Geometria I. Vígh Viktor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Geometria I. Vígh Viktor"

Átírás

1 Geometria I. Vígh Viktor Kivonat Jelen jegyzet az SZTE osztatlan matematikatanár-képzésében szereplő Geometria I. tantárgyhoz íródott. A kurzus a tanulmányok első félévében kötelező. Ezért a tárgyalásban mindenképpen feladatként jelentkezik a hallgatók által a középiskolájukban megszerzett ismeretek felelevenítése és rendszerezése. A matematikaoktatás szempontjából igen heterogén közoktatási intézményrendszerre tekintettel szükséges az előzőeken túl a hallgatók geometriai ismereteinek módszeres felépítéssel olyan szintre hozása, amely az előrehaladást a jelen és későbbi kurzusok szükségleteinek megfelelően lehetővé teszi. A jegyzet a középszintű érettségi követelményeivel lefedett témaköröket lényegesen nem haladja meg, csupán a bizonyítások megjelenésével kap még nagyobb hangsúlyt az ismeretek egymásra építése, a fogalmak és állítások kapcsolatainak feltárása, és e kapcsolatok lehetséges demonstrálása. E jegyzettel támogatni kívánjuk a geometriai tanulmányok folytatásához szükséges rutinok kialakítását, bizonyos sémák alkalmazásának készségszintűvé tételét, automatizmusok begyakorlását. Ezeken túlmenően a a kitűzött kapcsolódó feladatok és gyakorlatok már sokkal inkább elméleti jellegűek, lehetőséget kínálnak arra, hogy a megfelelő szintű rutinnal a hallgatók tovább is haladhassanak, és a problémamegoldás eggyel magasabb szintjére is fel-fellépjenek. 1. Térelemek kölcsönös helyzete, illeszkedés Célok: ismerkedés a sík és a tér alapvető fogalmaival, a geometriai és térszemlélet formálása, kevés lépésből álló bizonyítások gyakorlása Alapismeretek A síkon Bármely két különböző pont pontosan egy közös egyenesre illeszkedik. Az egy közös egyenesre illeszkedő pontokat kollineárisnak nevezzük. 1

2 Az e és f egyenesek a síkban vagy egybeesnek, vagy egymást pontosan egy pontban metszik, vagy közös pont nélküliek. Ha e = f, vagy e-nek és f-nek nincs közös pontja, akkor e-t és f-t párhuzamosnak nevezzük. A párhuzamosság jele e f. Az e egyenessel bármely P ponton át pontosan egy párhuzamos egyenes húzható. A térben A térben bármely három, nem kollineáris pont pontosan egy közös síkra illeszkedik. A közös síkra illeszkedő pontokat komplanárisnak nevezzük. A térben két e és f egyenes metsző, ha pontosan egy közös P pontjuk van. Két nem metsző egyenes párhuzamos, ha létezik egy olyan sík, ami mindkettőt tartalmazza. (Az egybeeső egyeneseket ismét párhuzamosnak tekintjük.) Ha két egyenes nem metsző és nem is párhuzamos, akkor kitérő. Az e egyenessel bármely P ponton át pontosan egy párhuzamos egyenes húzható. 1. ábra. Kitérő élpárok a kockán és a tetraéderen Nézze és mozgassa meg az ábrát a GeoGebraTube-on! Az S 1 és S 2 síkok a térben lehetnek metszők, vagy párhuzamosak. Metsző síkok metszete minden esetben egy egyenes, a párhuzamos síkoknak vagy nincs közös pontjuk, vagy egybeesnek. Az S síkkal bármely P ponton át pontosan egy párhuzamos sík húzható. Egy e egyenes egy S síkot egy P pontban döf, ha e S = {P }. Ellenkező esetben e és S párhuzamosak. Ha e S, akkor az e sík illeszkedik S-re (és ekkor is párhuzamosnak tekintjük őket) gyakorlat. Mutassuk meg, hogy két párhuzamos egyenesre pontosan egy sík illeszkedik. 2

3 1.2. gyakorlat. Mutassuk meg, hogy két metsző egyenesre pontosan egy sík illeszkedik Három térelem kölcsönös helyzete Három térelem kölcsönös helyzetét már feladatokon keresztül dolgozzuk fel gyakorlat. Mutassuk meg, hogy ha három sík közül bármely kettő egy egyenesben metszi egymást, és a metszetegyenesek közül valamely kettő egy P pontban metszi egymást, akkor a harmadik metszetegyenes is illeszkedik P -re. Megoldás. Legyenek S 1, S 2 és S 3 a vizsgált síkok, amelyek közül bármely kettő egy egyenesben metszi egymást. Az S 1 S 2, az S 2 S 3 illetve az S 1 S 3 egyenesek legyenek rendre e 12 e 23 és e 13. Továbbá legyen P = e 12 e 13 a metszéspont. Másképpen, P az a pont, amire P e 12 és P e 13. (Lásd 2. ábra.) Hasonlóan, i) P e 12 és e 12 = S 1 S 2 miatt P S 2 ; ii) P e 13 és e 13 = S 1 S 3 miatt P S 3. Következésképpen P S 2 S 3 is, azaz P e 23. Tehát a P pont rajta van az S 1, S 2 és S 3 síkok által meghatározott metszetegyenesek mindegyikén. S 1 e 13 e 12 P e 23 S 3 S 2 2. ábra. A síkokat egy kocka lapsíkjaival szemléltethetjük Az 1.3. gyakorlat megoldását felhasználva oldjuk meg a következő gyakorlatokat önállóan! 3

4 1.4. gyakorlat. Adott 3 páronként egyenesben metsző sík. A három metszésvonaluk közül kettő párhuzamos. Mutassuk meg, hogy ekkor bármely két metszésvonal párhuzamos! 1.5. gyakorlat. A párhuzamos S 1 és S 2 síkokat az S 3 sík rendre e 1 és e 2 egyenesekben metszi. Mutassuk meg, hogy e 1 e 2! 1.6. gyakorlat. Az e egyenes párhuzamos a metsző S 1 és S 2 síkok mindegyikével. Mutassuk meg, hogy e párhuzamos S 1 S 2 egyenessel is! Megoldás (vázlat). Csak azt az esetet tárgyaljuk, amikor e nem illeszkedik az adott s 1 és S 2 síkok egyikére sem. A többi eset hasonló, ezek kidolgozását az olvasóra bízzuk. Legyen P S 1 S 2 egy tetszőleges pont, és legyen S a P és e által feszített sík. f 1 = S S 1 illeszkedik P -re, mivel P mindkét síkon rajta van, másrészt párhuzamos is e-vel, hiszen S síkra f 1 és e is illeszkedik, de közös pontjuk nem lehet e S 1 miatt. Így f 1 az az egyetlen egyenes, ami P -re illeszkedik, és párhuzamos e-vel. Hasonlóan érvelhetünk f 2 = S S 2 -re, s így kapjuk hogy f 1 = f 2 = S 1 S 2. Mivel f 1 e, így az állítást beláttuk Kapcsolódó nevezetes tételek A következő egyszerű állítás egy nevezetes tételt készít elő feladat. Adottak a különböző síkokban fekvő A 1 B 1 C 1 és A 2 B 2 C 2 háromszögek. Tudjuk, hogy az A 1 B 1 és A 2 B 2 egyenesek M 1, A 1 C 1 és A 2 C 2 egyenesek M 2, végül a B 1 C 1 és B 2 C 2 egyenesek M 3 pontokban metszik egymást. Ekkor M 1, M 2 és M 3 pontok kollineárisak. Bizonyítási ötlet. Az M 1, M 2 sé M 3 pontok mindegyike illeszkedik A 1 B 1 C 1 és A 2 B 2 C 2 síkjainak metszésvonalára. Tekintsük és mozgassuk meg a kapcsolódó dinamikus ábrát a GeoGebraTubeon! A Desargues-tétel a fenti állítást messzemenően tovvábgondolja. A részletekért olvassuk el a Desargues-tételről szóló Wikipédia szócikket! 1.4. Gyakorlatok 1.8. gyakorlat. Adjunk meg a térben (a) három (b) n 4

5 (c) végtelen sok páronként kitérő egyenest! 1.9. gyakorlat. Bármely három nem kollineáris pont egyértelműen meghatároz egy síkot. Legfeljebb hány síkot határoz meg (a) négy (b) öt (c) n különböző pont? Adjunk példát olyan konfigurációra, amely a maximumot szolgáltatja! gyakorlat. Adott négy sík, melyek közül bármely kettő metszi egymást. Lehet-e a síkok 6 metszésvonala közül (a) pontosan 3 (b) pontosan 4 párhuzamos? gyakorlat. Mutassuk meg, hogy két kitérő egyenes bármelyikén át felvehető a másikkal párhuzamos sík. (GFGY1699) 5

6 2. A háromszög Célok: a háromszög elemi geometriájának és nevezetes pontjainak ismétlése, a geometriai szemlélet formálása, bizonyítások gyakorlása 2.1. Alapismeretek Előzetes ismeretek Pont, egyenes, félegyenes, szakasz, szög, szög szára, szögtartomány, irányított szög, mellékszögek, kiegészítő szögek, csúcsszögek, váltószögek; szakasz hosszúsága, szög nagysága; csúcsszögek egyenlő nagyok, derékszög, szögfelező; ponthalmazok távolsága, pont távolsága egyenestől; téglalap és négyzet, paralelogramma; terület, téglalap területe, háromszög területe Az ebben a szakaszban felhasznált ismeretek Tekintsünk három nem kollineáris A, B és C pontot a síkon. Az {A, B, C} halmazt háromszögnek nevezzük, jelölése: ABC. AzA, B és C pontok a háromszög csúcsai, az c = AB, b = AC és a = BC szakaszok a háromszög oldalai. A CAB, ABC, BCA a háromszög szögei. Az A csúccsal szemközti oldal a BC, a BC oldallal szemközti csúcs az a, és az ezen oldallal szemközti szög a BAC. A BAC szöggel szemközti oldal a BC oldal, a BAC szög melletti oldalak AB és BC. A BAC szög a AC és AB oldalak közti (vagy általuk közbezárt) szög. A háromszög szögeinek mellékszögeit a háromszög külső szögeinek nevezzük. Egy háromszög külső szögének mellékszögét a háromszög e külső szög melletti belső szögének nevezzük. Ahogy az megszokott, mi is élünk azzal az egyszerűsítéssel, hogy AB a szövegkörnyezettől függően jelölheti magát a szakaszt (mint ponthalmazt), és annak hosszát is. Hasonlóan, a háromszögben a egyszerre jelöli az egyik oldalt (mint szakaszt), és annak hosszát is. A háromszög oldalaira érvényesek a háromszög-egyenlőtlenségek: a+b > c, a+c > b és b+c > a. Azt mondjuk, hogy egy szakasz nagyobb (kisebb), mint egy másik szakasz, ha hosszúsága nagyobb (kisebb). b + c > a. Azt mondjuk, hogy egy szög nagyobb (kisebb), mint egy másik szög, ha nagysága nagyobb (kisebb). Ha adott egy kölcsönösen egyértelmű megfeleltetés két háromszög (csúcsai) között úgy, hogy a megfelelő oldalak egyenlő hosszúságúak, és a megfelelő szögek egyenlő nagyságúak, akkor azt mondjuk, hogy a két háromszög egybevágó ; jelölése: ABC = A B C. Két háromszög egybevágóságának alapesete (bizonyítás nélkül): a megfelelő két-két oldal hosszúsága és az általuk közbezárt szög nagysága megegyezik. 6

7 Ha egy háromszögnek van két egyenlő hosszúságú oldala, akkor a háromszöget egyenlő szárú háromszögeknek nevezzük. Azokat a háromszögeket, amelyeknek minden oldaluk (és így minden szögük) egyenlő, szabályos vagy egyenlő oldalú háromszögnek hívjuk. Megmutatható, hogy egy háromszögnek két oldala pontosan akkor egyenlő, ha a velük szemben fekvő szögek egyenlőek. Rögzítsünk egy O pontot a síkon, és egy r > 0 valós számot. Az O-tól r távolságra lévő pontok halmazát O középpontú r sugarú körvonalnak (néha csak körnek) nevezzük. Az O-tól legfeljebb r távolságra lévő pontok halmazát O középpontú r sugarú körlemeznek (néha csak körnek) nevezzük. Az e egyenes P -ben érinti az O középpontú r sugarú kört, ha a kör és az egyenes egyetlen közös pontja P. Ismert, hogy ekkor OP e. Általában ha adott egy k kör, és Q / k külső pont, akkor k-nak két olyan érintője létezik, ami illeszkedik Q-ra. Ha az érintési pontok rendre P 1 és P 2, akkor QP 1 = QP 2 szimmetriai okok miatt. Legyen adott egy ponthalmaz a síkban. Egy olyan görbét, amelynek minden pontja ugyanolyan távolságra van a ponthalmaztól, ekvidisztáns görbének nevezzük az adott ponthalmazra vonatkozóan Alapvető összefüggések háromszögekre vonatkozóan 1. tétel. Az egyenlő szárú háromszög alapon fekvő szögei egyenlő nagyságúak. Ennek a tételnek a megfordítása is igaz gyakorlat. Egy háromszögben egyenlő nagyságú szögekkel szemben egyenlő hosszúságú oldalak vannak, tehát azilyen háromszög egyenlő szárú. 2. tétel. Azon pontok halmaza a síkban, amelyek egy szakasz két végpontjától egyenlő távolságban vannak, egy egyenes, amely a szakaszt a felezőpontjában merőlegesen metszi. Az AB szakasz szakaszfelező merőlegese azon pontok halmaza a síkon, amelyek A-tól és B-től egyenlő távolságra vannak. 3. tétel. Tegyük fel, hogy az ABC és az A B C olyan, hogy AB = A B, AC = A C, valamint BAC > B A C, akkor BC > B C gyakorlat. Egy háromszögben hosszabb oldallal szemben nagyobb szög van. 7

8 2.3. gyakorlat. Egy háromszögben nagyobb szöggel szemben hosszabb oldal van. 4. tétel. Ha két háromszög megfelelő oldalainak hosszúsága megegyezik, akkor a két háromszög egybevágó gyakorlat. Egy háromszögben bármelyik külső szög nagyobb, mint a nem mellette fekvő belső szögek bármelyike. Két metsző egyenes négy szöget határoz meg, amelyek között van két csúcsszögpár, és két mellékszögpár. Két egyenest két különböző A és B pontban metsző harmadik egyenes egyik oldalán az AB szárú és másik oldalán a BA szárú szöget belső alternáló szögpárnak nevezzük (két ilyen szögpár van) feladat. Mutassuk meg, hogy ha három egyenes által meghatározott egyik belső alternáló szögpár egyenlő nagy, akkor a másik is az gyakorlat. Mutassuk meg, hogy ha két egyenest egy harmadik egyenlő nagyságú belső alternáló szögekben metsz, akkor a két egyenes párhuzamos. A geometriánkban minden háromszög szögeinek összege megegyezik, nevezetesen: 5. tétel. A háromszögek szögeinek összege gyakorlat A háromszög nevezetes pontjai A körülírt kör középpontja 6. tétel. Az ABC háromszög oldalfelező merőlegesei egy O pontban metszik egymást. Ez a pont a háromszög mindhárom csúcsától ugyanakkora távolságra van. (3. ábra.) Mozgassuk meg az ábrát a GeoGebraTube-on! Mit tapasztalunk, ha a háromszög egyik szögét elkezdjük növelni? Bizonyítás. Jelölje az oldalfelező merőlegeseket rendre e a, e b és e c. Legyen O az e a és az e b egyenesek metszéspontja: O = e a e b. Definíció szerint az O pont egyenlő távolságra van B és C pontoktól (mivel rajta van e a -n), valamint O egyenlő távolságra van A és C csúcsoktól (mivel rajta van e b -n). Így az O pont egyenlő távolságra van az A és B csúcsoktól is, így rajta van az e c oldalfelező merőlegesen. Valóban, az e a, e b és e c oldalfelező merőlegesek 8

9 e c A e a e b B O C 3. ábra. A háromszög köré írt kör középpontja egy pontban metszik egymást, méghozzá az O pontban, amely mindhárom csúcstól ugyanakkora távolságra van. Tekintsük a 6. Tételben szereplő ABC háromszöget, és az O pontot, valamint legyen OA = OB = OC = R. Az O körüli, R sugarú körvonal tartalmazza az A, B és C pontok mindegyikét, ezért a háromszög körülírt körének nevezzük. A körülírt kör az egyetlen mindhárom csúcsot tartalmazó körvonal A beírt kör középpontja 2.8. feladat. Mutassuk meg, hogy egy pont távolsága egy rajta át nem menő egyenestől a pontból az egyenesre bocsájtott merőleges szakasz hossza. Tekintsünk két különböző e és f egyenest a síkon. Ha e f, akkor az e-től és f-től egyenlő távolságra lévő pontok halmaza egy egyenes, az e és f középpárhuzamosa. Ha e f = {M}, akkor az e-től és f-től egyenlő távolságra lévő pontok két egymásra merőleges egyenesen helyezkednek el, amelyek M pontban metszik egymást. Ezek az egyenesek felezik az e és f által meghatározott megfelelő szögeket, ezért őket az e és f szögfelezőinek nevezzük. 7. tétel. Bármely ABC háromszög belső szögfelezői egy I pontban metszik egymást. Ez a pont a háromszög minden oldalától egyenlő távolságra van. A tétel bizonyítása nagyon hasonló a 6. Tétel bizonyításához, próbáljuk meg önállóan! Ellenőrzésként megtekinthetjük a GeoGebraTube-on. 9

10 Tekintsük a 7. Tételben szereplő ABC háromszöget, és az I pontot, valamint legyen d(i, a) = d(i, b) = d(i, c) = r. Könnyű látni, hogy az I középpontú, r sugarú kör minden oldalt egy belső pontban érint, ezért a háromszög beírt körének nevezzük. A beírt kör az egyetlen olyan kör, ami a háromszög mindhárom oldalát belső pontban érinti. Az érintési pontokba húzott sugarak merőlegesek a megfelelő oldalakra A magasságpont A háromszög egyik csúcsából a szemközti oldalegyenesre bocsájtott merőleges egyenest a háromszög magasságvonalának nevezzük. A magasságvonal és az oldalegyenes metszéspontja a magasság talppontja. A csúcsot a talpponttal összekötő szakaszt a háromszög magasságának nevezzük. A magasság szó gyakran ennek a szakasznak a hosszát is jelenti. Ez másképp mondva a csúcs távolsága a szemközti oldalegyenestől. A magasság fogalmának bevezetését a háromszögre érvényes legelső területformulánk motiválhatja. Ha a háromszög A csúcsával szemközt a hosszú oldala van, és a hozzájuk tartozó magasság m a, akkor a háromszög területe T = a m a tétel. A háromszög magasságvonalai egy pontban metszik egymást. Ezt a pontot a háromszög magasságpontjának nevezzük. Tekintsük meg a GeoGebraTube-on a vonatkozó dinamikus ábrát! A bizonyítás előtt ismételjük át a paralelogramáról tanult alapvető ismereteinket a Wikipédia alapján! Bizonyítás. Tekintsük a 4. ábrát. Jelölje a magasságvonalakat rendre m A, m B és m C. Húzzunk párhuzamost a-val A-n keresztül, b-vel B-n keresztül, és c-vel C-n keresztül. Ezek az egyenesek meghatároznak egy nagyobb háromszöget, ennek csúcsait jelölje A, B és C az ábra szerint. A C BCA négyszög paralelogramma, mivel BC AC és BC AC. Hasonlóan kapjuk, hogy ABCB négyszög is paralelogramma. Így AC = BC = AB. Ezért A pont felezi B C szakaszt. Továbbá, m A BC, valamint C B CB, így m A C B. Kaptuk, hogy m A a B C szakasz felező merőlegese. Hasonlóan megmutatható, hogy m C az A B szakasz felező merőlegese, míg m B az A C szakasz felező merőlegese. Az m A, m B és m C egyenesek az A B C oldalfelező merőlegesei, így valóban egy pontban metszik egymást gyakorlat. Legyen ABC magasságpontja M. Mi az ABM magasságpontja? 10

11 B C A M C B A m c m b m a 4. ábra. A háromszög magasságpontja gyakorlat. Vezessük be az ABC félkerületére az s = (a + b + c)/2 jelölést, továbbá legyen r a beírt kör sugara. Mutassuk meg, hogy az ABC területére T = s r A súlypont A háromszög egyik csúcsát a szemközti oldal felezőpontjával összekötő szakaszt a háromszög súlyvonalának nevezzük. A súlyvonal névadó tulajdonsága, hogy ha a háromszöglemezt a súlyvonala mentén alátámasztjuk, akkor egyensúlyban marad, és nem billen le az alátámasztásról gyakorlat. Készítsünk dinamikus ábrát GeoGebrával a háromszög súlyvonalairól! 9. tétel. A háromszög súlyvonalai egy pontban metszik egymást. Ez a pont a háromszög súlypontja. A súlypont minden súlyvonalat harmadol, mégpedig úgy, hogy a súlypont a súlyvonalak csúcsoktól távolabb eső harmadolópontja feladat. Mutassuk meg a háromszög területformulájának felhasználásával, hogy a súlyvonalak egy ponton mennek át! Megoldás. Először azt vizsgáljuk meg, hogy az ABC háromszög BD súlyvonala milyen arányban osztja a AE súlyvonalat. 11

12 Mivel D felezőpont, t ABD = 1t 2 ABC, és mivel E is felezőpont, t BED = = 1t 2 BCD = 1t 4 ABC. Ezért e két közös overlinebd alapú háromszög magasásgának aránya m 1 : m 2 = 2 : 1. Így a közös DS alapú DSA és DSE háromszögek területének aránya 2 : 1. E háromszögek esetén az AS, illetve SE alapot véve (a magasságuk közös), ezek aránya is 2 : 1. Ha most azt vizsgálnánk meg, hogy a harmadik súlyvonal milyen arányban osztja az AE súlyvonalat, ugyanezt az arányt kapnánk. Egy adott szakaszt adott arűnyban pedig pontosan egy pont oszt, és ez bizonyítja az állítást. C D T A A m 1 S m 2 g t T 2 t E 1 h E B 5. ábra. Az alapkonfiguráció két esetben A súlypontjában alátámasztott háromszöglemez egyensúlyban marad, nem billen le. Ugyanezt tudjuk, a súlyvonalakról. Valójában tetszőleges, a súlyponton áthaladó egyenes mentén alátámasztva a háromszöglemezt, az nem billen le. A súlypont létezéséről szóló tétel bizonyítására a kurzus folyamán visszatérünk gyakorlat. Mutassuk meg, hogy a súlyvonalak a háromszöget két egyenlő területű háromszögre osztják feladat. Melyek azok a súlypontra illeszkedő egyenesek, amelyek a háromszöget két egyenlő területű részre osztják? A feladat a KöMaL B példája. A háromszögre vonatkozó alapismeretek rövid összefoglalója található itt és itt. (Sok részlet a kurzus folyamán később előkerül valamilyen formában.) 12

13 2.4. Gyakorlatok gyakorlat. Mi lesz a háromszög talpponti háromszögébe írható körének középpontja? gyakorlat. Adott a síkban három pont. Szerkesszünk háromszöget, melyben ezek a magasságok talppontjai! gyakorlat. Mutassuk meg, hogy egy egyenes ekvidisztáns görbéje egyenes! gyakorlat. Határozzuk meg egy egyenes összes ekvidisztáns görbéjét! gyakorlat. Határozzuk meg egy kör ekvidisztáns görbéit! gyakorlat. Határozzuk meg egy két párhuzamos egyenesből álló ponthalmaz ekvidisztáns görbéit! gyakorlat. Mutassuk meg, hogy két metsző egyenes ekvidisztáns görbéi a szögfelező egyenesek gyakorlat. Mutassuk meg, hogy egy szög szögfelező egyenesei merőlegesek. 13

14 3. Derékszögű háromszög Célok: a derékszögű háromszög elemi geometriájának áttekintése, önálló bizonyítások gyakorlása Alapismeretek Az ABC derékszögű, ha valamely két oldala merőleges. A szokásos jelölés szerint a derékszögű csúcs C, a derékszöget bezáró a és b oldalakat befogóknak, a c oldalt átfogónak nevezzük. A magasság definíciója miatt világos, hogy az a oldalhoz tartozó magasság éppen b (és viszont, a b-hez tartozó magasság a), ezért T = ab/ gyakorlat. Mutassuk meg, hogy a derékszögű háromszög beírt körének sugara ab r = a + b + c. Megoldás. A 2.9. gyakorlat területétképletét a T = ab/2 formulával összevetve azonnal adódik az állítás gyakorlat. Mutassuk meg, hogy a derékszögű háromszög beírt körének sugara r = a + b c. 2 B a E c F r O C D b A 6. ábra. A derékszögű háromszög beírt köre Megoldás. Használjuk a 6. ábra jelöléseit. CDOF négyszögben C-nél, D-nél és F -nél derékszög van, ezért CDOF téglalap. OF = OD = r miatt 14

15 CDOF egy r oldalú négyzet, és így CF = CD = r. Külső pontból körhöz húzott érintőszakaszok egyenlőek, ezért BF = BE és AE = AD. Valamint nyilvánvaló, hogy BE + AE = c. Ezek alapján a + b + c = CF + F B + BE + EA + AD + DC = 2r + 2(BE + AE) = 2r + 2c. Az egyenlőségsorozat két végét összevetve azonnal kapjuk az állítást Pitagorász-tétel Talán az egész matematika leghíresebb tétele a következő. 10. tétel (Pitagorász-tétel). Derékszögű háromszögben az átfogó négyzete megegyezik a befogók négyzeteinek összegével: a 2 + b 2 = c 2. A tételre (állítólag) több mint 200 féle különböző bizonyítás ismert. Mi az előkészületeink után kényelmes helyzetben vagyunk. Bizonyítás. A 3.1. és 3.2. gyakorlatok alapján felírhatjuk a beírt kör sugarát kétféleképpen: ab a + b + c = r = a + b c. 2 Felhasználva, hogy (a+b+c)(a+b c) = a 2 +b 2 c 2 +2ab, a tétel következik a fenti egyenlőségből, ha mindkét oldalt megszorozzuk 2(a + b + c)-vel. Tekintsük meg a tétel egy látványos szemléltetését a youtube-on gyakorlat. Számítsuk ki az a oldalhosszúságú szabályos háromszög területét! A tétel megfordítható, a megfordítást később igazoljuk: 11. tétel (Pitagorász-tétel megfordítása). Ha egy háromszög két oldalhosszának négyzetösszege egyenlő a harmadik oldal hosszának négyzetével, akkor a háromszög derékszögű. Végül egy nevezetes tételt tűzünk ki gyakorlatként, ami a Pitagorász-tétel következménye. 12. tétel (Paralelogramma-tétel). Mutassuk meg, hogy a paralelogramma oldalainak négyzetösszege, megegyezik az átlóinak négyzetösszegével! Azaz, ha egy paralelogramma oldalai a és b, átlói pedig e és f, akkor 2a 2 + 2b 2 = e 2 + f 2. 15

16 D C m e f b m A x E a B x F 7. ábra. Paralelogramma-tétel Bizonyítás. Írjuk fel a Pitagorász-tételt a 7. ábrán látható derékszögű háromszögekre: BF C -re kapjuk, hogy x 2 + m 2 = b 2. AF C -re (a + x) m 2 = f 2, míg EBD -re (a x) 2 + m 2 = e 2. Utóbbi kettőt összeadva, és a négyzetreemeléseket elvégezve, egyszerűsítve adódik, hogy 2a 2 + 2x 2 + 2m 2 = e 2 + f 2. Végül ebbe a legelső Pitagorásztételt beírva kapjuk a paralelogramma-tételt: 2a 2 + 2b 2 = e 2 + f 2 Paralelogramma-tétel a GeoGebraTube-on Nevezetes tételek derékszögű háromszögekre 13. tétel (Thalész-tétel). Ha egy kör átmérőjének A és B végpontját összekötjük a körív A-tól és B-től különböző tetszőleges C pontjával, akkor az ABC C-nél lévő szöge derékszög lesz. Bizonyítás. Tekintsük 8. ábrát. Az AOC és BOC háromszögek egyenlőszárúak, hiszen AO = BO = CO = r a kör sugara. Ezért az alapon fekvő szögek egyenlőek α = CAO = ACO ill. β = CBO = BCO. Kihasználva, hogy a háromszög belső szögeinek összege 180, kapjuk, hogy 2α + 2β = 180, s így ACB = α + β = 90 valóban. 14. tétel (Thalész-tétel megfordítása). A derékszögű háromszög köré írt kör középpontja az átfogó felezőpontja. A megfordítás igazolását az érdeklődő olvasóra hagyjuk. 15. tétel (Magasságtétel). Az ABC derékszögű háromszögben az átfogóhoz tartozó m magasság az átfogót két, x és y hosszú darabra bontja. Ekkor m 2 = xy. 16

17 C b m a A y T O x c B 8. ábra. Derékszögű háromszög 16. tétel (Befogótétel). Az ABC derékszögű háromszögben az átfogóhoz tartozó m magasság talppontja legyen T, AT = y és BT = x. Ekkor a 2 = cx és b 2 = cy gyakorlat. Bizonyítsuk be a 15. és 16. tételeket a Pitagorász-tétel segítségével! A 15. és 16. tételeket a kurzus folyamán később más úton is igazoljuk gyakorlat. Bizonyítsuk be a Thalész-tételt a Pitagorász-tétel és megfordítása segítségével! Megoldási tipp: írjuk fel a Pitagorász-tételt a 8. ábrán szereplő derékszögű háromszögekre, majd rendezzük a kapottakat. Kapcsolódó Wikipédia-szócikkek: Pitagorász-tétel, Thalész-tétel és megfordítása. 17

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Síkgeometria. Ponthalmazok

Síkgeometria.  Ponthalmazok Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

8. Geometria = =

8. Geometria = = 8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Síkbeli alakzatok. Szakaszok, szögek GEOMETRIA Alapszerkesztések Alapszerkesztések Alapszerkesztések.

Síkbeli alakzatok. Szakaszok, szögek GEOMETRIA Alapszerkesztések Alapszerkesztések Alapszerkesztések. Síkbeli alakzatok Szakaszok, szögek 13. Alapszerkesztések. 133. Alapszerkesztések. 134. Alapszerkesztések. a b 135. Ha x és y az egyes szakaszok hossza, akkor x + y = a és x - y = b. Így x = + ; a b y

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Egy húrtrapéz pontosan

Részletesebben

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z 146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró

Részletesebben

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Feladatgyűjtemény Geometria I. kurzushoz

Feladatgyűjtemény Geometria I. kurzushoz Feladatgyűjtemény Geometria I. kurzushoz Vígh Viktor 1. Térelemek kölcsönös helyzete, illeszkedés 1.1. gyakorlat. Bizonyítsuk be, hogy ha három sík közül bármely kettő egy egyenesben metszi egymást, és

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0; 98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Izsák Imre Gyula természettudományos verseny

Izsák Imre Gyula természettudományos verseny 199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

A Malfatti probléma Fonyó Lajos, Keszthely

A Malfatti probléma Fonyó Lajos, Keszthely Fonyó Lajos: A Malfatti probléma A Malfatti probléma Fonyó Lajos, Keszthely Giovanni Francesco Malfatti (171-1807) olasz matematikus 180-ban vetette fel az alábbi problémát: Adott egy háromszög alapú egyenes

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Feuerbach kör tanítása dinamikus programok segítségével

Feuerbach kör tanítása dinamikus programok segítségével Feuerbach kör tanítása dinamikus programok segítségével Buzogány Ágota IV. Matematika-Angol Fejezetek a matematika tanításából Kovács Zoltán 2004-12-10 2 A Feuerbach körnek többféle elnevezése is van,

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21. Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

11. Geometriai transzformációk

11. Geometriai transzformációk 11. Geometriai transzformációk I. Elméleti összefoglaló Geometriai transzformációknak nevezzük azokat a függvényeket, amelyeknek az értelmezési tartománya és értékkészlete is ponthalmaz. Ha a transzformáció

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

MTB1005 Geometria I előadásvázlat

MTB1005 Geometria I előadásvázlat MTB1005 Geometria I előadásvázlat Az abszolút geometria axiómarendszere 0. A geometria axiomatikus felépítéséről Egy axiómarendszer nem definiált alapfogalmakból és bizonyítás nélkül elfogadott állításokból

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Geometriai transzformációk

Geometriai transzformációk Geometriai transzformációk I. Egybevágósági transzformációk 58. a) Eltolás az y tengely mentén -vel negatív irányba. (Eltolás a v(0; -) vektorral.) b) Tükrözés az x = 10 egyenesre. c) A körüli -90 -os

Részletesebben

T T A. Összeállította: Vinczéné Varga Adrienn Kézi Csaba. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

T T A. Összeállította: Vinczéné Varga Adrienn Kézi Csaba. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék T T A Összeállította: Vinczéné Varga Adrienn Kézi Csaba Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék A függvény fogalma, tulajdonságok Függvény megadása Értelmezési tartomány Értékkészlet Zérushelyek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik:

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: 19. Területszámítás I. Elméleti összefoglaló Sokszög területe: Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: Az egység (oldalú) négyzet

Részletesebben

Feladatok az 1. Geometria gyakorlathoz Geometria 1 haladó szint (2011/2012 es tanév, 2. félév)

Feladatok az 1. Geometria gyakorlathoz Geometria 1 haladó szint (2011/2012 es tanév, 2. félév) Feladatok az 1. Geometria gyakorlathoz 1) Az euklideszi síkon adva van két egyenlő sugarú kör k 1 és k 2, amelyek az M, N pontokban metszik egymást. Jelölje r a két kör sugarát. Az M ponttal, mint centrummal,

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Elemi matematika 3g Kötelező irodalom: Ajánlott irodalom: Fontos tudnivalók: Általános módszertani szempontok a kitűzött feladatok feldolgozásához:

Elemi matematika 3g Kötelező irodalom: Ajánlott irodalom: Fontos tudnivalók: Általános módszertani szempontok a kitűzött feladatok feldolgozásához: Elemi matematika 3g Kötelező irodalom: Vásárhelyi Éva, Koren Balázs: Geometria tanároknak https://dl.dropboxusercontent.com/u/100162898/pic/tamopgeo.pdf Hegyvári Norbert, Hraskó András, Korándi József,

Részletesebben

1. feladatsor Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk

1. feladatsor Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk 1. feladatsor 2013.09.13. 1. Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk kifelé a BAXY és CBZT négyzeteket, illetve a CD és DE oldalára befelé a CDP Q és DERS négyzeteket.

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben