Az előadás vázlata:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az előadás vázlata:"

Átírás

1 Az előadás vázlata: I. emokémiai egyenletek. A eakcióhő temodinamikai definíciója. II. A standad állapot. Standad képződési entalpia. III. Hess-tétel. IV. Reakcióentalpia számítása képződési entalpia (képződéshő) és az égési entalpia (égéshő) étékekből. V. A eakcióhő kíséleti meghatáozása, kaloimetia. VI. Hőkapacitás, moláis hőkapacitás és fajtái. VII. A eakcióentalpia hőmésékletfüggése: Kichhoff-tétel. VIII. A Bon Habe-köfolyamat. 1 A temokémia a eakcióhők égi tudománya: a eakciókban, folyamatokban keletkező vagy elnyelt q hő méése, alkalmazása számításokban és a gyakolatban. A temokémiát ma az I. főtétel alkalmazásának tekintjük. emokémiai egyenlet: a kémiai változás (, ) mellett tatalmazza a vele jáó q hőváltozást is. A q (endszecentikus) előjele szeint: exotem a folyamat, ha hő szabadul fel (q < ). endotem a folyamat, ha hő nyelődik el (q > ). A q eakcióhő kifejezése temodinamikai fogalmakkal: állandó téfogaton: q V = ΔU, állandó nyomáson: q p = ΔH. A H és U abszolút étékei nem ismetek és étékei(k) függenek a köülményektől. Ezét megállapodásoka volt szükség: A standad állapot: Egy anyag standad állapota bámely hőmésékleten maga a tiszta anyag p θ = 1 ba (11 5 Pa) nyomáson (definíció). Egy vegyület Δ H θ standad képződési entalpiája az adott vegyület standad állapotú elemeiből való képződését kíséő moláis entalpiaváltozás. Az elemek standad képződési entalpiája nulla: H mθ = J minden hőmésékleten! 3 Folyamatok ΔH θ standadentalpia-változásai: a fizikai változásokat és kémiai eakciókat kíséő entalpiaváltozás úgy, hogy (a nem összekevet) a folyamat kezdetén (i) és a (nem összekevet) a folyamat végén (f) egyaánt standad állapotban vannak. ΔH θ = Hm, f Hm, i A ΔH θ étékek n = 1 mol-a vonatkoznak (intenzívek) A sokféle változás nevét (övidített ában) alsó indexben szokás megadni: Δ név H θ A kémiai folyamatok eakcióentalpiái (eakcióhői) közül a gyakolatban a képződéshőnek és az égéshőnek kiemelt szeepe van, de temészetesen más folyamatok entalpiái (pl. semlegesítési hők) is fontosak. 4 A folyamat neve A folyamat lényege Jelölés Fázisátmenet α-fázis β-fázis ts H Olvadás s l fus H Páolgás l g vap H Szublimáció s g sub H Folyadékok elegyedése tiszta anyag elegy mix H Oldódás oldandó anyag oldat sol H Hidatáció X (g) X (aq) hyd H Atomizáció (s,l,g) atomok(g) at H Ionizáció X(g) X + (g) + e (g) i H Elektonfelvétel X(g) + e (g) X (g) eg H Reakció H Égés vegyület(s,l,g) + O (g) CO (g) + H O (l) comb H Vegyületképződés elemek vegyület H Aktiválás aktivált komplex H # A folyamat neve A folyamat lényege Jelölés Fázisátmenet α-fázis β-fázis ts H Olvadás s l fus H Páolgás l g vap H Szublimáció s g sub H Folyadékok elegyedése tiszta anyag elegy mix H Oldódás oldandó anyag oldat sol H Hidatáció X (g) X (aq) hyd H Atomizáció (s,l,g) atomok(g) at H Ionizáció X(g) X + (g) + e (g) i H Elektonfelvétel X(g) + e (g) X (g) eg H Reakció H Égés vegyület(s,l,g) + O (g) CO (g) + H O (l) comb H Vegyületképződés elemek vegyület H Aktiválás aktivált komplex H # 5 fizikai változások és kémiai változások 6 1

2 A temodinamikában a fázis az anyag csak fizikai tulajdonságaiban különböző állapota: g, l, s. Szilád fázisban egyes anyagoknak több módosulata (fázisa) is ismet [pl. fehé, vöös P; gafit, gyémánt, fulleén C; ombos, monoklin S stb.] Az ilyen fizikai változások neve fázisátalakulás, ill. fázisátmenet, kíséőjük (jellemzőjük) a Δ ts H θ standad fázisátmeneti entalpia. Ismet példák: olvadás fagyás ml/jokai14.htm páolgás kondenzálás szublimáció kondenzálás fázisátmenet (ombos monoklin S) 7 A fázisátalakulás hőmésékletéhez tatozó standad olvadási és páolgási entalpiák: f /K Δ fus H θ /(kj mol 1 ) b /K Δ vap H θ /(kj mol 1 ) He 3,5, 4,,84 A 84 1, 87 6,5 C 6 H , H O 73 6, 373 4,7 Mind pozitív éték, met az olvadás és páolgás endotem! Viszont fagyásko és kondenzálásko hő szabadul fel (exotem), ezét ee a két folyamata Δ ts H θ az előzőkkel azonos, csak előjelük negatív. [Az étékek viszonya molekuláis szemléletben ételmezhető.] 8 A eakcióhő csak a kezdeti- és végállapottól függ, de független a köztes úttól, annak közbülső állomásaitól. [A eakcióhő, azaz az entalpia állapotfüggvény. Nyilván több ilyen köztes út is van.] Az eedő (buttó) eakció standadentalpiája bámely olyan egyedi eakciók standadentalpiájának összege, amelyeke a buttó eakció felosztható. Egy köfolyamat buttó entalpiaváltozása =. [Ez az I. főtételnek (az enegiamegmaadásnak) az évényesülése a temokémiában. Ennek alapján egy (kíséletesen nem megvalósítható) észlépés Δ H θ -ja kiszámítható. Ezt alkalmazzuk majd a Bon Habe-köfolyamatban is.] 9 A Δ H θ eakcióentalpia meghatáozásának közvetlen módja a kaloimetiás méés. Ez gyos folyamatoknál egyszeű, lassú folyamatoknál köülményes. H + Cl = HCl egyszeű C 3 H 6 + H = C 3 H 8 nehézkes A Δ H θ eakcióentalpia pontosan és kényelmesen számítható a és Δ H θ képződési entalpiáiból (képződéshőiből). [Sem a C 3 H 6, sem a C 3 H 8 képződéshője nem méhető közvetlenül.] A Δ H θ képződési entalpiák itkán méhetők jól, viszont a Hess-tétel alkalmazásával számíthatók a jól méhető Δ comb H θ égési entalpiákból (égéshőkből). C 3 H 6 (g) + 4,5 O (g) 3 CO (g) + 3 H O(l) égéshője és a C 3 H 8 (g) + 5 O (g) 3 CO (g) + 4 H O(l) égéshője is jól méhető. 1 A standad eakcióentalpia számítása standad képződési entalpia étékekből. Az I. főtétel alkalmazásával: minden eakció standad entalpiája a és a képződési standad entalpiájának különbsége: Elegánsabb, de bukoltabb íásmódban: J J Ekko a sztöchiometiai számoknak (ν J ) előjele van és ezek figyelembevételével összegzünk. 11 Példa a standad eakcióentalpia számításáa standad képződéshőkből: A HN 3 (l) + NO(g) H O (l) + 4 N (g) eakció standad eakcióentalpiájának számítása: H H O,l 4 H N,g H HN 3,l H NO,g kj mol 4 kj mol 1 64 kj mol 9 kj mol kj mol 1 1

3 Standad eakcióentalpia számítása standad égéshőkből: Az előző számítási elv égéshőke is alapozható. J comb H J 13 Példa a standad eakcióentalpia számításáa standad égéshőkből: Mennyi a C 3 H 6 + H C 3 H 8 eakció Δ H θ -je? Kaloiméteben elégethető mindháom anyag: C 3 H 6 + 4,5 O 3 CO + 3 H O Δ comb H θ (C 3 H 6 )= -58 kj mol 1 H +,5 O H O Δ comb H θ (H )= -86 kj mol 1 C 3 H O 3 CO + 4 H O Δ comb H θ (C 3 H 6 )= - kj mol 1 A hidogénezés eakcióhője (standad eakcióentalpiája): C3H6,g H,g C3H8,g kjmol - 86 kjmol - kjmol -14 kjmol 1 14 Példa a standad eakcióentalpia számításáa standad égéshőkből: Mennyi a C 3 H 6 + H C 3 H 8 eakció Δ H θ -je? Kaloiméteben elégethető mindháom anyag: C 3 H 6 + 4,5 O 3 CO + 3 H O Δ comb H θ (C 3 H 6 )= -58 kj mol 1 H +,5 O H O Δ comb H θ (H )= -86 kj mol 1 3 CO + 4 H O C 3 H O -Δ comb H θ (C 3 H 6 )= kj mol 1 A hidogénezés eakcióhője (standad eakcióentalpiája): C3H6,g H,g C3H 8,g kj mol - 86 kj mol - kj mol -14 kj mol 1 15 Az oxidáció a (legtöbb szeves) anyag elégetése nagy (nyomású) oxigénfeleslegben (kaloiméte-bombában) teljes és gyos folyamat, ezét a Δ f H θ képződéshő számításának alapja célszeűen a jól méhető Δ comb H θ égéshő meghatáozása. Mennyi a metán képződéshője? A C + H CH 4 folyamat meg sem valósítható! Kaloiméteben elégethető a C, a H és a CH 4 is: C + O CO Δ comb H θ (C,s) H + O H O Δ comb H θ (H,g) CH 4 + O CO + H O Δ comb H θ (CH 4,g) Az oxidáció a (legtöbb szeves) anyag elégetése nagy (nyomású) oxigénfeleslegben (kaloiméte-bombában) teljes és gyos folyamat, ezét a Δ f H θ képződéshő számításának alapja célszeűen a jól méhető Δ comb H θ égéshő meghatáozása. Mennyi a metán képződéshője? A C + H CH 4 folyamat meg sem valósítható! Kaloiméteben elégethető a C, a H és a CH 4 is: C + O CO Δ comb H θ (C,s) H + O H O Δ comb H θ (H,g) CO + H O CH 4 + O -Δ comb H θ (CH 4,g) egyszeű kaloiméte (pl. hígítási vagy semlegesítési hő méése) bombakaloiméte (C V, ill. U) lángkaloiméte (, ill. H) Az égéshő technikai és élettani jelentősége. 18 3

4 Ezek koábban má észletesen előkeültek (múlt heti előadás): Az állandó téfogaton vagy állandó nyomáson vett hőkapacitás változatai : C V, : hőkapacitás (tetszőleges n-e); extenzív; J K 1 C V, : moláis hőkapacitás (1 mol-a); intenzív; J mol 1 K 1 c V, c p : fajlagos hőkapacitás (fajhő) (1 kg-a); intenzív; J kg 1 K 1 U CV V H Cp p 19 Ezek koábban má észben előkeültek (múlt heti előadás): A hőkapacitás molekuláis ételmezése: egyatomos gázoka: C V = 3/ R = [1,47 J K -1 mol -1 ] kétatomos molekuláka: C V = 5/ R = [,785 J K -1 mol -1 ] nemlineáis sokatomos molekuláka: C V = 3R = [4,94 J K -1 mol -1 ] Moláis hőkapacitás-étékek használata eakcióentalpiák számításában. A Δ H θ étékek függenek -től, és ennek ismeete fontos. A meghatáozás lehetséges módjai: a Δ H θ étékek közvetlen méése több -n, a vegyületek H m entalpiájának -függéséből (azaz -ből): = ( H/ ) p. Ebből dh = d. (múlt heti) = ( H m / ) p. Ebből dh m = d. Ha ismejük az entalpiát valamely 1 hőmésékleten, akko H( 1 )-ből hatáozott integálással megkapjuk a H( )-t [feltéve, hogy nincs fázisátalakulás 1 és között]. Moláis hőkapacitás-étékek használata eakcióentalpiák számításában. A Δ H θ étékek függenek -től, és ennek ismeete fontos. A meghatáozás lehetséges módjai: a Δ H θ étékek közvetlen méése több -n, a vegyületek H m entalpiájának -függéséből (azaz -ből): = ( H/ ) p. Ebből dh = d. (múlt heti) = ( H m / ) p. Ebből dh m = d. Ha ismejük az entalpiát valamely 1 hőmésékleten, akko H( 1 )-ből hatáozott integálással megkapjuk a H( )-t [feltéve, hogy nincs fázisátalakulás 1 és között]. 1 Ezek koábban má előkeültek (múlt heti): A hőkapacitás ismeetében számítható egy adott endsze H entalpiája egy újabb hőmésékleten: H 1 H A gyakolatban ennél fontosabb egy folyamat (egy kémiai eakció) Δ H entalpiaváltozásának változása a hőméséklettel. Ez a változásban észt vevő anyagok hőkapacitásának felhasználásával, azok előjellel vett (algebai) összegéből számítható: H 1 A temokémiában ez a Kichhoff-tétel. d d 3 n = 1 mol-a: A hőkapacitás ismeetében számítható egy adott endsze H m entalpiája egy újabb hőmésékleten: H m Hm 1 A gyakolatban ennél fontosabb egy folyamat (egy kémiai eakció) Δ H entalpiaváltozásának változása a hőméséklettel. Ez a változásban észt vevő anyagok hőkapacitásának felhasználásával, azok előjellel vett (algebai) összegéből számítható: 1 A temokémiában ez a Kichhoff-tétel. d d 4 4

5 A hatáozott integálás: Hm Hm 1 d Ezt valamennyi anyaga összegezzük. Ez a (temodinamikai) Kichhoff-tétel: A standad eakcióentalpia -n számítható Δ H θ ( 1 )-ből és a eakciókomponensek moláis hőkapacitásának hőmésékletfüggéséből: H H d 1 C p C p C p 5 Az I. főtétel gyakolati alkalmazása kistályok Δ lat H θ ácsentalpiájának (ácsenegiájának) vagy Δ hyd H θ hidatációs entalpiájának meghatáozásáa, esetleg Δ ea H θ elektonaffinitások kiszámításáa a köfolyamat többi észlépésének kíséletesen megmét temodinamikai adataiból. A köfolyamatban a buttó entalpiaváltozás =! ½ Δ diss H θ (Cl ) + Δ sub H θ (Na) + Δ i H θ (Na) + Δ ea H θ (Cl) + Δ hyd H θ (NaCl) Δ f H θ (NaCl,aq) = ½ Δ diss H θ (Cl ) + Δ sub H θ (Na) + Δ i H θ (Na) + Δ ea H θ (Cl) Δ lat H θ (NaCl) Δ f H θ (NaCl,s) = 6 Rácsentalpia meghatáozása Rácsentalpia meghatáozása Na(g) Na + (g) + e 498 kj/mol Cl(g) + e Cl (g) -351 kj/mol Na(g) Na + (g) + e 498 kj/mol Cl(g) + e Cl (g) -351 kj/mol Na(s) Na(g) 17 kj/mol ½ Cl (g) Cl(g) 1 kj/mol NaCl(s) Na + (g) + Cl (g) 787 kj/mol Na(s) Na(g) 17 kj/mol ½ Cl (g) Cl(g) 1 kj/mol NaCl(s) Na + (g) + Cl (g) 787 kj/mol Na(s) + ½ Cl (g) NaCl(s) -411 kj/mol Na(s) + ½ Cl (g) NaCl(s) -411 kj/mol ½ Δ diss H θ (Cl ) + Δ sub H θ (Na) + Δ i H θ (Na) + Δ ea H θ (Cl) Δ lat H θ (NaCl) Δ f H θ (NaCl,s) = ½ Δ diss H θ (Cl ) + Δ sub H θ (Na) + Δ i H θ (Na) + Δ ea H θ (Cl) Δ lat H θ (NaCl) Δ f H θ (NaCl,s) = Hidatációs entalpia meghatáozása Na(g) Na + (g) + e 498 kj/mol Na(s) Na(g) 17 kj/mol ½ Cl (g) Cl(g) 1 kj/mol Na(s) + ½ Cl (g) NaCl(aq) -47 kj/mol Cl(g) + e Cl (g) -351 kj/mol Na + (g) + Cl (g) NaCl(aq) -783 kj/mol ½ Δ diss H θ (Cl ) + Δ sub H θ (Na) + Δ i H θ (Na) + Δ ea H θ (Cl) + Δ hyd H θ (NaCl) Δ f H θ (NaCl,aq) = A temokémia a kémiai eakciókat kíséő hőváltozásokat (hőeffektusokat) méi, elemzi és használja. A Hess-tétel az I. főtétel konketizálása az állandó nyomású folyamatok entalpiaváltozásaia. Minden anyagnak van meghatáozott H entalpiája (ami állapotfüggvény, abszolút étéke nem ismet). A számításokhoz szükséges megállapodások: a standad állapot fogalma: 1 ba és adott ; az elemek képződési entalpiája: H mθ = ; a vegyületek H mθ entalpiája: elemeikből töténő képződésük eakcióentalpiája = Δ H θ. 3 5

6 H Ha egy (bonyolult) vegyület elemeiből közvetlenül nem szintetizálható, akko a Δ H éték, azaz a vegyület (képződési) entalpiája a Hess-tétellel az elemek és a vegyület jól méhető Δ comb H égéshőiből kiszámítható. A fizikai változásokat és a kémiai eakciókat kíséő Δ H entalpiaváltozás vagy a eakciót lejátszatva közvetlenül kiméhető, vagy a eakciópatneek H mθ standad moláis entalpiáiból, vagy Δ H θ képződési, vagy Δ comb H θ égési entalpiáiból számítható: H H H H m m comb 31 Mind az egyes anyagok entalpiája, mind a eakcióka jellemző eakcióentalpia függ a hőméséklettől. Valamely anyag entalpiájának hőmésékletfüggése a moláis hőkapacitás: ( H m / ) p =. Ez konketizálva egy adott hőmésékletpáa: Hm Hm 1 d Sajnos a is függ a hőméséklettől: = a + b+c/ Ezt a -függést ki kell méni, de jól méhető. A eakcióhő (entalpiaváltozás) -függését is -ke alapozva kapjuk: 1 d 3 c p, c V fajlagos hőkapacitások (fajhők),, C V moláis hőkapacitások és más temodinamikai jellemzők (π, α, μ, κ ) méése,* égéshők méése bomba- és gázkaloiméteekben, egyensúlyok, egyensúlyi állandó meghatáozása (koncentációk sokféle méésével)* [l. később], galvánelemek cellapotenciáljának (elektomotoos eejének) méése* [l. később]. A *-gal jelölt eljáásokkal a temodinamikai adatok hőmésékletfüggése is jól és pontosan méhető. 33 6

Az előadás vázlata:

Az előadás vázlata: 18..19. Az előadás vázlata: I. eokéiai egyenletek. A eakcióhő teodinaikai definíciója. II. A standad állapot. Standad képződési entalpia. III. ess-tétel. IV. Reakcióentalpia száítása képződési entalpia

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások. uányi amás ELE Kémiai Intézet A temodinamika A temodinamika egy fucsa tudomány. Amiko az embe előszö tanula, egyáltalán nem éti. Amiko második alkalommal

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások biológusoknak 1. uányi amás ELE Kémiai Intézet A temodinamika tanulása elé: A temodinamika Ó-Egyiptom: közéthető módszeek téglalap és kö alakú földek

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj

A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj A termodinamikai rendszer energiája E = E pot + E kin + U E pot =m g h E kin =½m v² U = U 0 + U trans + U rot + U vibr + U khat + U gerj belső energia abszolút értéke nem ismert, csak a változása 0:kémiai

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Termokémia, termodinamika

Termokémia, termodinamika Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,

Részletesebben

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul. Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia

Részletesebben

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n) ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább

Részletesebben

Termokémia. Termokémia Dia 1 /55

Termokémia. Termokémia Dia 1 /55 Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia

Részletesebben

Általános Kémia GY 4.tantermi gyakorlat

Általános Kémia GY 4.tantermi gyakorlat Általános Kémia GY 4.tantermi gyakorlat Csapadékképződési egyensúlyok, oldhatósági szorzat Termokémiai számítások Hess tétel Közömbösítési hő meghatározása kísérlet (példaszámítás: 4. labor leírásánál)

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz Termokémia 5-1 Terminológia 5-2 Hő 5-3 Reakcióhő, Kalorimetria 5-4 Munka 5-5 A termodinamika első főtétele 5-6 Reakcióhő: U és H 5-7 H indirekt meghatározása: Hess-tétele Termokémia 5-8 Standard képződési

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

4. Termokémia. 4.1 A standard reakcióhő

4. Termokémia. 4.1 A standard reakcióhő 4. Termokémia A világ energiaszükségletének túlnyomó hányadát jelenleg is kémiai úton (szén, fa, kőolajszármazékok és földgáz elégetésével) nyerjük. A kémiai reakciókat kísérő energiaváltozásokkal a termokémia

Részletesebben

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

FIZIKAI MODELL AZ OLDASHŐ KONCENTRACIÓ-FÜGGÉSÉRE

FIZIKAI MODELL AZ OLDASHŐ KONCENTRACIÓ-FÜGGÉSÉRE FIZIKAI MODELL AZ OLDASHŐ KOCETRACIÓ-FÜGGÉSÉRE Wiedemann László Főváosi Pedagógiai Intézet Szoítkozzunk olyan anyagoka, melyek vizes oldata eős elektolitot képez, mikois tehát az oldott anyag teljesen

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része I. A munka fogalma, térfogati és egyéb (hasznos) munka. II. A hő fogalma. molekuláris értelmezése. I. A termodinamika első főtételének néhány megfogalmazása.. Az entalpia fogalma, bevezetésének indoklása.

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

Folyadékok és szilárd anyagok

Folyadékok és szilárd anyagok Folyadékok és szilárd anyagok 7-1 Intermolekuláris erők, folyadékok tulajdonságai 7-2 Folyadékok gőztenziója 7-3 Szilárd anyagok néhány tulajdonsága 7-4 Fázisdiagram 7-5 Van der Waals kölcsönhatások 7-6

Részletesebben

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2) I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy

Részletesebben

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.

Részletesebben

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Általános Kémia Gyakorlat II. zárthelyi október 10. A1 2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatokat írta: Kódszám: Pócsiné Erdei Irén, Debrecen... Lektorálta: Kálnay Istvánné, Nyíregyháza 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 9. évfolyam A feladatok megoldásához

Részletesebben

Altalános Kémia BMEVESAA101 tavasz 2008

Altalános Kémia BMEVESAA101 tavasz 2008 Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

VII. A KÉMIAI REAKCIÓK JELLEMZŐI ÉS CSOPORTOSÍTÁSUK

VII. A KÉMIAI REAKCIÓK JELLEMZŐI ÉS CSOPORTOSÍTÁSUK VII. A KÉMIAI REAKCIÓK JELLEMZŐI ÉS CSOPORTOSÍTÁSUK VII. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 4 5 6 7 8 9 0 C C C E D C C B D 1 B A C D B E E C A D E B C E A B D D C C D D A D C D VII.. TÁBLÁZATKIEGÉSZÍTÉS

Részletesebben

tema09_

tema09_ 9. Elektokémia kísélet: vas szög éz-szulfát oldatban cink lemez éz-szulfát oldatban buttó eakció: + 2+ = 2+ + oxidációs folyamat: = 2+ + 2e edukciós folyamat: 2+ + 2e = Ha ézlemezt teszünk éz-szulfát oldatba,

Részletesebben

III. Termodinamikai alapok: a változások energetikája; a folyamatok iránya, egyensúlyok.

III. Termodinamikai alapok: a változások energetikája; a folyamatok iránya, egyensúlyok. III. Termodinamikai alapok: a változások energetikája; a folyamatok iránya, egyensúlyok. III.1. Termokémia Alapfogalmak. U és H, reakcióhő, Hess-tétel, képződéshő Hőmennyiség, hőkapacitás: Q = C ΔT C -

Részletesebben

2011/2012 tavaszi félév 3. óra

2011/2012 tavaszi félév 3. óra 2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

5. előadás 12-09-16 1

5. előadás 12-09-16 1 5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia emelt szint 0812 É RETTSÉGI VIZSGA 2008. október 29. KÉMIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. A katalizátorok a kémiai reakciót gyorsítják azáltal, hogy az aktiválási energiát csökkentik, a reakció végén változatlanul megmaradnak. 2. Biológiai

Részletesebben

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1 Sav-bázis egyensúlyok 8-1 A közös ion effektus 8-1 A közös ion effektus 8-2 ek 8-3 Indikátorok 8- Semlegesítési reakció, titrálási görbe 8-5 Poliprotikus savak oldatai 8-6 Sav-bázis egyensúlyi számítások,

Részletesebben

feladatmegoldásai K É M I Á B Ó L

feladatmegoldásai K É M I Á B Ó L A 2006/2007. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának Az értékelés szempontjai feladatmegoldásai K É M I Á B Ó L Egy-egy feladat összes pontszáma a részpontokból tevődik

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten

Részletesebben

Szent-Györgyi Albert kémiavetélkedő Kód

Szent-Györgyi Albert kémiavetélkedő Kód 9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2019.02.04. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő oldáshő hidratációs

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

XXIII. SZERVES KÉMIA (Középszint)

XXIII. SZERVES KÉMIA (Középszint) XXIII. SZERVES KÉMIA (Középszint) XXIII. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 E D D A A D B D B 1 D D D C C D C D A D 2 C B D B D D B D C A A XXIII.. TÁBLÁZATKIEGÉSZÍTÉS Az etanol és az

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

Sok helyes megoldás érkezett, a pontátlag 9,3 pont. (Kramarics Áron)

Sok helyes megoldás érkezett, a pontátlag 9,3 pont. (Kramarics Áron) H106. a) Jelöljük a [H -t x-szel. Ekkor felírva a savi disszociációs állandót K s = [H [CN /[HCN, azaz 4,93 10 10 = x /(1x), ezt megoldva x=, 10 5 mol/dm 3, ebből ph= 4,65. Látható, hogy a víz autoprotolíziséből

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal 0/0. tanévi Országos Középiskolai Tanulmányi Verseny Kémia II. kategória. forduló I. FELADATSOR Megoldások. A helyes válasz(ok) betűjele: B, D, E. A legnagyobb elektromotoros erejű

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Kémiai rendszerek állapot és összetétel szerinti leírása

Kémiai rendszerek állapot és összetétel szerinti leírása Kémiai rendszerek állapot és összetétel szerinti leírása komponens olyan kémiai anyagfajta, mely fizikai módszerekkel nem bontható összetevőire. fázis makroszkopikus határfelületekkel elválasztott homogén

Részletesebben

Elegyek. Csonka Gábor 2008 Általános Kémia: oldatok 1 dia

Elegyek. Csonka Gábor 2008 Általános Kémia: oldatok 1 dia Elegyek 7-1 Elegyek fajtái 7-2 Koncentrációk 7-3 Intermolekuláris erők, az elegyedés folyamata 7-4 Elegyek keletkezése, egyensúly 7-5 Gázok oldhatósága 7-6 Elegyek gőznyomása 7-7 Ozmózis nyomás 7-8 Fagyáspont

Részletesebben

2012.05.02. 1 tema09_20120426

2012.05.02. 1 tema09_20120426 9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

Általános Kémia GY, 2. tantermi gyakorlat

Általános Kémia GY, 2. tantermi gyakorlat Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu

Részletesebben

Általános kémia gyakorlat biomérnököknek

Általános kémia gyakorlat biomérnököknek Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 1412 ÉRETTSÉGI VIZSGA 2015. május 14. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

Értelmezzük az alábbi jól ismert fogalmakat! Legkisebb kényszer elve, egyensúly eltolása, tömeghatás törvénye, Le Chatelier-Brown elv

Értelmezzük az alábbi jól ismert fogalmakat! Legkisebb kényszer elve, egyensúly eltolása, tömeghatás törvénye, Le Chatelier-Brown elv AZ EGYENSÚLYI REAKCIÓK: ALKALMAZÁSOK Az egyensúly eltolása, megfodítható eakciók Ételmezzük az alábbi jól ismet fogalmakat! Legkisebb kénysze elve, egyensúly eltolása, tömeghatás tövénye, Le Chatelie-Bown

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 (pótfeladatsor)

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 (pótfeladatsor) 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2001 (pótfeladatsor) JAVÍTÁSI ÚTMUTATÓ 1. Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése

Részletesebben

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont 1. feladat Összesen: 18 pont Különböző anyagok vízzel való kölcsönhatását vizsgáljuk. Töltse ki a táblázatot! második oszlopba írja, hogy oldódik-e vagy nem oldódik vízben az anyag, illetve ha reagál,

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 1512 ÉRETTSÉGI VIZSGA 2015. október 20. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 4 5 6 7 8 9 0 D C C D D A B D D 1 D B E B D D D A A A A B C A D A (C) A C A B XV.. TÁBLÁZATKIEGÉSZÍTÉS Az ammónia és a salétromsav

Részletesebben

Általános kémia vizsgakérdések

Általános kémia vizsgakérdések Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

Mekkora az égés utáni elegy térfogatszázalékos összetétele

Mekkora az égés utáni elegy térfogatszázalékos összetétele 1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora

Részletesebben

Közös elektronpár létrehozása

Közös elektronpár létrehozása Kémiai reakciók 10. hét a reagáló részecskék között közös elektronpár létrehozása valósul meg sav-bázis reakciók komplexképződés elektronátadás és átvétel történik redoxi reakciók Közös elektronpár létrehozása

Részletesebben

1. feladat Összesen: 10 pont. 2. feladat Összesen: 6 pont. 3. feladat Összesen: 18 pont

1. feladat Összesen: 10 pont. 2. feladat Összesen: 6 pont. 3. feladat Összesen: 18 pont 1. feladat Összesen: 10 pont Etil-acetátot állítunk elő 1 mol ecetsav és 1 mol etil-alkohol felhasználásával. Az egyensúlyi helyzet beálltakor a reakciót leállítjuk, és az elegyet 1 dm 3 -re töltjük fel.

Részletesebben

Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév

Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév Általános kémia gyakorlat vegyészmérnököknek 2015/2016. őszi félév Zárthelyik A zárthelyik időpontja az kari zh-időpont: 17 00 19 00. A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot

Részletesebben

2.) Melyik sor tartalmaz kizárólag endoterm folyamatokat? május. 1. Melyik állítás helytelen a fluorral kapcsolatban? okt.

2.) Melyik sor tartalmaz kizárólag endoterm folyamatokat? május. 1. Melyik állítás helytelen a fluorral kapcsolatban? okt. Bemelegítő tesztek (a szükséges fogalmak mozgósítására): 2.) Melyik sor tartalmaz kizárólag endoterm folyamatokat? 2013. május A) atomokból ionok képződése, kötésfelszakítás molekulákban B) szublimáció,

Részletesebben

XVI. A SZÉNCSOPORT ELEMEI ÉS VEGYÜLETEIK

XVI. A SZÉNCSOPORT ELEMEI ÉS VEGYÜLETEIK XVI. A SZÉNCSOPORT ELEMEI ÉS VEGYÜLETEIK XVI. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 B E C A D C C B C 1 A A C D C E A C B A 2 B A D B A XVI.. TÁBLÁZATKIEGÉSZÍTÉS A szén oxidjai Szigma- és

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATK 2003. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben

2. A termodinamika I. főtétele

2. A termodinamika I. főtétele . A termodinamika I. főtétele.1 A belső energia, a termodinamika I. főtétele A mechanikában egy test mozgását felbontjuk a tömegközéppont mozgására, amelyet egy külső vonatkoztatási rendszerhez képest

Részletesebben

PHYWE Fizikai kémia és az anyagok tulajdonságai

PHYWE Fizikai kémia és az anyagok tulajdonságai PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses

Részletesebben

Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019.

Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019. A feladatokat írta: Név: Pócsiné Erdei Irén, Debrecen... Lektorálta: Iskola: Kálnay Istvánné, Nyíregyháza... Beküldési határidő: 2019. január 07. Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019.

Részletesebben