Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
|
|
- Botond Pál Kocsis
- 8 évvel ezelőtt
- Látták:
Átírás
1 Fizikai kémia és radiokémia B.Sc. László Krisztina F ép. I. lépcsőház 1. emelet Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv szerda 9:15-12:00 F ép. I. lh. 1. em. 137 csütörtök 2:15-5:00 szerda: okt. 20. csütörtök: nov. 4. Ajánlott tankönyvek: k Atkins: Fizikai Kémia I. Zrínyi Miklós: A fizikai kémia alapjai I. Nagy Lajos György: Radiokémia és izotóptechnika (1997) 1
2 FIZIKAI KÉMIA ÉS RADIOKÉMIA ELŐADÁSOK Javasolt ZH időpontok: október 5. november 2, december 7. pótzh: egy héttel később, megbeszélt időpontban 1. Termodinamika alapjai gázok folyadékok elegyek 2. Kémiai egyensúlyok 3. Radiokémia a 3. ZH-ban + laborkérdések is 2
3 TERMODINAMIKA Fizikai kémia A kémiai jelenségek okait és összefüggéseit a fizika törvényei alapján kutatja és értelmezi Természetben lejátszódó folyamatok iránya egyensúly egyensúlyhoz vezető folyamatokat befolyásoló tényezők energetikai kölcsönhatások az anyag energiaállapotainak átalakulása során 3
4 A termodinamikai rendszer fogalma fal TD rendszer: a környezettől határfelülettel l elválasztott rész, amelynek tulajdonságait vizsgáljuk 4
5 Energiaáram TD rendszerek csoportosítása Kölcsönhatás a rendszer és környezete között energia és anyagtranszport Anyagáram NYÍLT ZÁRT ELSZIGETELT lombik természeti folyamatok m=áll. n? hőszigetelt nyitott lombik ± Q ± m merev (!) Δ=0 falú edény Δ 0 dugattyús henger W, Q A rendszer állapota A rendszer makroszkopikus jellemzése A mérhető fizikai tulajdonságok összessége állapothatározók / állapotjelzők nyomás hőmérséklet térfogat kémiai komponensek mennyisége aránya extenzív - intenzív függ a rendszer kiterjedésétől és tiszta agnál additív energia tömeg térfogat p T m, n c, x, nem függ a rendszer méretétől és nem additív nyomás hőmérséklet fajlagos állapotjelzők: sűrűség koncentráció móltérfogat m 5
6 nyomás 1 Pa = 1 N/m 2 légkör: 1 bar = 10 5 Pa 1 atm = 1, Pa 1 Hgmm 1 torr 1 atm = 760 torr kpa, MPa 1 bar standard nyomás, p Ø parciális nyomás p i =y i p ö p=nyomóerő/felület Egyensúly: az állapothatározók időben állandók (nincsen makroszkopikus folyamat) De! az egyensúly dinamikus Nem-egyensúlyi rendszer: az állapothatározók időben változnak a rendszer egyensúly felé tart hőmérséklet ékl T C, K 0 K = -273,15 C víz hármaspontja: 273, K (a TD hőmérsékletskála rögzített pontja) 6
7 izoterm izobár izochor/izosztér adiabatikus A rendszer megváltozása (T=áll) (p=áll.) (=áll.) (ΔQ=0: nincsen hőcsere a környezettel) Állapotegyenlet az egyensúlyi rendszer állapotjelzői közti kapcsolat kísérleti tapasztalat mikroszkopikus modellek reverzibilis változás (absztrakt határeset): azonos közbülső egyensúlyi állapotokon át a változók igen kis megváltoztatásával visszafordítható lassúságú irreverzibilis p = nrt R = 8,314 J/molK hatványsor 2 nrt nb n C p = iriál egyenlet 2 diagram táblázat 7
8 Állapotfüggvény az állapothatározók olyan többváltozós egyértékű függvénye, melynek értéke csak az adott állapottól, megváltozása pedig csak a kezdeti és a végállapottól függ matematikai tulajdonsága: teljes differenciál f ( x, y) f ( x, y) df ( x, y) = dx + dy x y y (, ) (, ) 2 f xy 2 f xy = x y y x U, H, A, G ΔU, du joule, J; kj x Útfüggvény: értéke a kezdeti és a végállapot között megtett úttól függ W, Q δw, δq joule, J; kj W: a rendszer határfelületén fellépő energiatranszport mennyisége, melyet a kölcsönhatáshoz tartozó nem hőmérsékleti intenzív állapotjelző inhomogenitása, mint hajtóerő hoz létre Q: a rendszer határfelületén fellépő anyagtranszport nélküli energiatranszport, melyet a hőmérsékleti inhomogenitás, mint hajtóerő hoz létre S J/K 8
9 A munka F δ W = pa dx = pd térf térf p izoterm p izobár Wmech = F s izochor előjelkonvenció δ W = pd = v W pd térf k A munka fajtái Térfogati* -p Elektrosztatikus ϕ Q Felületi γ A s Kémiai... intenzív extenzív δww -pd ϕdq γda s v v k v nrt Wtérf = pd = d = k v térf térf,izobár térf,izosztér k = nrt ln 1 dx = ln x + c x v k k W = W + W = = p( ) + 0 = izoterm munka = pδ izobár munka A munka fajtái intenzív extenzív v k 9
10 Hőcserével járó folyamatok: 1- melegítés/hűtés Q=C m (T 2 -T 1 ) [C]=J/(kg K) fajlagos hőkapacitás/fajhő 0 CC víz: 4190 J/(kg K) réz: 390 J/(kg K) [C m ]=J/(mol K) Q=C m n (T 2 -T 1 ) T 2 Q=n C dt T 1 m m,p 1 δq C m= n dt 1 δ Q C m,p= n dt C = a+ bt + ct + d T p δ Q C m,= n dt 2- fázisátalakulások: párolgáshő kondenzációs hő olvadáshő - fagyáshő szublimációs hő kondenzációs hő előjel, moláris értékek 3- kémiai reakciók C m,p <?> C m, C m,p > C m, állandó nyomáson végzett melegítés során térfogati munkavégzés is van, a befektetett energiának azt is fedezni kell 10
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj
A termodinamikai rendszer energiája E = E pot + E kin + U E pot =m g h E kin =½m v² U = U 0 + U trans + U rot + U vibr + U khat + U gerj belső energia abszolút értéke nem ismert, csak a változása 0:kémiai
MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS
MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG
1. Bevezetés. 1.1 A termodinamikai rendszer fogalma, típusai és jellemzése
1. Bevezetés A termodinamika a világ egy jól körülhatárolható részének, a rendszernek és a rendszer környezetének a kölcsönhatásaival valamint a rendszer makroszkopikus tulajdonágai közötti összefüggéssekkel
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.
Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
2. A termodinamika I. főtétele
. A termodinamika I. főtétele.1 A belső energia, a termodinamika I. főtétele A mechanikában egy test mozgását felbontjuk a tömegközéppont mozgására, amelyet egy külső vonatkoztatási rendszerhez képest
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)
Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű
Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
2. Energodinamika értelmezése, főtételei, leírási módok
Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához
Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a
rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka fogalma, térfogati és egyéb (hasznos) munka. II. A hő fogalma. molekuláris értelmezése. I. A termodinamika első főtételének néhány megfogalmazása.. Az entalpia fogalma, bevezetésének indoklása.
A kémiai és az elektrokémiai potenciál
Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.
BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az előadásban: a fizika alkalmazása a kémia tárgykörébe eső fogalmak magyarázatára.
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Munka- és energiatermelés. Bányai István
Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
A természetes folyamatok iránya (a folyamatok spontaneitása)
A természetes folyamatok iránya (a folyamatok spontaneitása) H 2 +O 2 H 2 O 2 2 2 gázok kitöltik a rendelkezésükre álló teret meleg tárgy lehűl Rendezett Rendezetlen? az energetikailag (I. főtételnek nem
Digitális tananyag a fizika tanításához
Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g
Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I.
A tárgy neve FIZIKAI KÉMIA 1. Meghirdető tanszék(csoport) SZTE TTK FIZIKAI KÉMIAI TANSZÉK Felelős oktató: Visy Csaba Kredit 4 Heti óraszám 3 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Termokémia, termodinamika
Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
10/21/11. Miért potenciálfüggvények? (Honnan kapta a nevét?) Termodinamikai potenciálfüggvények. Belső energia. Entalpia
Miért potenciálfüggvények? (Honnan kapta a nevét?) Termodinamikai potenciálfüggvények h mg Visegrády B mg Potenciálfüggvény jelleg az, hogy egy folyamat csak a kezdef és a végállapogól függ és független
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
A termodinamika törvényei
A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
5. előadás 12-09-16 1
5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Általános Kémia, 2008 tavasz
Termokémia 5-1 Terminológia 5-2 Hő 5-3 Reakcióhő, Kalorimetria 5-4 Munka 5-5 A termodinamika első főtétele 5-6 Reakcióhő: U és H 5-7 H indirekt meghatározása: Hess-tétele Termokémia 5-8 Standard képződési
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Minek kell a matematika? (bevezetés)
Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...
Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).
Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2015.09.23. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)
Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)
Dinamikus modellek felállítása mérnöki alapelvek segítségével
IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.
Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék
Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja
Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.
BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.
számot a Z felosztáshoz tartozó integrálközelít összegnek nevezzük. Jelöljük Z-vel a s i -számok leghosszabbikát.
MEMIKI KÖZBEEÉ: INERÁLÁ I. Bronstejn-zemengyajev: Matematikai Zsebkönyv Elsfajú görbementi integrálok Legyen K szakaszonként sima görbedarab, kezdontja, végontja B és uf(x,y) a K görbét tartalmazó tartományban
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással
Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 6. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Transzportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)
ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI
MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 27. Az entrópia A természetben a mechanikai munka teljes egészében átalakítható hővé. Az elvont hő viszont nem alakítható át teljes egészében mechanikai
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati
ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram
BIOFIZIKAI TERMODINAMIKA AZ ENERGIA BIOLÓGIAI HASZNOSÍTÁSÁNAK TUDOMÁNYA
BIOFIZIKAI TERMODINAMIKA AZ ENERGIA BIOLÓGIAI HASZNOSÍTÁSÁNAK TUDOMÁNYA Oktatási segédanyag Zrínyi Miklós mikloszrinyi@gmail.com ÁOK Biofizikai és Sugárbiológiai Intézet Nanokémiai Kutatócsopot 1. A BIOFIZIKAI
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus
VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006
ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer
4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban
Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál
8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra
Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.
Hajdú Angéla
2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -