Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások"

Átírás

1 Megoldások 1. Oldd meg a következő egyenletet: cos (3x π 3 ) = 1 2! A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): = π 3 Ezek alapján felírhatjuk az egyenlet megoldásait: Első negyedben: 3x π = π + k 2π 3 3 x 1 = 2π 9 + k 2π 3 = 40 + k 120 Negyedik negyedben: 3x π = 2π π + l 2π 3 3 x 2 = 2π 3 + l 2π 3 2. Oldd meg a következő egyenletet: 2 sin (5x π 4 ) = 2! Rendezés után a következő egyenlet adódik: sin (5x π 4 ) = 2 2. A szinusz függvény a harmadik és a negyedik negyedben negatív. Táblázati érték (hegyesszög): = π 4 Ezek alapján felírhatjuk az egyenlet megoldásait: Harmadik negyedben: 5x π = π + π + k 2π 4 4 x 1 = 3π 10 + k 2π 5 1

2 Negyedik negyedben: 5x π = 2π π + l 2π 4 4 x 2 = 2π 5 + l 2π 5 = l 2π 5 3. Oldd meg a következő egyenletet: tg ( π 2x) = 1! (Alaphalmaz: x [0 ; 360 ]) 3 A tangens függvény az első negyedben pozitív. Táblázati érték (hegyesszög): 1 45 = π 4 Ezek alapján felírhatjuk az egyenlet megoldását: Első negyedben: x = 45 + k 180 x = 7,5 k 90 = 7,5 + k 90 Az alaphalmaznak megfelelő eredmények: 7,5 ; 97,5 ; 187,5 ; 277,5. 4. Oldd meg a következő egyenletet: ctg (x π 6 ) = 3! A kotangens függvény az első negyedben pozitív. Táblázati érték (hegyesszög): 3 30 = π 6 Ezek alapján felírhatjuk az egyenlet megoldását: Első negyedben: x π = π + k π 6 6 x = π + k π k 3 2

3 5. Oldd meg a következő egyenletet: sin (x π 2 ) = 1! Mivel a megoldás határszög lesz, így nem kell negyedeket tekintenünk. Ezek alapján felírhatjuk az egyenlet megoldását: x π 2 = 3π 2 + k 2π x = 2π + k 2π = k 2π 6. Oldd meg a következő egyenletet: cos 2x = 0! (Alaphalmaz: x [ π; π]) Mivel a megoldás határszög lesz, így nem kell negyedeket tekintenünk. Ezek alapján felírhatjuk az egyenlet megoldását: 2x = π + k π 2 x = π 4 + k π 2 Az alaphalmaznak megfelelő eredmények: 3π 4 ; π 4 ; π 4 ; 3π Oldd meg a következő egyenletet: cos (x + π 3 ) =! 5 2 Az abszolútértéket elhagyva két egyenlet adódik: cos (x + π 5 ) = 3 2 és cos (x + π 5 ) = 3 2. Vizsgáljuk először a cos (x + π 5 ) = 3 2 egyenletet. A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): = π 6 Ezek alapján felírhatjuk az egyenlet megoldásait: 3

4 Első negyedben: x + π = π + k 2π 5 6 x 1 = π + k 2π k 30 Negyedik negyedben: x + π = 2π π + l 2π 5 6 x 2 = 49π 30 + l 2π Vizsgáljuk most a cos (x + π 5 ) = 3 2 egyenletet. A koszinusz függvény a második és a harmadik negyedben negatív. Táblázati érték (hegyesszög): = π 6 Ezek alapján felírhatjuk az egyenlet megoldásait: Második negyedben: x + π = π π + m 2π 5 6 x 3 = 19π 30 + m 2π m Harmadik negyedben: x + π = π + π + n 2π 5 6 x 4 = 29π 30 + n 2π n A megoldásokat összevonhatjuk: x 1 = π + p π x 30 2 = 19π 30 + q π p, q 4

5 8. Oldd meg a következő egyenletet: 3 tg 2 (2x + π 3 ) = 1! Rendezés és gyökvonás után két egyenlet adódik: tg (2x + π 3 ) = 1 3 és tg (2x + π 3 ) = 1 3. Vizsgáljuk először a tg (2x + π 3 ) = 1 3 = 3 3 egyenletet. A tangens függvény az első negyedben pozitív. Táblázati érték (hegyesszög): = π 6 Ezek alapján felírhatjuk az egyenlet megoldását: Első negyedben: 2x + π = π + k π 3 6 x 1 = π 12 + k π 2 Vizsgáljuk most a tg (2x + π 3 ) = 1 3 = 3 3 egyenletet. A tangens függvény a második negyedben negatív. Táblázati érték (hegyesszög): = π 6 Ezek alapján felírhatjuk az egyenlet megoldását: Második negyedben: 2x + π = π π + l π 3 6 x 2 = π 4 + l π 2 5

6 9. Oldd meg a következő egyenletet: sin (2x π 3 ) = sin (x + π 4 )! 2x π = x + π + k 2π 3 4 x 1 = 7π + k 2π 12 2x π + x + π = π + l 2π 3 4 x 2 = 13π 36 + l 2π Oldd meg a következő egyenletet: cos (16x π 2 ) = cos (2x + 3π 2 )! 16x π 2 = 2x + 3π 2 + k 2π x 1 = π 7 + k π 7 - a két kifejezés összege 360 : 16x π 2 + 2x + 3π 2 = 2π + l 2π x 2 = π 18 + l π 9 6

7 11. Oldd meg a következő egyenletet: sin (2x + π 3 ) = sin π 6! 2x + π = π + k 2π 3 6 x 1 = π + k π k 12 2x + π + π = π + l 2π 3 6 x 2 = π + l π l Oldd meg a következő egyenletet: cos (x + π 4 ) = cos (x π 6 )! x + π = x π + k 2π 4 6 π π + k 2π 4 6 Mivel ellentmondást kaptunk, így ezen az ágon nincs megoldás. - a két kifejezés összege 360 : x + π + x π = 2π + l 2π 4 6 x = 23π 24 + l π 7

8 13. Oldd meg a következő egyenletet: tg 15 x = tg (5x + π 2 )! Mivel a tangenses kifejezést átírva a nevezőben koszinusz található, ezért feltételt kell írnunk. cos 15x 0 15x π 2 + k π x π 30 + k π 15 cos (5x + π 2 ) 0 5x + π 2 π 2 + l π x l π 5 Oldjuk meg az egyenletet: 15x = 5x + π + m π 2 x = π 20 + m π 10 m Az eredményt összevetve a feltétellel (közös nevezőre hozás után), azt kapjuk, hogy megfelel a feltételnek, vagyis jó megoldást kaptunk. 14. Oldd meg a következő egyenletet: ctg (3 x) = ctg (2x + π 3 )! Mivel a kotangens kifejezést átírva a nevezőben szinusz található, ezért feltételt kell írnunk. sin(3 x) 0 3 x 0 + k π x 3 + k π sin (2x + π 3 ) 0 2x + π l π x π 6 + l π 2 Oldjuk meg az egyenletet: 3 x = 2x + π + m π 3 x = π m π 3 = π m π 3 m Az eredményt összevetve a feltétellel (közös nevezőre hozás után), azt kapjuk, hogy megfelel a feltételnek, vagyis jó megoldást kaptunk. 8

9 15. Oldd meg a következő egyenletet: tg 5x = tg x! Mivel a tangens kifejezést átírva a nevezőben koszinusz található, ezért feltételt kell írnunk. cos 5x 0 5x π 2 + k π x π 10 + k π 5 k cos x 0 x π + l π 2 Oldjuk meg az egyenletet: 5x = x + m π x = m π 4 m A megoldás nem felel meg teljesen a feltételnek: x 2π 4 + m π. A feltételbeli értékékeket kiszűrve a megoldások a következők lesznek: x 1 = n π x 2 = π 4 + r π x 2 = 3π 4 + s π n, r, s 16. Oldd meg a következő egyenletet: ctg 2x = ctg x! Mivel a kotangenses kifejezést átírva a nevezőben szinusz található, ezért feltételt kell írnunk. sin 2x 0 2x 0 + k π x k π 2 sin x 0 x 0 + l π x l π Oldjuk meg az egyenletet: 2x = x + m π x = m π m A megoldás nem felel meg a feltételnek, így az egyenletnek nincs megoldása. 9

10 17. Oldd meg a következő egyenletet: cos x = sin (x + 2π 3 )! A pótszögek segítségével alakítsuk át az egyenletet: sin ( π 2 x) = sin (x + 2π 3 ). π 2 x = x + 2π 3 + k 2π x = π k π = π + k π k π 2 x + x + 2π 3 = π + l 2π 7π 6π + l 12π Mivel ellentmondást kaptunk, így ezen az ágon nincs megoldás. 18. Oldd meg a következő egyenletet: sin (3x π 2 ) = cos (x + π 3 )! A pótszögek segítségével alakítsuk át az egyenletet, majd a ( 1) es szorzót vigyük be: cos (x + π 3 ) = sin [π 2 (x + π 3 )] = sin (π 2 x π 3 ) = sin (π 6 x) = sin (x π 6 ) Ezek alapján az egyenletet felírhatjuk a következő alakban: sin (3x π 2 ) = sin (x π 6 ). 3x π = x π + k 2π 2 6 x 1 = π + k π k 6 3x π + x π = π + l 2π 2 6 x 2 = 5π 12 + l π 2 10

11 19. Oldd meg a következő egyenletet: sin (x π ) = cos 2x! 6 A pótszögek segítségével alakítsuk át az egyenletet, majd a ( 1) es szorzót vigyük be: cos 2x = sin ( π 2 2x) = sin [ (π 2 2x)] = sin (2x π 2 ) Ezek alapján az egyenletet felírhatjuk a következő alakban: sin (x π 6 ) = sin (2x π 2 ). x π = 2x π + k 2π 6 2 x 1 = π k π = π + k π k 3 3 x π + 2x π = π + l 2π 6 2 x 2 = 5π 9 + l 2π Oldd meg a következő egyenletet: sin (x π 3 ) = cos (π 6 x)! A pótszögek segítségével átalakítsuk át az egyenletet: sin (x π ) = sin 3 [π 2 (π + x)]. 6 x π = π 3 2 (π + x) + k 2π 6 π π + k 2π k 3 3 Mivel ellentmondást kaptunk, így ezen az ágon nincs megoldás. x π + π 3 2 (π + x) = π + l 2π 6 x = π + l π l 2 11

12 21. Oldd meg a következő egyenletet: sin 6x = sin 2x! A ( 1) - es szorzó bevitelével átalakítsuk át az egyenletet: sin 6x = sin( 2x). 6x = 2x + k 2π x 1 = k π 4 6x 2x = π + l 2π x 2 = π 4 + l π Oldd meg a következő egyenletet: sin x = cos (x + π 3 )! A pótszögek segítségével alakítsuk át az egyenletet: sin x = sin [ π 2 (x + π 3 )]. x = π (x + π ) + k 2π 2 3 x = π + k π k 12 x + π (x + π ) = π + l 2π 2 3 π 6 π + l 2π Mivel ellentmondást kaptunk, így ezen az ágon nincs megoldás. 12

13 23. Oldd meg a következő egyenletet: tg 3x = tg x! Mivel a tangenses kifejezést átírva a nevezőben koszinusz található, ezért feltételt kell írnunk. cos 3x 0 3x π 2 + k π x π 6 + k π 3 cos x 0 x π + l π 2 Oldjuk meg az egyenletet: A ( 1) - es szorzó bevitelével alakítsuk át az egyenletet: tg 3 x = tg ( x). 3x = x + m π x = m π 4 m A megoldás nem felel meg teljesen a feltételnek: x 2π 4 + m π. A feltételbeli értékékeket kiszűrve a megoldások a következőek lesznek: x 1 = n π x 2 = π 4 + r π x 3 = 3π 4 + s π n, r, s 24. Oldd meg a következő egyenletet: ctg 2x = ctg x! Mivel a kotangenses kifejezést átírva a nevezőben szinusz található, ezért feltételt kell írnunk. sin 2x 0 2x 0 + k π x k π 2 sin x 0 x 0 + l π x l π Oldjuk meg az egyenletet: A ( 1) - es szorzó bevitelével alakítsuk át az egyenletet: ctg 2x = ctg ( x). 13

14 2x = x + m π x = m π 3 m A megoldás nem felel meg teljesen a feltételnek: x m 3π 3. A feltételbeli értékékeket kiszűrve a megoldások a következőek lesznek: x 1 = π 3 + n π x 2 = 2π 3 + r π n, r 25. Oldd meg a következő egyenletet: tg x = ctg x! Mivel a tangenses kifejezést átírva a nevezőben koszinusz található, ezért feltételt kell írnunk. cos x 0 x π + k π 2 Mivel a kotangenses kifejezést átírva a nevezőben szinusz található, ezért feltételt kell írnunk. sin x 0 x 0 + l π x l π Oldjuk meg az egyenletet: A pótszögek segítségével alakítsuk át az egyenletet: tg x = tg ( π 2 x). x = π x + m π 2 x = π 4 + m π 2 m Az eredményt összevetve a feltétellel (közös nevezőre hozás után), azt kapjuk, hogy megfelel a feltételnek, vagyis jó megoldást kaptunk. 14

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Szögfüggvények értékei megoldás

Szögfüggvények értékei megoldás Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

MAGISTER GIMNÁZIUM TANMENET

MAGISTER GIMNÁZIUM TANMENET MAGISTER GIMNÁZIUM TANMENET 2012-2013 10. osztály Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Év eleji ismétlés 1. óra: Számhalmazok és számok 2. óra: Algebrai

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

I. A négyzetgyökvonás

I. A négyzetgyökvonás Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét!

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét! Megoldások. Határozd meg a következő kifejezésekben a c értékét! log 4 = c log 7 = c log 5 5 = c lg 0 = c log 7 49 = c A feladatok megoldásához használjuk a definíciót: log a b = c b = a c. log 4 = c 4

Részletesebben

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét! Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I. Trigonometria I. Hegyes szögek szögfüggvényei: Az α hegyesszöggel rendelkező derékszögű háromszögek egymáshoz hasonlóak, mert szögeik megegyeznek. Így oldalhosszaik aránya mindig állandó. Az α szögtől

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Egyenletek, egyenlőtlenségek XV.

Egyenletek, egyenlőtlenségek XV. Egyenletek, egyenlőtlenségek XV. Trigonometrikus (nem alap) egyenletek Amennyien az egyenlet nem alapegyenlet, akkor arra törekszünk, hogy a szögfüggvények közötti összefüggések alkalmazásával egyféle

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4. Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Koczog András Matematika - Az alapoktól az érettségin át az egyetemig. Szögfüggvények alapjai

Koczog András   Matematika - Az alapoktól az érettségin át az egyetemig. Szögfüggvények alapjai Szögfüggvények alapjai Értelmezés derékszögű háromszögekben Két derékszögű háromszög hasonlóságát teljesen meghatározza egyik szögük nagysága, így oldalaik aránya mindig megegyezik, függetlenül hosszuktól.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Javító vizsga matematikából, 9. évfolyam

Javító vizsga matematikából, 9. évfolyam Javító vizsga matematikából, 9. évfolyam 1. Halmazok Tk. 16.o-21.o (definíciók, tételek, mintapéldák) 23.o Feladatok 1-8. 27.o Feladatok 1-6. Számegyenesek, intervallumok 29-30. 2. Algebra és számelmélet

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes

8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes 8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Készítette: Darabos Noémi Ágnes Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, 05 április 8- XII évfolyam A szabályos hatoldalú csonka gúla alapélei és ( a b ) A csonka gúla oldalfelülete megegyezik az alaplapok területének összegével

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Törtes egyenlőtlenségek

Törtes egyenlőtlenségek Törtes egyenlőtlenségek Egy tört értéke akkor pozitív, ha a számláló és a nevező egyező előjelű. Egy tört értéke akkor negatív, ha a számlálója és a nevezője ellentétes (különböző) előjelű. 1. Oldja meg

Részletesebben

Matematika tanmenet 10. évfolyam 2018/2019

Matematika tanmenet 10. évfolyam 2018/2019 Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu- . modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus

Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét! Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

NT Az érthető matematika 10. Tanmenetjavaslat

NT Az érthető matematika 10. Tanmenetjavaslat NT-17212 Az érthető matematika 10. Tanmenetjavaslat A segédanyag Az érthető matematika tankönyvsorozat átdolgozott kiadásának második könyvéhez (17212) készült. A tízedik osztályos tananyag egy lehetséges

Részletesebben

= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.

= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C. . Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

Egyenletek, egyenlőtlenségek, egyenletrendszerek I. Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Mit emelj ki a négyjegyűben?

Mit emelj ki a négyjegyűben? Mit emelj ki a négyjegyűben? Már többször észrevettem, hogy az érettségi előtt állók, nem tudják használni a négyjegyű függvénytáblázatot. Ez nem az ő hibájuk... sajnos az oktatás nem tér ki erre... ezt

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010. Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =

Részletesebben

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 16

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 16 Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 16 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja a megoldásokat

Részletesebben

= 0. 1 pont. Összesen: 12 pont

= 0. 1 pont. Összesen: 12 pont 1. Egy számtani sorozat páros sorszámú, illetve páratlan sorszámú tagjai is számtani sorozatot alkotnak. Páratlan sorszámú tag összesen 11 darab van, páros sorszámú pedig 10. A feladat feltétele szerint:

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 0-09-09 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben