8. Négyzetes összefüggés: mellékmegjegyzés:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "8. Négyzetes összefüggés: mellékmegjegyzés:"

Átírás

1 . tétel: Szögfüggvények értelmezése a valós számhalmazn, ezek tulajdnságai, kapslatk ugyanazn szög szögfüggvényei között. Definíió derékszögő hármszögekre (hegyesszögek szögfüggvényei): Egy hegyesszög szinusza egy derékszögő hármszögben a szöggel a szemközti befgó és az átfgó hányadsa. α Egy hegyesszög kszinusza egy derékszögő hármszögben a szög melletti befgó és b az átfgó hányadsa. zaz az ábra jelöléseit használva: s α Egy hegyesszög tangense egy derékszögő hármszögben a szöggel szemközti és a a szög melletti befgó hányadsa. zaz az ábra jelöléseit használva: tg α b Egy hegyesszög ktangense egy derékszögő hármszögben a szög melletti befgó és a b szöggel szemközti befgó hányadsa. z ábra jelöléseit használva: tg α a definíió nem függ a hármszög választásától, mert az ilyen hármszögek hasnlók (két szög megegyezik), az ldalak aránya állandó. Szögfüggvények tulajdnságai: (hegyesszögek esetén) 1. 0 < < 1. 0 < sα< 1. 0 < tgα 4. 0 < tgα a 5. a a tgα 6. sα b b b 7. Visszakeresés: α 0,6 számlógép: 1 0, 6 1 sα tg α tgα α α ar0, 6 8. Négyzetes összefüggés: mellékmegjegyzés: ( α a b a b + Pitagrasz tétel α+ s α Pótszöges összefüggés: α+β 90 β 90 α b β (90 α) sα b 1 tg β tg(90 α) tgα a tgα ) ()

2 Nevezetes szögek szögfüggvényei: 1 s 1 Szögfüggvények általáns definíiója: tg tg 1 1 krdinátasíkn az α szöggel elfrgattt i egységvektr krdinátái: v ( sα; ) Tvábbá: tg α s α 0 α + k s α sα tg α α 0 α 0+ l l Z α kszinusz és szinusz értékét lelvashatjuk az egységkörbıl. tangens és ktangens értéke is lelvasható: z egységkör ( 1 ;0) pntjába húztt érintı és az α szöggel elfrgattt i egységvektr egyenesének metszéspntja ( 1 ;tgα). z egységkör ( 0 ;1) pntjába húztt érintı és az α szöggel elfrgattt i egységvektr tgα ;1. egyenesének metszéspntja ( )

3 Ha az α szöggel elfrgattt egységvektr a krdináta-rendszer az elsıtıl különbözı negyedében van, akkr az tt lévı szögek szögfüggvényértékeit visszavezethetjük a hegyesszögek szögfüggvényértékeire: 90 < α< < α< < α< 60 α 180 α α 180 α 60 ( ) α ( ) ( α) s α s( 180 α) sα s( α 180 ) s α s( 60 α) tg α tg( 180 α) tgα tg( α 180 ) tg α tg( 60 α) tg α tg( 180 α) tgα tg( α 180 ) tg α tg( 60 α) Elıjelek a síknegyedekben: szinusz kszinusz tangens ktangens 60 -nál nagybb szögek esetén visszavezetjük: pl: ( k 60 + m) m 0 m< 60 Negatív szögek esetén: 1. ( 0 ) ( ) 0. ( α) páratlan függvény s( α) sα párs függvény Ilyen módn a trignmetrikus függvények peridikusak lesznek: s α; periódusa, tg α; tgα periódusa

4 Trignmetrikus függvények: Definiálhatjuk a trignmetrikus függvényeket. f (x) x D f R R f [ 1;1] peridikus, periódusa: páratlan: ( x) x zérushelye: x 0 x k, flytns mntnitás: szig. mn. nı. x + k ; + k szig mn. sökk. x + k ; + k szélsıértékei: glbális maximum: helye: x + k, értéke: y 1 glbális minimum: helye: x + k, értéke: y 1 deriváltja és primitívfüggvénye: x s x dx s x+ ( ) x g (x) sx D g R R g [ 1;1] peridikus, periódusa: párs: s ( x) s x zérushelye: s x 0 x + k, flytns mntnitás: szig. mn. nı. x ( + k ; k) szig mn. sökk. x ( k ; + k) szélsıértékei: glbális maximum: helye: x k, értéke: y 1 glbális minimum: helye: x + k, értéke: y 1 deriváltja és primitívfüggvénye: s x s x dx x+ ( ) x

5 h (x) tg x D h R \ + k;k Z R h R peridikus, periódusa: páratlan: tg( x) tg x zérushelye: tgx 0 x k, flytns az értelmezési tartmányán mntnitás: szig. mn. nı. periódusnként x + k ; + k szélsıértékei ninsenek (nem krláts sem alulról, sem felülrıl) deriváltja és primitívfüggvénye: 1 ( tg x) tg x dx ln s x + s x i (x) tg x D i R \{ k ;k Z} R i R peridikus, periódusa: páratlan: tg( x) tg x zérushelye: tgx 0 x + k, flytns az értelmezési tartmányán mntnitás: szig. mn. sökk. periódusnként x ( k ; + k) szélsıértékei ninsenek (nem krláts sem alulról, sem felülrıl) deriváltja és primitívfüggvénye: 1 ( tg x) tg x dx ln x + x

6 ddíiós tételek: 1. s ( α β) sα sβ+ β Vegyünk fel két, α illetve β szöggel elfrgattt i egységvektrt. keletkezett két vektr krdinátái: α; s β; β, közbezárt szögükα β. a( s ) és b( ) Ekkr a két vektr skaláris szrzatát kétféleképp kiszámlva: a b a b s α β s α β mivel a és b egységvektrk ( ) ( ) a b sα sβ+ β krdinátánként szrzva Tehát: s ( α β) sα sβ+ β. s ( α+β) sα sβ β s 1.miatt ( α+β) s( α ( β) ) sα s( β) + ( β) sα sβ β s fv ps; fv ptl. ( α+β) sβ+ sα β s α β s α sβ+ α β pótszöges öf ( α+β) s ( α+β) 1.miatt pótszöges öf sβ+ sα β 4. ( α β) sβ sα β.miatt ( α β) ( α+ ( β) ) s( β) + sα ( β) sβ sα β s fv ps; fv ptl 5. tg tgα± tgβ 1m tgα tgβ α; β; α±β + k tg def s az eddigiek miatt β ± sα sβ β 1m sα sβ sβ± sα β sα sβm β tgα± tgβ 1m tgα tgβ mivel sα sβ 0, ezért egyszerősítsük a törtet ezzel

7 6. tg tg tgα tgβm1 tgβ± tgα def s az eddigiek miatt sα sβ m1 β tgα tgβm1 sβ sα ± tgβ± tgα β α; β; α±β k sα sβm β sβ± sα β mivel β 0, ezért egyszerősítsük a törtet ezzel Kétszeres szögek szögfüggvényei:.miatt 7. s ( α) s( α+α) sα sα s α α 1 α s α 1 a négyzetes összefüggésbıl. miatt 8. ( α) ( α+α) sα sα sα 5.miatt tgα tg α α + k, 1 tg α 9. ( ) tg( α+α) α + k tg( α) tg( α+α) 5. miatt tg α 1 tgα α k Hármszrs szögek szögfüggvényei: 11. ( α ) s( α+α).miatt 7., 8. miatt s sα sα α ( s α 1) négyzetes öf sα sα s α sα sα 4s α sα 1. ( α ) ( α+α).miatt ( 1 s α) s α sα sα+ s α 7., 8. miatt α sα+ sα ( 1 α) négyzetes öf sα sα+ ( 1 α) + α α+ α 4 α

8 lkalmazásk: - Matematika: - vektrk skaláris és vektriális szrzata - vektrk felbntása (merıleges) kmpnensekre - terület és térfgatképletek - a hármszög ldalainak, szögeinek kiszámítása (kszinusz- ill. szinusztétel) - trignmetrikus egyenletek, egyenlıtlenségek megldása: addíiós tételek segítségével vagy grafikusan a függvények segítségével - fáziss eltlás:, B R tetszıleges szám esetén x+ B s x + B + B x+ B + B s x B mivel 1 +, + B + B ezért létezik ε, hgy + B sε és B + B ( sε x+ ε sx) + B ( +ε) + B x ε - Egyéb: - erık összegzése kmpnensekre való bntással - harmnikus rezgımzgás kitérés-idı függvénye - transzverzális hullámk - váltakzó feszültség - Shnellius-Desartes törvény: fénytörés - elektrmágneses rezgések és hullámk - szív szinuszritmusa, hazugságvizsgálat

MATEMATIKA C 11. évfolyam. 8. modul Goniometria. Készítette: Kovács Károlyné

MATEMATIKA C 11. évfolyam. 8. modul Goniometria. Készítette: Kovács Károlyné MATEMATIKA C. évflyam 8. mdul Gnimetria Készítette: Kvács Kárlyné Matematika C. évflyam 8. mdul: Gnimetria Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási pntk A szögfüggvények definíciójának

Részletesebben

Inczeffy Szabolcs: Lissajoux görbék előállítása ferdeszögű rezgések egymásra tevődésével

Inczeffy Szabolcs: Lissajoux görbék előállítása ferdeszögű rezgések egymásra tevődésével Inczeffy Szablcs: Lissajux görbék előállítása ferdeszögű rezgések egymásra tevődésével I. Lissajux görbék Mint ismeretes a Lissajux görbék merőleges rezgések egymásra tevődéseként jönnek létre. Váltztatva

Részletesebben

Trigonometria I. A szög szinuszának nevezzük a szöggel szemközti befogó és az átfogó hányadosát (arányát).

Trigonometria I. A szög szinuszának nevezzük a szöggel szemközti befogó és az átfogó hányadosát (arányát). Trignmetria I A hegyes szögű deiníciók: A szög szinuszának nevezzük a szöggel szemközti begó és az átgó hányadsát (arányát). Kszinus nak nevezzük a szög melletti begó és az átgó hányadsát (arányát). A

Részletesebben

13. tétel: Derékszögő háromszög

13. tétel: Derékszögő háromszög . tétel: Derékszögő hármszög Derékszögő hármszög: Olyn hármszög, melynek egyik szöge derékszög ( 90 ). A másik két szög egymás pótszöge, összegük α +β=90. A derékszöget ezáró ldlk efgók, derékszöggel szemen

Részletesebben

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van.

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van. 19. tétel: Vektrk. Szkszk krdinátsíkn. Vektr: Iráníttt szksz, melnek állás, irán és hssz vn. Jele: v = AB Vektr bszlút értéke: A vektrt meghtárzó iráníttt szksz ngság. Jele: v = AB Vektrk kölcsönös helzete:

Részletesebben

Ezt már mind tudjuk?

Ezt már mind tudjuk? MATEMATIKA C 11. évflyam 10. mdul Ezt már mind tudjuk? Készítette: Kvács Kárlyné Matematika C 11. évflyam 10. mdul: Ezt már mind tudjuk? Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási

Részletesebben

186 A trigonometria elemei. VIII.1. Szögek mérése. Az eddigi tanulmányaitok során a szögek mérésére a fokot és annak törtrészeit használtátok.

186 A trigonometria elemei. VIII.1. Szögek mérése. Az eddigi tanulmányaitok során a szögek mérésére a fokot és annak törtrészeit használtátok. 86 A trignmetria elemei VIII A TRIGNMETRIA ELEMEI VIII Szögek mérése Az eddigi tanulmánaitk srán a szögek mérésére a fkt és annak törtrészeit használtátk Íg a teljes szög mértéke 60 Ez azt jelenti, hg

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

17. tétel: Egybevágósági transzformációk. Szimmetrikus sokszögek.

17. tétel: Egybevágósági transzformációk. Szimmetrikus sokszögek. 17. tétel: Egybevágósági transzfrmációk. Szimmetrikus skszögek. Gemetriai transzfrmáció: Olyan függvény, melynek értelmezési tartmánya és értékkészlete is egy-egy pnthalmaz (vagyis pntkhz rendel pntkat).

Részletesebben

9. modul Háromszögek, sokszögek

9. modul Háromszögek, sokszögek MATEMATIKA C 11. évflyam 9. mdul Hármszögek, skszögek Készítette: Kvács Kárlyné Matematika C 11. évflyam 9. mdul: Hármszögek, skszögek Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási

Részletesebben

Geometriai feladatok megoldása a komplex számsíkon dr. Kiss Géza, Budapest

Geometriai feladatok megoldása a komplex számsíkon dr. Kiss Géza, Budapest Gemetriai feladatk megldása a kmplex számsíkn dr Kiss Géza, Budapest Az előadás srán a kmplex számkkal kapcslats szkáss algebrai és gemetriai fgalmakat, tulajdnságkat ismertnek tételezzük fel Az időkeret

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

Szögfüggvények értékei megoldás

Szögfüggvények értékei megoldás Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 080 É RETTSÉGI VIZSGA 009. któber 0. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fnts tudnivalók Frmai előírásk:.

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

. 2 pont A 2 pont nem bontható. 3 Összesen: 2 pont. Összesen: 3 pont. A valós gyökök száma: 1. Összesen: 2 pont. Összesen: 2 pont

. 2 pont A 2 pont nem bontható. 3 Összesen: 2 pont. Összesen: 3 pont. A valós gyökök száma: 1. Összesen: 2 pont. Összesen: 2 pont 1. Az egyszerűsítés után kaptt tört: I. a b. pnt A pnt nem bntható. 3 Összesen: pnt. Frgáshenger keletkezik, az alapkör sugara 5cm, magassága 1cm. V = 5π 1(cm 3 ). A frgáshenger térfgata 300π cm 3. Ha

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Lineáris rendszerek stabilitása

Lineáris rendszerek stabilitása Lineáris rendszerek stabilitása A gyakrlat célja A dlgzatban a lineáris rendszerek stabilitásának fgalmát vezetjük be majd megvizsgáljuk a stabilitás vizsgálati módszereket. Elméleti bevezető Egy LTI rendszer

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

MATEMATIKA C 12. évfolyam 2. modul Telek és kerítés

MATEMATIKA C 12. évfolyam 2. modul Telek és kerítés MATEMATIKA C 1. évflyam. mdul Telek és kerítés Készítette: Kvács Kárlyné Matematika C 1. évflyam. mdul: Telek és kerítés Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási pntk Skszögekről

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Gönye Zsuzsanna SZÖGFÜGGVÉNYEK BEVEZETÉSE A KÖZÉPISKOLÁBAN. 1. Bevezetés

Gönye Zsuzsanna SZÖGFÜGGVÉNYEK BEVEZETÉSE A KÖZÉPISKOLÁBAN. 1. Bevezetés SZÖGFÜGGVÉNYEK BEVEZETÉSE A KÖZÉPISKOLÁBAN. Bevezetés A szögfüggvények tanítása több szempntból is fnts anyagrész a középisklai matematikaktatásban. Matematikai szempntból azért, mert összekapcslja az

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P053C03M* TÉLI VIZSGAIDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 006. február 3., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 006 P053-C0--3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

I. A négyzetgyökvonás

I. A négyzetgyökvonás Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Matematika C 10. osztály 8. modul Terv és valóság

Matematika C 10. osztály 8. modul Terv és valóság Matematika C 10. sztály 8. mdul Terv és valóság Készítette: Kvács Kárlyné Matematika C 10. évflyam 8. mdul: Terv és valóság Tanári útmutató 2 A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási pntk

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET C

MATEMATIKAI KOMPETENCIATERÜLET C MATEMATIKAI KOMPETENCIATERÜLET C Matematika 11. évflyam TANULÓK KÖNYVE Készítette: Kvács Kárlyné A kiadvány KHF/457-7/009. engedélyszámn 009.05.1. időpnttól tankönyvi engedélyt kaptt Educati Kht. Kmpetenciafejlesztő

Részletesebben

8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes

8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes 8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Készítette: Darabos Noémi Ágnes Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Koczog András Matematika - Az alapoktól az érettségin át az egyetemig. Szögfüggvények alapjai

Koczog András   Matematika - Az alapoktól az érettségin át az egyetemig. Szögfüggvények alapjai Szögfüggvények alapjai Értelmezés derékszögű háromszögekben Két derékszögű háromszög hasonlóságát teljesen meghatározza egyik szögük nagysága, így oldalaik aránya mindig megegyezik, függetlenül hosszuktól.

Részletesebben

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenletet: cos (3x π 3 ) = 1 2! A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): 1 2 60 = π 3 Ezek alapján felírhatjuk az

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

1. Monotonitas, konvexitas

1. Monotonitas, konvexitas 1. Monotonitas, konvexitas 1 Adjuk meg az alabbi fuggvenyek monotonitasi intervallumait! a) f (x) = x 2 (x 3) B I b) f (x) = x x 5 I c) f (x) = (x 2) p x I d) f (x) = e 6x 3 3x 2 I 2 A monotonitas vizsgalat

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m

Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m Hegyesszögek szögfüggvényei Feldt: Kovás slád hétvégén kirándulni ment. Az útjuk során egy 0 -os emelkedőhöz értek. Milyen hosszú z emelkedő, h mgsság 45 méter? Megoldás: Rjzoljuk le keletkezett háromszöget!

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

Matematika érettségi emelt 2016 május 3. A mért tömegek között nincs 490 dkg-nál kisebb, tehát az első feltétel teljesül.

Matematika érettségi emelt 2016 május 3. A mért tömegek között nincs 490 dkg-nál kisebb, tehát az első feltétel teljesül. A mért tömegek között nincs 90 dkg-nál kisebb, tehát az első feltétel teljesül. 506 500 9 500 9 500 5 500 8 508 500 57 500 9 500 5 500 6 9 7 8 7 7 8 78 8 9,75 dkg 0 dkg Az árusítást engedélyezik. 50 8

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

Ábrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)

Ábrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) I. Geometriai egyenlőtlenségek, szélsőérték feladatok 1. Mivel az [ ] f :0; π ; xa sin xfolytonos az értelmezési tartományán, ezért elég azt belátni,

Részletesebben

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

1. Határozza meg az alábbi határértéket! A válaszát indokolja!

1. Határozza meg az alábbi határértéket! A válaszát indokolja! Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint Készítette:

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I. Trigonometria I. Hegyes szögek szögfüggvényei: Az α hegyesszöggel rendelkező derékszögű háromszögek egymáshoz hasonlóak, mert szögeik megegyeznek. Így oldalhosszaik aránya mindig állandó. Az α szögtől

Részletesebben

Húrnégyszögek, Ptolemaiosz tétele

Húrnégyszögek, Ptolemaiosz tétele Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2. MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Gazdasági Matematika I. Megoldások

Gazdasági Matematika I. Megoldások . (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

Mit emelj ki a négyjegyűben?

Mit emelj ki a négyjegyűben? Mit emelj ki a négyjegyűben? Már többször észrevettem, hogy az érettségi előtt állók, nem tudják használni a négyjegyű függvénytáblázatot. Ez nem az ő hibájuk... sajnos az oktatás nem tér ki erre... ezt

Részletesebben

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A

Részletesebben

Egyenletek, egyenlőtlenségek XV.

Egyenletek, egyenlőtlenségek XV. Egyenletek, egyenlőtlenségek XV. Trigonometrikus (nem alap) egyenletek Amennyien az egyenlet nem alapegyenlet, akkor arra törekszünk, hogy a szögfüggvények közötti összefüggések alkalmazásával egyféle

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

MATEMATIKA C 12. évfolyam 3. modul A mi terünk

MATEMATIKA C 12. évfolyam 3. modul A mi terünk MTEMTIK C 1. évflyam. mdul mi terünk Készítette: Kvács Kárlyné Matematika C 1. évflyam. mdul: mi terünk Tanári útmutató mdul célja Időkeret jánltt krsztály Mdulkapcslódási pntk térfgat- és felszínszámítási

Részletesebben

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010. Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =

Részletesebben

A továbbiakban kétdimenziós, irányított euklideszi (affin) síkon dolgozunk. Az alábbi középiskolából ismert eredményeket bizonyítás nélkül közöljük.

A továbbiakban kétdimenziós, irányított euklideszi (affin) síkon dolgozunk. Az alábbi középiskolából ismert eredményeket bizonyítás nélkül közöljük. HÁROMSZÖGGEOMETRIA A továbbiakban kétdimenziós, irányított euklideszi (affin) síkon dolgozunk. Ismertnek tételezzük fel a következı fogalmakat: háromszög, háromszög oldalai, súsai, szögei; háromszög szögfelezıi,

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4. Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III. Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben