KOAXIÁLIS ROTOROK AERODINAMIKAI VIZSGÁLATA AZ IMPULZUS TÉTEL
|
|
- Péter Jónás
- 8 évvel ezelőtt
- Látták:
Átírás
1 Szilágyi Dénes KOAXIÁLIS ROTOROK AERODINAMIKAI VIZSGÁLATA Ebben a munkában a Ka 6 helikopte egyenes vonalú egyenletes epülését vizsgáltam. A típus kiválasztásában döntő szeepet játszott, hogy ezzel a hajtottak vége Magyaoszágon előszö otolapát légeő-tehelését meghatáozandó mééseket [4], és koábbi munkáimban e méések eedményeit má feldolgoztam. Célkitűzésem, hogy ebben az üzemállapotban aeodinamikai oldalól meghatáozzam az alsó otolapát alatti indukált sebességmezőt, figyelembe véve a felső oto hatását és a pofilok köüli áamlás instacionáius voltát. Ahhoz, hogy ezt eléjem, együtt kell vizsgálnom a lapátmozgásokat, a lapátok fölötti áamlási teet, és a lapátokon ébedő aeodinamikai eőket. A számítás alapja a kombinált impulzus-lapelem elmélet, melyet kiegészítve az ONERA modellel az indukált sebesség-eloszlás, és az instacionáius hatások meghatáozhatóak [1]. AZ IMPULZUS TÉTEL A klasszikus impulzus tételt Glauet fejlesztette ki. Ebben az elméletben a (szimpla) oto áamcsövét a lapátok által súolt felülettel azonos keesztmetszetűnek tételeztük fel. Koaxiális endszenél ennek a felületnek a meghatáozása má egy kicsit bonyolultabb. De az alábbi Glauet-féle összefüggéssel meghatáozható []: R π A = (1) χ,1 χ = +,455 h +, R h a két oto közötti távolság; R a oto sugaa. A otook külön vizsgálatához meg kell hatáozni az egyes otook áamcsövének keesztmetszetét, melyet úgy oldottam meg, hogy a fenti összefüggésből kapott felületet két azonos teületű ellipszissel helyettesítettem (1. ába). 157
2 R R a Felső oto R R a Alsó oto 1. ába. Az áamlási keesztmetszet felosztása Az ellipszis egyenletével a keesztmetszeti felületek nagyságát leíó K ( ) meghatáozható (. ába). Így a otosík egy adott elemében meghatáozhatóvá válik az áamlási keesztmetszet y. ába. Az indukált sebességétékek a otosík mentén A. ábán látható, hogy a oto által keltett indukált sebességétékek a otosík belépőélétől hátafelé haladva, folyamatosan növekednek. Ez a tend az alsó oto esetében módosul (nem jelentősen) a felső oto által indukált sebességmező hatásának következtében. Az indukált sebesség ( vi ) egy adott ( y, x ) koodinátájú helyen felíható az alábbi összefüggéssel: K V ρ 158 v ( x ; y ) = 3,86 = ; 6,5 ( y ) 6,5 y i x x p( x ; y ) dx ρv K( y ) p ( y, x ) nyomáséték egy adott koodinátájú helyen; epülési sebesség; légsűűség. ()
3 LAPELEM ELMÉLET A lapelem használatához ismeni kell az egyes keesztmetszetekben, egy adott azimuthelyzetnél a sebesség-összetevőket (3. ába.) egyenes vonalú egyenletes vízszintes epülés esetée. Az alsó oto esetén ezek az összetevők kiegészülnek a felső oto által indukált sebességétékekkel. A pofilok aeodinamikai tulajdonságainak instacionáius áamlás, okozta megváltozását ebben a pontban, lehet figyelembe venni. A lapát pofiljának (NACA 3 1) adatai stacionáius áamlás esetée a NACA Pofilkatalógusban megtalálhatóak. Ezek módosulása instacionáius esetben számítható az ONERA modell összefüggéseivel lineáis esetben [1] az alábbiakban: Az alsó otonál + v i (x ;y ) felső 3. ába. A pofil sebesség-összetevői c& = c& + sθ & + Θ & + c& + sθ& L λ λ σ ( ) (4) Ahol [] alapján: c& = x & l β l a pofil csapkodási sebessége:; Θ lapát-beállítási szög; Θ & meev oto pofiljának szögsebessége; Θ & meev oto pofiljának szöggyosulása; c L felhajtóeő tényező; λ, s, σ ONERA modell tényezői. A sebességétékek ismeetében a pofiljellemzők és azok időszeinti első deiváltjai meghatáozhatóak [1]. A LAPÁT CSAPKODÓ ÉS CSAVARÓ MOZGÁSAI Alapátmozgások vizsgálata a meev lapát koodináta endszeében a legcélszeűbb. A matató mozgást figyelmen kívül hagyva, háom fogó mozgást külön- 159
4 böztethetünk meg: a oto-tengellyel együtt (Ω); a csapkodó csukló köül (β); a lapát hossztengelye köül (ϑ). A csapkodó mozgás vizsgálatához annak egyszeűsített diffeenciálegyenletét használtam (5): M a β l + (1 + ε) β l = (5) Θ Ω M a aeodinamikai nyomaték; ε Lock szám; β 1 Csapkodási szög; Ω Roto szögsebesség; Θ Lapát csapkodócsuklóa vett tehetetlenségi nyomatéka; y A lapát csavaó mozgásának vizsgálatához az alábbi diffeenciálegyenletet használtam (6): d ϑ M x = Θ xω q + β ( q1 qβ ) + (6) dψ Θ a lapát hossztengelyée vett tehetetlenségi nyomatéka; x q =cos (β)sin(ϑ)cos(ϑ) tényező; q 1 = cos(β)cos (ϑ)-cos(β)(1- sin (ϑ)) tényező; q = sin(ϑ)cos(ϑ) tényező. A számítás soán az eedő aeodinamikai nyomatékot zéusnak vettem. y A HAJLÍTÓ DEFORMÁCIÓ A számítás soán csak a csapkodó ételmű hajlító defomációt vettem figyelembe. A (7) diffeenciálegyenlet megoldásához [3] alapján felhasználtam a lapát első 3 sajátlengésképét Φ i (x) (i=1,,3). Ez az egyenlet a Lagange egyenletből vezethető le és segítségével meghatáozható a. és 3. sajátlengéskép-függvény és a hozzájuk tatozó sajátfekvencia: 16 Fi q i + λ qi = ; i=,3 (7) Ω R m i
5 q i iω i-edik általánosított koodináta; λ i-edik sajátfekvencia. A SZÁMITÁS MENETE A számítási eljáás két észből áll: Az első észben meghatáozása keül az indukált sebesség eloszlás, a vonó, a hoizontális, és az oldaleők a felső otoa. A lépések: a kezdeti indukált sebességétékek, és eők számítása a Glauet-féle közelítés alapján; a csapkodó és hajlító mozgások diffeenciál egyenleteinek numeikus integálása polá-koodináta endszeben, figyelembe véve az áamlás instacionáius voltát, a csapkodó és a csavaó mozgás közötti kapcsolatot; a oto felülete mentén a légeő eloszlás ismeetében, új indukált sebességeloszlás számítása decates koodináta endszeben. eedő eők számítása az új helyzetnek megfelelően az új eőknek megfelelően a csapkodó mozgás újaszámítása, majd a 3. lépés, egészen az egyensúlyi helyzet elééséig, mely gyakolatilag 1 teljes fodulat után bekövetkezik. ha nem, akko a kezdeti kománybeállítási étékek p ; p 1 ; p nem feleltek meg ennek a epülési helyzetnek, és ezét új étékeket adva előöl kell kezdeni a számítást. az egyensúlyi helyzet sebesség és eőétékeinek táolása. A második ész nagyban hasonlít az elsőhöz, csak ott a Glauet-féle számításnál má figyelembe vesszük (3. ába) a felső oto előbbiekben kiszámított és megfelelően pozícionált indukált sebességétékeit (4. ába). IAS α R Zavatalan felület 4. ába. A felső oto áamcsöve csak észben éi az alsó otot 161
6 A SZÁMITÁS EREDMÉNYEI A számítás soán a ototácsákat felosztottam (3. ába) az y tengely mentén 4 szelete. Az elemek száma az egyes szeletekben a Δx és y függvénye. Az 5. ábán látható az indukált sebességeloszlás egy-egy adott szelet fölött. 1. szelet szelet ,5 3,5 1,5 1,5. szelet szelet szelet ába. Indukált sebesség étékek: Fehé felső oto, fekete alsó oto Az eedmények megfelelnek a váakozásnak azzal a hibával, hogy a ototácsa belépőéle mentén egy kis szektoban negatív légeőknek kellett volna adódnia. Ha összehasonlítjuk a felső és az alsó oto eloszlását, a sebességétékek elatív különbsége nem haladja meg az 5%-ot, és a felső oto indukált sebességétékei a nagyobbak. Látható továbbá, hogy mindkét oto esetében az előehaladó lapát oldalán megnövekszik az indukált sebesség, valamint jól látszik mindkét oto- 16
7 nál az agy ányékoló hatása is. A lapátvég-pályák elemzése is megeősítette, hogy a felső oto tehelése nagyobb. A módsze végeedményéül kapott egyensúlyi eedő eők és a klasszikus módszeel számított vonóeők közötti abszolút eltéés 1387,378 N és a elatív eltéés 4,63%-a adódott ebben az üzemállapotban. ÖSSZEGZÉS Látható, hogy ez a módsze a gyakolat szempontjából kielégítő pontosságot nyújt úgy az alsó, mint a felső oto jellemzőinek számításában. Ezekkel az eedményekkel lehetővé válik a otookon túl az egész helikopte egyensúlyának vizsgálatáa, valamint lehetővé válik a szekezeti defomációkon alapuló légeőtehelés számításának [7] kontollálása. FELHASZNÁLT IRODALOM [1] GAUSZ, T.: Helicopte Rotos Aeodynamics and Dynamics, 5 th Mini Confeence on Vehicle System Dynamics, Budapest, [] GAUSZ, T.: Helikopteek (in Hungaian) BME Ménöktovábbképző Intézet Budapest, 198 [3] STEPNIEWSKY, W.Z.: Rotay-Wing Aeodynamics, Dove Publications, New Yok, [4] LINDERT, H.W.: Flugmessungen mit dem Hubschaube Ka-6 im Oktobe 199. Institut fü Lichtbau RWTH-Aachen 199. [5] Aeodinamika, Magya Néphadseeg, Budapest, [6] LALETIN, K.N.: A Ka-6 Helikopte Gyakolati Aeodinamikája, Repülőgépes Szolgálat, Budapest, [7] SZILÁGYI, D.: Roto Blade Ai Load Detemination on the Base of Stuctual Defomation. II nd Avionics Confeence, Bieszczady 98 Jawo, Poland
VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI
D. Gausz Tamás VALÓSÁGOS ÖRVÉNYEK Az aeodinamikában igen gyakan találkozunk az övény fogalmával. Ez az övény a epülőgép köüli áamlásban kialakuló otációból (fogásból) számazik. Egy általában kis téész
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
KOAXIÁLIS ROTOROK AERODINAMIKAI ÉS DINAMIKAI MODELLEZÉSE A MODELL
KOAXIÁLIS ROTOROK AERODINAMIKAI ÉS DINAMIKAI MODELLEZÉSE Célkitűzésem, hogy létrehozzak egy aerodinamikai-dinamikai-aeroelasztikus viselkedés leírására alkalmas műszaki-matematikai-modellt, mely tetszőleges,
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása
Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény
Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
(KOJHA 125) Kisfeladatok
GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésménöki Ka Jámű- és hajtáselemek I. (KOJHA 25) Kisfeladatok Jáműelemek és Hajtások Ssz.:...... Név:......................................... Neptun kód.:......... ADATVÁLASZTÉK
Lencsék fókusztávolságának meghatározása
Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület
Segédlet a Tengely gördülő-csapágyazása feladathoz
Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy
Gruber József, a hidrodinamikai szingularitások művelője
Gube József, a hidodinamikai szingulaitások művelője Czibee Tibo Személyes kapcsolatom Gube pofesszoal: Egyetemi tanulmányaimat a miskolci Nehézipai Műszaki Egyetemen végezvén nem hallgathattam egyetemi
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Fizika és 6. Előadás
Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
A Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
3.1. Példa: Szabad csillapítatlan rezgőrendszer. Adott: A 2a hosszúságú, súlytalan, merev
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-REZGÉSTAN GYAKORLAT (iolgozta: Fehé Lajos tsz. ménö; Tanai Gábo ménö taná; Molná Zoltán egy. aj. D. Nagy Zoltán egy. aj.) Egy szabaságfoú
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
INDUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MODELLEZÉSÉRE 3
Ráz Gábo 1 Veess Ápád INUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MOELLEZÉSÉRE A BME 4 Vasúti Jáműek, Repülőgépek és Hajók Tanszék munkatásai számos
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
(1) Definiálja a mechanizmus fogalmát! Mechanizmuson gépek, berendezések mechanikai elven működő részeinek együttesét értjük.
ZÉCHENYI ITVÁN EGYETEM MECHANIZMUOK ALKALMAZOTT MECHANIKA TANZÉK Elméleti kédések és válaszok egyetemi alapképzésbe (Bc képzésbe) észtvevő méökhallgatók számáa () Defiiálja a mechaizmus fogalmát! Mechaizmuso
Kinematikai alapfogalmak
Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5
Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
Mozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
III. Differenciálszámítás
III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására
Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
A rugalmassággal kapcsolatos gondolatmenetek
A ugalmassággal kapcsolatos gondolatmenetek Az igen szeteágazó, ugókkal kapcsolatos ezgési és sztatikus poblémák közül néhányat tágyalunk gondolkodás módszetani szempontok bemutatásáa. A ugó poblémák az
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
M2 SZABADSUGÁR VIZSGÁLATA
M. MÉRÉSI SEGÉDLET ÁRAMLÁSTAN TANSZÉK M SZABADSUGÁR VIZSGÁLATA 1. A méés célja Szabadsugának neezzük az olyan áamlást, amely alamely ésen, nyíláson keesztül a nyugó tébe fúj be. A sugaat könyező té méetéhez
1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)
Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
Makromolekulák fizikája
Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés
2. előadás: Földmágneses alapfogalmak
. előadás: Földmágneses alapfogalmak. előadás: Földmágneses alapfogalmak Földmágneses anomáliák A súlypontján keesztül felfüggesztett mágnestű a Föld tópusi és mésékeltövi tájain megközelítőleg a földajzi
Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?
Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái
α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
Merev testek kinematikája
Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók
Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra
Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás
IV x. 2,18 km magasan van a hôlégballon.
8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Mivel a fenti összefüggéseket kíséleti eedmények is alátámasztják, azok oly métékben pontosnak tekinthetők, hogy a feszültségoptikában elengedhetetlen
Diagonálisan tehelt anizotóp fakoong feszültségállapota Hantos Zoltán A eflexiós feszültségoptika egy látványos és célszeű oncsolásmentes anyagvizsgálati eljáás. Mivel a módsze a bevont anyag felületének
Differenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
X. MÁGNESES TÉR AZ ANYAGBAN
X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének
Rotorlapátok terheléseinek dinamikai és aerodinamikai vizsgálata
Rotorlapátok terheléseinek dinamikai és aerodinamikai vizsgálata Témavezető: Dr. Gausz Tamás Budapest 2003 A dolgozat bírálatai és a védéskor készült jegyzőkönyv a BMGE Közlekedésmérnöki Karának Dékáni
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
A MULTIMÉDIA ALKALMAZÁSA AZ AERODINAMIKA ÉS REPÜLÉSMECHANIKA TANTÁRGYAK OKTATÁSÁBAN
A MULTIMÉDIA ALKALMAZÁSA AZ AERODINAMIKA ÉS REPÜLÉSMECHANIKA TANTÁRGYAK OKTATÁSÁBAN Békési László Zrínyi Miklós Nemzetvédelmi Egyetem Bolyai János Katonai Műszaki Főiskolai Kar Repülőgép sárkány-hajtómű
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy
Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény
Fizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
Fénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
45. HÉT/ 1. foglalkozás 3 óra STABILITÁS
1/6 45. HÉT/ 1. foglalkozás 3 óra 081 04 00 00 STABILITÁS 081 04 01 00 Egyensúlyi feltételek stabilizált vízszintes repülésben 081 04 01 01 A statikus stabilitás előfeltételei 081 04 01 02 A nyomatékok
DEME FERENC okl. építőmérnök, mérnöktanár
DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA
Tartalomjegyzék. Meghatározás Jellemző adatok Szíjerők Tengelyhúzás Előfeszítés Méretezés
Laposszíjhajtás Meghatározás Jellemző adatok Szíjerők Tengelyhúzás Előfeszítés Méretezés Szíjfrekvencia Optimális szíjsebesség Szlip Elrendezés Szíjhossz Szíjfeszítések Szíj anyaga Szíjtárcsa Méretezési
A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
rnök k informatikusoknak 1. FBNxE-1
Fizika ménm nök k infomatikusoknak. FBNxE- Mechanika 7. előadás D. Geetovszky Zsolt. októbe. Ismétl tlés Centifugális és Coiolis eő (a Föld mint fogó von. endsze) Fluidumok mechanikája folyadékok szabad
Statikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
FIZIKAI MODELL AZ OLDASHŐ KONCENTRACIÓ-FÜGGÉSÉRE
FIZIKAI MODELL AZ OLDASHŐ KOCETRACIÓ-FÜGGÉSÉRE Wiedemann László Főváosi Pedagógiai Intézet Szoítkozzunk olyan anyagoka, melyek vizes oldata eős elektolitot képez, mikois tehát az oldott anyag teljesen
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Rotorlapátok terheléseinek dinamikai és aerodinamikai vizsgálata
A Budapesti Műszaki Egyetem Doktori Tézisfüzetei Közlekedésmérnöki Kar Doktori Tanácsa Írta Szilágyi Dénes Rotorlapátok terheléseinek dinamikai és aerodinamikai vizsgálata című témakörből, amellyel a Ph.D.
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak
Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak A feladat részletezése: Név:.. Csoport:... A számításnak (órai)
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
Az előadás vázlata:
Az előadás vázlata: I. emokémiai egyenletek. A eakcióhő temodinamikai definíciója. II. A standad állapot. Standad képződési entalpia. III. Hess-tétel. IV. Reakcióentalpia számítása képződési entalpia (képződéshő)
Elektrokémia 03. (Biologia BSc )
lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
Tehetetlenségi nyomatékok
Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk
Csuklós mechanizmus tervezése és analízise
Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt
INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES
INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES Ecsedi István, Pofesso Emeitus, Miskolci Egyetem, Műszaki Mechanikai Intézet; Baksa Attila,
A térbeli adatokhoz helymeghatározó adatok kapcsolódnak, amelyeket koordinátákkal adunk meg.
A tébeli hasonlósági tanszfomáció, különösen a tébeli tájékozás az egyik legfontosabb és legkitikusabb feladat a geodéziában, fotogammatiában, navigációban, lézeszkenne és LiDAR méések feldolgozásában,
Áramlástan Tanszék
Áamlástan Tanszék www.aa.bme.hu Méés előkészítő óa II. Vaga Áád aga@aa.bme.hu Összeállította: Nagy László nagy@aa.bme.hu 06. Ősz A méési adminisztáció felelőse: D. Istók Balázs istok@aa.bme.hu Áamlástan
Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW
Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW T. KISS 1 P. T. SZEMES 2 1University of Debrecen, kiss.tamas93@gmail.com 2University of Debrecen, szemespeter@eng.unideb.hu
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási
BME Energetika Tanszék
BME Enegetika Tanszék A vastagon bekeetezett észt vizsgázó tölti ki!... név (a személyi igazolványban szeeplő módon) HELYSZÁM: Hallgatói azonosító (NEPTUN): KÉPZÉS: N- N-E NK LK Tisztelt izsgázó! MŰSZAKI
Fizika és 14. Előadás
Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja