Tehát a lejtő hossza 90 méter. Hegyesszögek szögfüggvényei. Feladat: Megoldás: α = 30 h = 45 m s =? s = 2h = 2 45m s = 90m
|
|
- Anikó Hegedüs
- 2 évvel ezelőtt
- Látták:
Átírás
1 Hegyesszögek szögfüggvényei Feldt: Kovás slád hétvégén kirándulni ment. Az útjuk során egy 0 -os emelkedőhöz értek. Milyen hosszú z emelkedő, h mgsság 45 méter? Megoldás: Rjzoljuk le keletkezett háromszöget! α 0 h 45 m s? Ilyen háromszöggel már tlálkoztunk. Tükrözzük hosszik efogó egyenesére! Az eredeti háromszög és képe egy egyenlő oldlú (szályos) háromszöget lkot. Eől z s h 45m s 90m Tehát lejtő hossz 90 méter. Mi vn kkor, h lejtő lppl ezárt szöge nem 0 -os, hnem, 7,5, 8,9 st? Ilyenkor már nem tudunk ilyen egyszerűen számolni, ezért vezessünk e egy új foglmt, szögfüggvényeket.
2 Hegyesszög szinusz Derékszögű háromszögen z α hegyesszöggel szemközti efogó hosszánk és z átfogó hosszánk z rányát z α szög szinuszánk nevezzük. Definíió: Derékszögű háromszögen egy hegyesszög szinusz szöggel szemközti efogó és z átfogó hosszúságánk hánydos. jele: sin α sin α zαszöggel szemközti efogó hossz átfogó hossz sin α sin β Hegyesszög koszinusz Derékszögű háromszögen z α hegyesszög melletti efogó hosszánk és z átfogó hosszánk z rányát z α szög koszinuszánk nevezzük. Definíió: Derékszögű háromszögen egy hegyesszög koszinusz szög melletti efogó és z átfogó hosszúságánk hánydos. jele: os α os α zαszög melletti efogó hossz átfogó hossz os α os β
3 Hegyesszög tngense Derékszögű háromszögen z α hegyesszöggel szemközti efogó hosszánk és z α hegyesszög melletti efogó hosszánk z rányát z α szög tngensének nevezzük. Definíió: Derékszögű háromszögen egy hegyesszög tngense szöggel szemközti efogó és szög melletti efogó hosszúságánk hánydos. jele: tg α tg α zαszöggel szemközti efogó hossz zαszög melleti efogó hossz tg α tg β Hegyesszög kotngense Derékszögű háromszögen z α hegyesszög melletti efogó hosszánk és z α hegyesszöggel szemközti efogó hosszánk z rányát z α szög kotngenséneknevezzük. Definíió: Derékszögű háromszögen egy hegyesszög kotngense szög melletti efogó és szöggel szemközti efogó hosszúságánk hánydos. jele: tg α tg α z α melletti efogó hossz zαszöggel szemközti efogó hossz tg α tg β
4 Összefüggések hegyesszögek szögfüggvényei között Pótszögek szögfüggvényei sinα osβo mivel α + β 90 osα sinβ, mivel α + β 90 tgα tgβt mivel α + β 90 tgα tgβ, mivel α + β 90 sinα os(90 α) osα sin(90 α) tgα tg(90 α) tgα tg(90 α) Bármely hegyesszög szinusz egyenlő pótszögének koszinuszávl Bármely hegyesszög koszinusz egyenlő pótszögének szinuszávl Bármely hegyesszög tngense egyenlő pótszögének kotngensével Bármely hegyesszög kotngense egyenlő pótszögének tngensével sin α os (90 α) os α sin (90 α) tg α tg (90 α) tg α tg (90 α)
5 Pitgorszi zonosság Írjuk fel Pitgorsz-tételét z lái háromszögre: + osszuk el mindkét oldlt -tel ( > 0) + A htványozás zonosságit, mjd szinusz és koszinusz szögfüggvények definíióját lklmzv: + + Tétel: Adott hegyesszög szinuszánk és koszinuszánk négyzetösszege -gyel egyenlő. sin ( sin α) + ( osα) α + os α
6 A tngens és kotngens kifejezése szinusszl és koszinusszl sin α osα osα sin α tgα tgα tg α sin α os α tg α osα sin α Összefüggés tngens és kotngens között tgα tgα tgα tgα A tngens és kotngens egymás reiproki. tg α tgα tg α tg α
7 Az α szög szögfüggvényei sin α tg α os α tg α tg α tgα tg α sin α osα Az β szög szögfüggvényei sin β os β tg β tg β tg β tgβ tg β sin β osβ
8 Nevezetes szögek szögfüggvényei A 0 -os és 60 -os szögek szögfüggvényei Rjzoljunk egy olyn egyenlő oldlú háromszöget, melynek oldli egység hosszúk. Rjzoljuk meg z egyik súsáól mgsságát. Ekkor kpjuk BCT -et. Az átfogój egység hosszú, rövideik efogój ennek fele ( egység) és Pitgorsz tételéől hosszik efogó: egység. Szögei rendre 0, 60, 90. Így definíiók lpján: sin0 os60 sin60 os0 tg0 tg60 tg60 tg0
9 A 45 -os szög szögfüggvényei Rjzoljunk egységnyi oldlú derékszögű háromszöget. A két efogój egység hosszú és Pitgorsz tételéől z átfogój egység hosszú. Így definíiók lpján: sin 45 os 45 tg 45 tg 45 sin os tg tg
10 Feldt: Htározzuk meg nnk z egyenlőszárú háromszögnek mgsságát és lpjánk hosszát, melynek lpján lévő szögeinek összege 0, szár 5 m. Megoldás: α 0 5 m m?? α 0 α 65 m sin α m sin α 5 sin65,59(m) x osα x osα 5 os65 6,4(m) x 6,4,68(m) Tehát z egyenlő szárú háromszög mgsság,59 m, lpjánk hossz,68 m.
11 Feldt: Egy m hosszú tűzoltólétr nekidől z égő ház flánk, mivel emereket kell kimenteni z lkon át. Az lj 5 m-re vn fltól. Htározd meg létr dőlésszögét! Milyen mgsn vn z lk? Megoldás: h m x 5 m α? m? osα sin α x 5 0,467 α 65,8 h m m h sin α sin 65,5 0,9(m) h Tehát létr dőlésszöge 65,8,, z lk 0,9 m mgsn vn.
12 Feldt: A 80 m mgs szemmgsságú emer 46 -os látószög ltt lát egy gyárkéményt. Milyen mgs kémény, h megfigyelő 78 m-re áll z épülettől? Megoldás: α 46 s 78 m x 80 m,8 m m? h tgα h s tgα 78 tg 46 80,77(m) s m x + h,8 + 80,77 8,57(m) Tehát gyárkémény 8,57 m mgs.
13 Feldt: Milyen távolságr vn tőlünk z foild, melyet stdionn, 5 m mgs lelátóról 0 fokos depressziószögen látunk? Megoldás: α 0 h 5 m x? h h 5 sin α x 50(m) x sin α sin0 Tehát foild 50 méterre vn tőlünk.
14 Feldt: Egy egyenlő szárú létr összezárt állpotn 40 m. Milyen mgsn vn teteje kinyitott állpotn, h két szár 4 -os szöget zár e egymássl? Megoldás: ω 4 40 m m? ϖ ϖ β β osβ m 4 m osβ 40 os 4,06(m) Tehát létr teteje 4,06 m mgsn vn.
15 Feldt: Egy forgáskúp lkotói 0 m hosszúk, kúp körének átmérője 8 m. Mekkor forgáskúp nyílásszöge és mgsság? Megoldás: A forgáskúp (lpjánk átmérőjén átmenő) síkmetszete: 0 m d 8 m m? ω? d 8 d r r 4(m) r 4 sinβ 0,7 β 44,4 0 ϖ β 44,4 88,86 osβ m m osβ 0 os 44,4 4,8(m) Tehát forgáskúp nyílásszöge 88,86, mgsság 4,8 m.
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
1. Bevezetés a trigonometriába
1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,
12. Trigonometria I.
Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Tamás Ferenc: Nevezetes szögek szögfüggvényei
Tamás Ferenc: Nevezetes szögek szögfüggvényei A derékszögű háromszögekben könnyedén fel lehet írni a nevezetes szögek szögfüggvényeit. Megjegyezni viszont nem feltétlenül könnyű! Erre van egy könnyen megjegyezhető
. Számítsuk ki a megadott szög melletti befogó hosszát.
Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak
5. A logaritmus fogalma, a logaritmus azonosságai
A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton
54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
13. Trigonometria II.
Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Síkgeometri A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2011. jnuár 21. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
Ábrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) I. Geometriai egyenlőtlenségek, szélsőérték feladatok 1. Mivel az [ ] f :0; π ; xa sin xfolytonos az értelmezési tartományán, ezért elég azt belátni,
Trigonometria I. A szög szinuszának nevezzük a szöggel szemközti befogó és az átfogó hányadosát (arányát).
Trignmetria I A hegyes szögű deiníciók: A szög szinuszának nevezzük a szöggel szemközti begó és az átgó hányadsát (arányát). Kszinus nak nevezzük a szög melletti begó és az átgó hányadsát (arányát). A
Hatványozás és négyzetgyök. Másodfokú egyenletek
Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB
Bevezetés. Alapműveletek szakaszokkal geometriai úton
011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Néhány egyszerű tétel kontytetőre
Néhány egyszerű tétel kontytetőre ekintsük z ábr szerinti szimmeikus kontytetőt! ábr Az ABC Δ területe: ABC' m,v; ( ) z ABC Δ területe: ABC m ; ( ) z ABC* Δ területe: ABC* m ( 3 ) Az ábr szerint: m,v cos
8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Minta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület?
Gyakorlás 1. Az út emelkedésének nevezzük annak a szögnek a tangensét, amelyet az út a vízszintessel bezár. Ezt általában %-ban adják meg. (100 %-os emelkedésű a vízszintessel 1 tangensű szöget bezáró
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Gyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!
Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük
II. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
9. évfolyam Hány darab ötjegyű kettes számrendszerbeli szám van?
9. évfolym 00. Ktink vn egy supsz áj. A ához már kpott kétféle klpot, három különöző lúzt, vlmint három különöző szoknyát. Hányféleképpen öltöztetheti fel előlük áját Kti, h egy szoknyát, egy lúzt és egy
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
FELVÉTELI FELADATOK 8. évfolyamosok számára. M 1 feladatlap. Név:...
2005. jnuár-feruár FEVÉTEI FEADATOK 8. évfolymosok számár M 1 feltlp Név:... Születési év: hó: np: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást feltlpon végezz! Mellékszámításokr
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Mgyr Mtemtik Verseny onyhá, 011. március 11 15. 11. osztály 1. felt: Igzoljuk, hogy ármely n 1 természetes szám esetén. Megolás: Az összeg tgji k k 1+ k = = 1+ + n +... < 1+ 1+ n 3 1+ k
mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2
Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Ismételjük a geometriát egy feladaton keresztül!
Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.
Gyakorló feladatsorok 9. évfolyam
Gykorló feldtsorok 9. évfolym 1.) Legyen U {1;;;4;5;;7}, A {;4;;7} és B {1;;5;;7}. Készíts Venn-digrmot, mjd dd meg következő hlmzokt!.) A B; b.) B U c.) B \ A d.) A B.) Htározd meg z A és B hlmzokt, h
pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen
A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL
MŰSZAKI ISKOLA ÉRETTSÉGI VIZSGA ADA, 06jnuár 0/06-ös iskolév, júniusi vizsgidőszk A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL Munkterület: GÉPÉSZET, ELEKTROTECHNIKA, ÉPITÉSZET Tntárg: MATEMATIKA
Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
18. Kerületi szög, középponti szög, látószög
18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)
13. tétel: Derékszögő háromszög
. tétel: Derékszögő hármszög Derékszögő hármszög: Olyn hármszög, melynek egyik szöge derékszög ( 90 ). A másik két szög egymás pótszöge, összegük α +β=90. A derékszöget ezáró ldlk efgók, derékszöggel szemen
Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2008. jnuár 26. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 26. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
4. A kézfogások száma pont Összesen: 2 pont
I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes
4. előadás: A vetületek általános elmélete
4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
MATEMATIKA 10. osztály (Elnézést a tegezésért, gyerekeknek készült eredetileg. ) I. GYÖKVONÁS. x j)
MATEMATIKA 10. osztály (Elnézést a tegezésért, gyerekeknek készült eredetileg. ) I. GYÖKVONÁS Négyzetgyök 1. Számítsd ki számológép nélkül a pontos értékét: a) 0 4 1 7 8 6 7 d) 00 18. Melyik a nagyobb?
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a
GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:
Kompetenciamérés A-1. Mascagni Pesten. Szalay Károly: Színházi anekdoták könyve. Saxum Kiadó, Budapest, 1999.
Kompetenimérés A-1 1. Olvss el z lái ikket és válszoljon kérdésekre! Msgni Pesten A finnyás zenekritikusok körülfnylogták művészetét, érdektelennek nyilvánították gyászmiséjét, szimfonikus költeményét,
VI. Kétismeretlenes egyenletrendszerek
Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
Tartalomjegyzék. Halmazok, halmazműveletek Egyenes arányosság, fordított arányosság, százalékszámítás... 6
Trtlomjegyzék Hlmzok, hlmzműveletek... Egyenes rányosság, fordított rányosság, százlékszámítás... 6 Egyenletek, egyenlőtlenségek, szöveges egyenletek... 7 Egyenletrendszerek... Htványozás és zonossági...
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
Ellenállás mérés hídmódszerrel
1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes
8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Készítette: Darabos Noémi Ágnes Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató
Koordináta-rendszerek
Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2007. jnuár 26. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2007. feruár 1. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. feruár 1. 15:00 ór M 2 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Fedélszerkezet kivitelezése
Fedélszerkezet kivitelezése Összeállította: Kreinbacher Imre Nemes András - 1 - Fedélszerkezeti elemek gyártás előkészítése Fedélszerkezet kivitelezésének feltétele, hogy a fed élszerkezet alkotó elemeit
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
TIMSS MATEMATIKA. 4. évfolyam NYILVÁNOSSÁGRA HOZOTT FELADATOK
TIMSS NYILVÁNOSSÁGRA HOZOTT FELADATOK MATEMATIKA 4. évfolym Egy prkolón 6 egyenlő hosszúságú sorn 762 kosi prkol. Hány kosi vn egy-egy sorn? M01_01 Válsz: M031106 M031286 942 5 7 415 Li elvégezte fent
TE IS LÁTOD, AMIT ÉN LÁTOK?
MTEMTIKI KOMPETENITERÜLET TE IS LÁTO, MIT ÉN LÁTOK? TÉRSZEMLÉLET EJLESZTÉS 5 12. ÉVOLYM II. RÉSZ ELTgyűjtemény kidvány z Eductio Kht. Kompetencifejlesztő okttási progrm kerettnterve lpján készült. kidvány
MAGYAR. A motor és a tápegység közötti kéteres kábel vezetékelésének utasításai. m mm 2. 0-20 2 x 0,75 0-50 2 x 1,50
A motor és tápegység közötti kéteres káel vezetékelésének utsítási Vezesse káelt tápegységtől z lkhoz. Megjegyzés: A megfelelő káelméreteket táláztn tlálj. A motor cstlkozttás: Lásd z dott termékkel kpott
Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika
Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki
MATEMATIKA II. (GEOMETRIA)
1. Mi z lpfoglom? lpfoglom: olyn foglom, mit ismertnek fogdunk el, nem tudunk más foglmk segítségével meghtározni, legfelje szemléletesen körülírjuk. Minden tudomány ilyen lpfoglmkr épül fel.. geometri
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
IV. Algebra. Algebrai átalakítások. Polinomok
Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol
14. modul Számtani és mértani közép, nevezetes egyenlőtlenségek
MATEMATIKA A 10. évfolym 14. modul Számtni és mértni közép, nevezetes egyenlőtlenségek Készítette: Vidr Gábor Mtemtik A 10. évfolym 14. modul: Számtni és mértni közép, nevezetes egyenlőtlenségek A modul
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
8. Négyzetes összefüggés: mellékmegjegyzés:
. tétel: Szögfüggvények értelmezése a valós számhalmazn, ezek tulajdnságai, kapslatk ugyanazn szög szögfüggvényei között. Definíió derékszögő hármszögekre (hegyesszögek szögfüggvényei): Egy hegyesszög