domiót! Ha ez egy -e, akkor előtte egy hozú ormál tábla áll, ilyeből l -féle va, míg ha -e, akkor ezt elvéve egy hozú, felül hozabb tábla marad, amit b -féle módo lehet lefedi. Az a é így a orozat rekurzív formuláit i megkaptuk tehát: a = l + b é = l + a b. = b Bevezetve a c = a + b jelölét a két rekurzív formula így írható: l c = l = l + l + c + c l, l 7 é c., ahol = = = Ebből a rekurzív defiícióból a két orozat elemei redre kizámíthatók, hize a jobb oldali táblázat cellái ozlopról ozlopra haladva kitölthetők. 3 4 5 6 7 8 l 7 7 8 733 356 7573 c 6 64 6 66 8 684 Az úgyevezett zimultá rekurzív képletből algebrai ezközökkel kiküzöbölhetjük a c orozatot, így a következő harmadredű rekurzív formula adódik: l. = 3 l + l l 3 Ebből általáo zárt formulát kereée már meze meghaladja még a középikolai zitet i, hize ebbe az eetbe már komplex zámokkal i kell dolgozi. Módzertailag ayi zemélye véleméyt talá hozzáteék, hogy egy OKTV elő forduló zitjét matematikai tartalma miatt meze meghaladja ez a feladat, kitűzéét komoly didaktikai hibáak érzem. 7

Maga zitű matematikai tehetéggodozá 6. feladat Egy 7 oldalú zabályo okzög cúcait zíel zíezzük. Háy külöböző zíezé va, ha a forgatáal egymába vihető zíezéeket em tekitjük külöbözőek? Nézzük itt i egy egyzerűbb problémát, kezdjük egy háromzöggel! Két coportba ozthatók az eetek: egy zít hazálok vagy kettőt. Ha egyet, akkor yilvá eet va, ez több cúc eeté i így va. Ha midkét zít hazálom, akkor egy cúc lez egyik zíű é kettő máik zíű. Ki kell válaztai, melyik zít hazálom cak egy cúcál, ez lehetőég. Az midegy, hogy melyik cúc lez ilye, hize ezek az eetek egymába forgathatók. A háromzög lehetége zíezéeiek záma tehát özee 4. Megézhetjük a égyzetet i, jó gyakorló feladat, akár az öze eet megkereée i, itt egyzíű eet va, olya, amikor egy cúc valamilye a máik három mámilye, illetve olya, amikor kettő ilye é kettő olya, hize itt a két egyzíű cúc lehet zomzédo é zemközti i. Özee 6 eet va. Lépjük tovább az ötzögre! Egyzíűből itt i va. Ha a zíek megozláa + 4, akkor eet va, hize ezek a zíezéek egymába forgathatók. Ha pedig + 3, akkor 4 eet található, hize kétféleképpe tudom kiválaztai, melyik zíűből va kettő, é ezek egymához képet kétféleképpe helyezkedhetek el: vagy zomzédoak, vagy em. Özee 8 a lehetége zíezéek záma. Az vizot látzik, hogy egyre több eetet kell vizgáli a zíek megozláa é az egyzíű potok elhelyezkedée miatt egyarát. Érdeme lee valami olya ézrevételt tei, ami eetleg több cúc eeté i hazálható. Meyi lee a zíezéek záma, ha az egymába forgatható eeteket külöbözőek tekiteék, azaz pl. a cúcokat elevezék? Ekkor cúc eeté a lehetége zíezéek záma lee, hize mide cúc kétféle zíű lehet. Háromzög eeté ez 8 lee, ehelyett mi 4-et kaptuk. Hol vezett el ez a 4 eet? Az egyzíű zíezéekél yilvá em, hize azokat mideképpe cak egyzer zámoltuk, kocetráljuk a kétzíű eetekre. A 8 eetből 6 lee ilye, a mi zámoláuk zerit cak, vagyi a harmada. Miért? Azért, mert midegyik eetet háromzor zámoltuk, hize egy általuk zámolt zíezéhez háromféleképpe lehet megbetűzi a cúcokat (a körüljárái iráyt megtartva perze, hize forgatáokról bezélük, tükrözéről em). A égyzögél kicit má a helyzet: va, amit kétzer zámoltuk, va, amit égyzer, ez boyolultabb. É az ötzögél? A 3 eetből 3 kétzíű, de mi 6 ilye eetet kaptuk, ami az öze eetek ötöde. Ez már érdeke megfigyelé: aháy cúc va, ayizor zámoltuk az egye eeteket. Miért? Azért, mert eyiféleképpe lehet egy ábrát elforgatva má é má betűzéhez juti. Miért működött ez 3-ra é 5-re, é miért em működött 4-re? Eetleg még éháy eetet megvizgálva egy em köyű végiggodolá utá megzületik a válaz: azért, mert a 3 é az 5 prímzámok, a 4 pedig em. Ige, mivel a 4-ek a oztója, így va olya zíezé, ami két forgatá (8 fok) utá 8

Erdő Gábor: A rekurzív módzer ömagába megy át. Általáoa kimodható azoba, hogy p oldalú okzög eeté, ahol p prím, mide kétzíű zíezét p külöböző módo lehet megbetűzi, vagyi az öze eetek özezámlálááál, ha az egymába forgatható eeteket megkülöbözteték, mide ilye eetet p-zer zámolák. Ezek alapjá p oldalú okzög eeté a kétzíű zíezéek záma pedig eél -vel több. A feladatba zereplő eetbe tehát 7 7 + 3 + =. 7 7 p, az öze zíezéek záma p A feladatot megoldottuk, de éháy érdeke megjegyzé tehető ezzel kapcolatba. Ha a zíek záma em, haem valamely a egéz zám, ahol a, akkor a em a p a egyzíű zíezéek záma. A kifejezé értéke yilvá midig egéz zám p kell legye, hize midig lehetőégek zámát adja meg. Ez azt jeleti, hogy az a p a midig oztható p-vel, mákét megfogalmazva a p a (mod p) Egy evezete zámelméleti állítát bizoyítottuk kombiatoriku módzerrel: em mát, mit a ki Fermat-tételt. 7. feladat Adott a íko egyee. Legfeljebb háy rézre darabolják a íkot? É ík a teret? A legtöbb eetet akkor kapjuk, ha általáo helyzetű egyeeeket rajzoluk a íkra: emelyik kettő em párhuzamo é emelyik három em metzi egymát ugyaabba a potba. Vizgáljuk keveebb egyeet, é jelöljük egyee eeté a keletkező íkrézek zámát -el! Az elő éháy eetet köye megkapjuk: =, = 4 é 3 = 7. Hogya következtetheték ebből a további eetekre? Érdeme a rekurzív lépére kokrét zámokat hazálva rávezeti a taulókat. Nézzük, hogy változik a rézek záma, amikor a egyedik egyeet behúzom! Ezt az 9

Maga zitű matematikai tehetéggodozá egyeet az előző 3 egyee 3 potba metzi, ez a 3 pot ezt az egyeet 4 rézre oztja: félegyeere é zakazra. Mid a 4 réz kereztülhalad egy íktartomáyo az eddigiek közül, é azt két rézre oztja, ezzel a íkrézek záma 4-gyel ő, azaz 4 =. Mit ciáluk, amikor rekurzív formulát kereük? Nem mát, mit 3 é 4 helyett végiggodoljuk ugyaezt -re é + -re. Kapjuk, hogy + = +. A kezdeti értékeket hazálva megkaphatjuk a orozat további elemeit egéze a feladatba zereplő tizeegyedikig:, 4, 7,, 6,, 9, 37, 46, 56, 67. Termézetee midig érdeke probléma a zárt formula kereée. Egyik lehetőég az, hogy megejtjük a képletet é a középikolába tauladó ezközt, a telje idukciót hazálva bebizoyítjuk. Va azoba olya módzer i, amit általáo ikolába i alkalmazhatuk. A kizámolt kezdeti érték é a rekurzív formula alapjá felírhatók a következő egyeletek: 3 4 = = + = + 3 = 3 + 4 = + ( ) = + Az egyeleteket özeadva émi redezé utá a következő özefüggéhez jutuk: = + + 3 + 4 +... + ( ) + = + ( + ) i = + =. i= + + Felhazáltuk a megoldá orá az elő pozitív egéz zám özegéek közimert, általáo ikolába i többféle módo bizoyítható, vereyeke remekül hazálható képletét. Érdeke megjegyzé, hogy a feti képlet átírható + = + alakúra. A képlet értelmezée: kezdetbe volt = ík, mide egyee behúzáával keletkezik egy új íkréz, ezek záma, továbbá ha 3

Erdő Gábor: A rekurzív módzer két egyee metzi egymát, mide metzépot i eggyel öveli a íkrézek zámát, é mivel mide egyee mide máikat metz, a metzépotok záma. Mi a helyzet, ha öveljük a dimeziók zámát, é térbe vizgálóduk? Az darab általáo helyzetű ík (mit i jelet ez?) a teret t rézre darabolja. Nyilvá t = é t = 4. Az előző módo kereük rekurzív formulát! Az +-edik íkot metzi mid az előző ík egy-egy egyeebe, ez az egyee az újoa felvett íkot rézre darabolja. Eze íkrézek midegyike a korábbi térrézek egyikét két rézre oztja, midehol egy új térrézt behozva, így özee térrézek zámát. A következő rekurzív formulához jutuk tehát: t = t + +. -el övelve a Az előző feladat eredméyeit felhazálva kizámolhatjuk a orozat elő elemét:, 4, 8, 5, 4, 4, 64, 93, 3, 76, 3. A íkbeli eetél leírt módzer egítégével, az ott bizoyított képletet alkalmazva itt i eljuthatuk a zárt formuláig, ez azoba egyrézt algebrailag i ehezebb, márézt zükég va a égyzetzámok özegéek zárt formulájára i. A bizoyítható képlet a következő: 3 + 5 + 6 t =. 6 A íkbeli eetél leírtak utá talá em meglepő, hogy a feti képlet émi átalakítáal a következő alakra hozható: t = + + +. 3 3

Maga zitű matematikai tehetéggodozá 8. feladat Barkochbázuk, de ezúttal a válazokért fizeti kell. Kezdetbe zetouk va, é az ige válazért, a em válazért zetot kell fizeti. Ha már cak zetouk va, em kérdezhetük tovább, hize em válaz eeté adóágba keveredék. Legfeljebb háy zám közül tudjuk biztoa kitaláli a godolt zámot? A feladatot egy Póa Lajo által tartott taártovábbképző előadáo hallottam, de úgy godolom, érdeme továbbadi, hize eze az előadáo elég kevé taár vett rézt. Calóka feladat, a zeto elég kevé ahhoz, hogy az ember hajlamo direkt rohammal próbálkozi, ami valózíűleg kudarcra va ítélve. Kezdjük keveebbel, é vizgáljuk meg, hogy adott zámú zetoal mi az a legagyobb, amelyre igaz, hogy -től -ig bármelyik egéz zámra godolhatak, mi azt zerece élkül ki tudjuk találi. Jelöljük ezt a zámot k -el. Ha zetouk va, akkor em kérdezhetük, tehát cak zám közül tudjuk kitaláli a godolt zámot, azaz k =. Haolóa egyzerűe végiggodolható, hogy k =. Az elő előremutató kérdé, hogy mi a helyzet, ha 3 zetouk va. Ha a feltett kérdére ige lez a válaz, akkor zetouk marad, ami az előbb láttuk, hogy zám közül tudja kiválaztai az igazit. Ha vizot emlege a válaz, akkor cak zám maradhat, hize em tehetük fel újabb kérdét. Vagyi k 3 = + = 3. Nagyo zép é taulágo a probléma, hize egy zélőérték-feladattal va dolguk, é ezzel kapcolatba megtaíthatjuk azt, hogy mi az ilye típuú feladatokál a teedő. Két dolgot kell megvizgáli: több em lehet, ayi vizot ige. Már láttuk, hogy 3-ál több zámból em lehet kitaláli a godoltat. Márézt 3-ra va kotrukció: kérdezzük meg, hogy e között a között va-e. Ha em, akkor megva, hogy a harmadik zámra godoltak, ha ige, akkor meg még egy kérdéel tiztázhatjuk, hogy a kettő közül melyikre. Mi a helyzet 4 zeto eeté? Ha ige válazt kapuk, akkor 3 zetouk marad, ami 3 zámra elég, ha pedig em a válaz, akkor zetoal zám közül találjuk meg a godoltat, azaz k 4 = 3 + = 5. Sokakak talá már kezd gyaú lei a dolog! Valóba, újra a Fiboacci-orozatra bukkatuk. Talá már em i olya ehéz megtaláli a rekurzív formulát. Ha zetouk va, akkor igaz válaz eeté marad, ami k zámra elég, míg ha em a válaz, akkor zetoukkal k zám közül tudjuk megtaláli az igazit. Ez azt jeleti, hogy k = k + k, ami a k = é k = kezdőértékekkel éppe a Fiboacci-orozat elemeit adja, amiből k = 89. 3