Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27.
|
|
- Rebeka Fülöpné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fizika Nyitray Gergely (PhD) PTE PMMIK március 27.
2 Az entrópia A természetben a mechanikai munka teljes egészében átalakítható hővé. Az elvont hő viszont nem alakítható át teljes egészében mechanikai munkává! Kazán T 1 Gép Hűtő T 2 Q 1 W ha. Q 2 Hulladékhő Q 2 lim Q Q 1 = 0 T 2 T 1 Q 2 + Q 1 = 0 T 2 T 1 N dq i = 0 T i i
3 Az entrópia S 12 = 2 1 dq T ds = dq T dq = TdS Az entrópia a klasszikus termodinamikában a munkára nem fogható energia mértéke. Az S entrópia állapotfüggvény akárcsak U, T és p. Az entrópia additív, tehát extenzív mennyiség.
4 Izobár folyamat p 1 p T 1 T 2 W 12 V 1 V 2 V S 12 = dq T c p mdt S 12 = T 1 ( ) T2 S 12 = c p m ln T 1
5 Izochór folyamat p 2 p 1 p V 1 T 2 S 12 = T 1 V dq T c v mdt S 12 = T 1 ( ) T2 S 12 = c v m ln T 1
6 Izoterm folyamat p 1 p 2 p T W 12 V 1 V 2 V dq = dw S 12 = 1 T V 2 V 1 S 12 = m V2 M R S 12 = p 1V 1 T m M RT dv V V 1 ln dv V ( V2 V 1 )
7 Kvázisztatikus adiabatikus folyamat p Kvázisztatikus adiabatikus folyamat során nem lép fel hőcsere a rendszer és a környezete között, mert hőszigeteléssel erről gondoskodunk (termosz). p 1 T 1 Mivel nincs hőcsere az entrópiaváltozás nulla. p 2 W12 T 2 ds = 0 V 1 V 2 V
8 Az entrópiatétel Az entrópiatétel szerint zárt termodinamikai rendszer entrópiája nem csökkenhet. Másképpen fogalmazva a rendszerben csak olyan spontán folyamatok lehetségesek, amikor az entrópia nem növekszik. ds 0 Egyensúlyi állapotban az entrópia maximális, így változása zérus. Úgy is fogalmazhatunk, hogy egy termodinamikai rendszer egyensúlyának feltétele az entrópia maximum.
9 Az entrópia a statisztikus termodinamikában S = k ln(ω) Ω: ún. mikroállapotok száma. Az entrópia nem más, mint a rendszer rendezetlenségének mértéke.
10 A Maxwell-féle sebességeloszlás Maxwell elméleti megfontolások alapján meg tudta határozni a gázok sebességeloszlását, a hőmérséklet és a részecskeszám függvényében.
11 A Maxwell-démon Maxwell rámutatott, hogy egy démon (vagy egy gép) képes lehet a sebességeloszlást kihasználva megsérteni a második főtételt.
12 A Szilárd-gép (2015) L. Szilard, On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings, Z. Phys. 53, 840 (1929). Szilard was never comfortable with the need to introduce a metaphysical, human-like intelligence to operate Maxwell s demon. Instead, he thought that it should be possible to construct autonomous, maybe even mechanical, systems that act like a demon yet fully obey the laws of physics a fully inclusive conceptual approach.
13 Démon űzés Szilárd módra Szilárd kimutatta, hogy a démonnak (vagy gépnek) mérést kell végezni, ahhoz, hogy meghatározza a molekulák sebességét. Ehhez entrópiára van szükség. Így a második főtétel érvényessége megmarad.
14 A csodás ötletek halmozója Az entrópia összekapcsolása az információval egy új tudományág alapját jelentette.
15 Az entrópia az információelméletben Az információelmélet megalapítója: Claude Shannon. Az információ definíciója az információelméletben: I = 1 ln(2) n p i ln(p i ) i=1 p: egy esemény valószínűsége. Az információelméletben az entrópia arányos a rendszerre vonatkozó információ-hiánnyal.
16 A fundamentális függvény és az Euler reláció A klasszikus termodinamika alapvető függvénye a relációval kifejezve az első és a második főtételt is magába foglalja: du TdS pdv +µdn Matematikailag igazolható, hogy a belső energia felírható a következő formában: Ez az ún. Euler reláció. U = TS pv +µn.
17 A fundamentális függvény U = TS pv + µn kifejezés ún. teljes differenciálja a következő: du = TdS + SdT pdv Vdp+µdn+ndµ Ez csak akkor van öszhangban a fundamentális összefüggéssel, ha: du = TdS pdv +µdn SdT Vdp+ndµ 0
18 A Gibbs-Duham reláció SdT Vdp+ndµ = 0, µ = sdt + vdp, ahol s = S/n és v = V/n fajlagos entrópia és térfogat. Ez az ún. Gibbs-Duham reláció. Ez a reláció (a kémiai potenciál miatt) kulcsfontosságú az elsőrendű fázisátalakulások vizsgálata során.
19 Fázisátalakulások p p Olvadás/fagyás Folyékony p kp Kritikus pont p kp Szilárd p hp Hármaspont Párolgás/kondenzáció p hp Gőz/gáz Szublimáció/kondenzáció T hp T kp T T hp T kp T
20 Fázisátalakulások A Clausius-Clapeyron egyenlet dp dt = S gáz S foly V gáz V foly dp dt = L T ( V gáz V foly ) dp dt = S foly S szil V foly V szil < 0
21 A víz fázisátalakulásai
22 A víz fázisátalakulásai
23 A víz fázisátalakulásai
24 A kritikus pont
25 Első és másodrendű fázisátalakulások
26 A szuperfolyékony He II
27 A harmadik főtétel Működtessünk egy Carnot-ciklust, úgy, hogy a a hűtő hőmérséklete legyen T 2 = 0 K. Ekkor arra a következtetésre jutunk, hogy nincs hőleadás. Ez sérti a második főtételt! T 1 T T 2 3 S
28 A harmadik főtétel Az ellentmondás oka az a hamis feltevés, hogy az abszolút zérus pont megközelíthető. A termodinamika harmadik főtétele szerint a homogén anyagok entrópiája az abszolút zérushoz közeledve nullához tart. Ennek egyik következménye, hogy a fajhő is nullához tart. A fajhő eltűnése teszi lehetetlenné az abszolút zérus elérését. Ha létezne, olyan gép, amely egy homogén anyagot nulla kelvinre hűtene azt harmadfajú perpetuum mobilének neveznénk. A természetben nincs és nem is készíthető harmadfajú perpetuum mobile.
29 Kriogenika A gázcseppfolyósítások korszaka Az elektronrendszer adiabatikus lemágnesezése Az atommagok demagnetizációja Lézeres hűtés Nagy eredmények: Atomok befogása elektro-optikai és magneto-optikai csapdába. A Bose-Einstein kondenzáció megvalósítása.
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
2. Energodinamika értelmezése, főtételei, leírási módok
Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Munka- és energiatermelés. Bányai István
Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2015.09.23. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)
ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben
Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)
Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű
Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).
Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
Minek kell a matematika? (bevezetés)
Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...
Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához
Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 6. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK április 3.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. április 3. Kriogenika A gázcseppfolyósítások korszaka Az elektronrendszer adiabatikus lemágnesezése Az atommagok demagnetizációja Lézeres hűtés Nagy eredmények:
Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I.
A tárgy neve FIZIKAI KÉMIA 1. Meghirdető tanszék(csoport) SZTE TTK FIZIKAI KÉMIAI TANSZÉK Felelős oktató: Visy Csaba Kredit 4 Heti óraszám 3 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele
Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)
Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
A termodinamika törvényei
A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál
8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási
A Klasszikus Statisztikus Fizika Alapjai. Néda Zoltán, Tyukodi Botond és Kacsó Ágota - Enikő
A Klasszikus Statisztikus Fizika Alapjai Néda Zoltán, Tyukodi Botond és Kacsó Ágota - Enikő Szakreferens: Dr. Sárközi Zsuzsa Rajzok: Tyukodi Botond Borítóterv: XXX Néda Zoltán és Tyukodi Botond publikációt
Hajdú Angéla
2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.
Klasszikus zika Termodinamika III.
Klasszikus zika Termodinamika III. Horváth András, SZE GIVK v 0.9 Oktatási célra szabadon terjeszthet 1 / 24 Ismétlés Mi is az az entrópia? Alapötlet Egy izotermán belül mozogva nincs bels energia változás.
Termokémia, termodinamika
Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
Kvantum termodinamika
Kvantum termodinamika Diósi Lajos MTA Wigner FK Budapest 2014. febr. 4. Diósi Lajos (MTA Wigner FKBudapest) Kvantum termodinamika 2014. febr. 4. 1 / 12 1 Miért van 1 qubitnek termodinamikája? 2 QuOszcillátor/Qubit:
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA. A termodinamika alapproblémája
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA A termodinamika alapproblémája Első észrevétel: U, V és n meghatározza a rendszer egyensúlyi állapotát. Mi történik, ha változás történik a rendszerben? Mi lesz
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
A TételWiki wikiből 1 / 17
1 / 17 A TételWiki wikiből 1 Az egyensúly állapota, nulladik főtétel, hőmérséklet 1.1 Nulladik főtétel 1.2 Empirikus hőmérsékleti skálák 1.3 Hőmennyiség 2 Első főtétel 3 Entalpia, reakcióhő 4 Különböző
Az ideális Fermi-gáz termodinamikai mennyiségei
Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető
I. posztulátum: A magukra hagyott makroszkopikus rendszerek kellően hosszú idő után a termodinamikai egyensúly állapotába kerülnek.
1 / 10 A TételWiki wikiből 1 Az egyensúlyi statisztikus fizika feltevései 2 A Gibbs féle sokaságfogalom 3 Az entrópia 4 A mikrokanonikus sokaság 5 A hőmérséklet 6 A nyomás 7 A kémiai potenciál 8 Fundamentális
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással
Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
BIOFIZIKAI TERMODINAMIKA AZ ENERGIA BIOLÓGIAI HASZNOSÍTÁSÁNAK TUDOMÁNYA
BIOFIZIKAI TERMODINAMIKA AZ ENERGIA BIOLÓGIAI HASZNOSÍTÁSÁNAK TUDOMÁNYA Oktatási segédanyag Zrínyi Miklós mikloszrinyi@gmail.com ÁOK Biofizikai és Sugárbiológiai Intézet Nanokémiai Kutatócsopot 1. A BIOFIZIKAI
4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban
Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
A kémiai és az elektrokémiai potenciál
Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
Digitális tananyag a fizika tanításához
Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens
A Fenntartható fejlődés fizikai korlátai Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens Fenntartható fejlődés 1987-ben adja ki az ENSZ Környezet és Fejlődés Világbizottsága a
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Biofizikai termodinamika (Bio-termodinamika) Zrínyi Miklós egyetemi tanár, az MTA rendes tagja zrinyi.miklos@med.semmelweis-univ.hu
Előzmény: TD módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált
Előzmény: D módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált ermodinamika:. Kölcsönhatások intenzív és extenzív állapotjelzőkkel írhatók le. Fundamentális egyenlet: du ds p d + Σμ
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
kinetikus gázelmélet Clausius Maxwell
kinetikus gázelmélet Clausius rugalmas ütközés csak a fallal, ugyanazzal az átlagsebességgel, bármilyen irányban egyforma gyakorisággal: p = nmc 2 /3V pv = 2/3 nmc 2 /2 = 2/3 K ~ T (1857) túl nagy sebesség
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia
Hőtan főtételei. (vázlat)
Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.
Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú
Termodinamika és statisztikus mechanika. Nagy, Károly
Termodinamika és statisztikus mechanika Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Publication date 1991 Szerzői jog 1991 Dr. Nagy Károly Dr. Nagy Károly - tanszékvezető egyetemi
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
A metabolizmus energetikája
A metabolizmus energetikája Dr. Bódis Emőke 2015. október 7. JJ9 Miért tanulunk bonyolult termodinamikát? Miért tanulunk bonyolult termodinamikát? Mert a biokémiai rendszerek anyag- és energiaáramlásának
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. (Bio)termodinamika, entrópia, egyensúly és változás.
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport (Bio)termodinamika, entrópia, egyensúly és változás Zrínyi Miklós egyetemi tanár, az MTA rendes tagja A termodinamika I.
A termodinamikai rendszer energiája. E = E pot + E kin + U E pot =m g h E kin =½m v². U = U 0 + U trans + U rot + U vibr + U khat + U gerj
A termodinamikai rendszer energiája E = E pot + E kin + U E pot =m g h E kin =½m v² U = U 0 + U trans + U rot + U vibr + U khat + U gerj belső energia abszolút értéke nem ismert, csak a változása 0:kémiai
Bevezető megjegyzések
Bevezető megjegyzések A következő fejezet a gépészmérnöki, a mezőgazdasági és élelmiszeripari gépészmérnöki, valamint a mechatronikai mérnöki BSc kurzusokon meghirdetett Műszaki hőtan tantárgy ismeretanyagának
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
TRANSZPORT FOLYAMATOK MODELLEZÉSE
RANSZPOR FOLYAMAOK MODELLEZÉSE Dr. Iányi Miklósné egyetemi tanár 6. előadás PE PMMK Műszaki Informatika anszék FM/0//4/EA-VI/ I. Alafogalmak Hőtan ermodinamika. Hőmérséklet meleg-hideg érzékelés mérése:
Elméleti fizika IV. Termodinamika és statisztikus fizika. Hraskó Péter. Pécs, 1999.
Elméleti fizika IV. Termodinamika és statisztikus fizika Hraskó Péter Pécs, 1999. Tartalom 4 Termodinamika és statisztikus fizika 3 4.1 A termodinamikai egyensúly........................ 3 4.2 A belső
Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód)
Tantárgy neve Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Számonkérés módja Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Tantárgyfelelős beosztása Fizikai alapismeretek Dr.
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Bio-termodinamika, entrópia, egyensúly és változás.
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Bio-termodinamika, entrópia, egyensúly és változás Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.com
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013
VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VÁZLAT Veszélyes és extrém jelenségek A veszélyes definíciója Az extrém és ritka
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
Pl2. Eltérő hőmérsékletű tarályok: eléri a max értéket és S spontán nőni fog...
A TételWiki wikiből 1 Irreverzibilis folyamatok 2 Master egyenlet, részletes egyensúly. 3 Entrópia és szabadenergia 3.1 Irreverzibilis folyamatok 4 Ingadozási jelenségek 4.1 Brown-mozgás, Diffúzió, Brown-mozgás
rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka fogalma, térfogati és egyéb (hasznos) munka. II. A hő fogalma. molekuláris értelmezése. I. A termodinamika első főtételének néhány megfogalmazása.. Az entalpia fogalma, bevezetésének indoklása.
BME Energetika Tanszék
BME Energetika anszék A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szerelő módon) HELYSZÁM: Hallgatói azonosító (NEPUN): AGOZA: N NK LK Műszaki Hőtan I. (ermodinamika)
5. A termodinamika II. és III. főtétele
5. A termodinamika II. és III. főtétele 5.. Az entrópia termodinamikai definíciója A termodinamikai folyamatok energiaviszonyainak leírása után, amelyek az I. főtételen alapultak, rátérünk a folyamatok