Utak és környezetük tervezése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Utak és környezetük tervezése"

Átírás

1 Dr. Fi István Utak és környezetük tervezése 17A. előadás: A hossz-szelvény tervezési elemei

2 A hosszesés Az útpálya hosszirányú esését lehetőleg alacsonyan kell tartani. Előnyös, ha a hosszesés 4,0 %-nál kisebb. A hosszesés értékei forgalombiztonsági okokból nem léphetik túl az alábbi táblázatban a tervezési sebességekhez tartozó maximális értékeket. Tervezési sebesség, Hosszesés, e [%] v t [km/h] Külterületen Belterületen ,5 4,

3 A hosszesés A csomópontok térségében a hosszesés forgalombiztonsági okokból maximum 4 %-ra csökkentendő. Alagutakban a 4 %- os maximális esés szintén betartandó, sőt nagy hosszak esetében ( 1 1,5 km) 1,5 %-ra mérséklendő. A minimális hosszesés értéke a folyópálya szakaszokon célszerű, ha túllépi a 0,2 %-os értéket. A túlemelés átmeneti szakaszon a hosszesés: e 0,7 % és e - e r 0,2 % (de kedvezőbb, ha 0,5 %) ahol e az úttengely esése [%], e r a burkolatszél esése [%].

4 A hossz-szelvény lekerekítő ívének meghatározása A hossz-szelvényi egyenesek töréspontjainak lekerekítése az előtervekben, tanulmánytervekben körívet helyettesítő másodfokú parabolával történik. A számítás a mellékelt ábra szerinti: T = R tgα I = R ahol: e % e2% 2 arcα = R arc I R x T T = = ( e 1 % ± e 2 %) y = m = R 2 R 1 ( α + α ) R + T a tangenshossz [m], R a függőleges lekerekítés sugara [m], m a körív tetőpont távolsága az érintők metszéspontjától [m], x, y egy futópont relatív koordinátái [m].

5 A hossz-szelvény lekerekítő ívének meghatározása A lekerekítő íveket a helyszínrajzi ívekkel összehangolva kell megtervezni. A lekerekítő ívek nagyságát úgy kell megválasztani, hogy az útvonal hosszában kiegyensúlyozott, egyenletes elemméretekből felépülő térbeli vonalvezetést adjanak; a legkedvezőbb látótávolságot biztosítva növeljék a forgalom biztonságát; jól illeszkedjenek a tájba; csökkentsék az építési költségeket.

6 A lekerekítések határértékei A lekerekítések minimális nagyságát a biztosítandó látótávolságok határozzák meg. A megállási látótávolsághoz tartozó domború ív sugarának akkorának kell lenni, hogy a d szemmagasságú járművezető észrevegyen egy, az úton lévő h magasságú tárgyat, és annak elérése előtt a járművét meg tudja állítani (lásd az ábrát).

7 A lekerekítések határértékei A felhasználható összefüggések: ahol: R d L m d h 2 L d = 2 1 R d 2 L h = 2 2 R d ( d h ) Lm = L1 + L2 = 2 R d d + 2 R d h = 2 Rd + R d = 2 ( L d 2 m + h) a domború lekerekítés nagysága [m], a megállási látótávolság [m], a járművezető szemmagassága 1 m [m], az akadály magassága változó [m], a következő táblázat szerint. Az akadály nagyságának mértéke változtatható a tervezési sebesség függvényében, de a 0,2 m-es (fekvő ember) magasságot nem haladhatja meg.

8 Az akadály magasságának változása a tervezési sebesség függvényében Tervezési sebesség v t [km/h] Akadály magassága h [m] , , , , ,20

9 A lekerekítések határértékei A minimális domború ívsugarak nagyságát a megállási látótávolság biztosításához a tervezési sebesség függvényében az alábbi táblázat foglalja össze. Tervezési sebesség v t [km/h] Minimális domború ívsugár a megállási látótávolság biztosításához R d [m]

10 A lekerekítések határértékei Az előzési látótávolsághoz tartozó domború lekerekítés R d sugarát annak alapján lehet megállapítani, hogy a d szemmagasságú járművezetőnek a szemből jövő, ugyancsak d magasságú személygépkocsit kell észrevennie (lásd az ábrát).

11 A lekerekítések határértékei Az előző ábra jelölései alapján: ahol: L e R d d d = 1,0 d = 1,0 2 ( Le / 2) = 2 R d 2 Le R d = = 8 d Le 8 2 az előzési látótávolság [m], a domború lekerekítés sugara [m], a járművezető szemmagassága [m], a szemben jövő jármű magassága [m]. A számított előzési látótávolságokhoz tartozó sugárértékeket a következő táblázat tartalmazza:

12 Az előzési látótávolság biztosításához tartozó függőleges lekerekítő sugarak Tervezési sebesség v t [km/h] Minimális domború ívsugár az L e biztosításához R d(m) [m]

13 A lekerekítések határértékei A homorú ívekben nappal nincsenek előrelátási akadályok. Az esti, éjszakai sötétben követelmény, hogy a gépkocsi fényszórója a megállási látótávolságban előre világítson az alábbi ábra szerint: h + L R h ahol: R h h Φ m 2 Lm sinϕ = 2 R = ( h + L m h 2 Lm sinϕ) 2 a homorú lekerekítés sugara [m], a jármű fényszórójának a magassága (0,5 m) [m], a fényszóró sugárnyalábjainak a vízszinteshez viszonyított hajlásszöge (1 o ) [ o ] A fenti első számítás alapján a következő táblázatban kiszámított homorú lekerekítő sugarak alkalmazhatók mint alsó határértékek.

14 A homorú lekerekítési sugarak minimális értékei a tervezési sebesség függvényében Tervezési sebesség v t [km/h] Minimális homorú ívsugár az L m biztosításához R h [m]

15 A lekerekítések határértékei Az egyenletes vonalvezetés biztosítása érdekében kedvező, ha a helyszínrajzi ívek és a hossz-szelvényi lekerekítések tangenshosszai az alábbiak szerint alakulnak: Első- és másodrendű főutak T min = v t Alsóbbrendű utak T min = 0,75 v t ahol: T min v t a minimális tangenshossz [m], a tervezési sebesség [m].

16 Összehangolás A magassági vonal az út térbeli helyzetéből eredően mindig helyszínrajzi útelemekkel (egyenes, átmeneti ív, körív) esik egybe. A lehetséges variációk a helyszínrajzi és hosszszelvényi elemeket illetően a következő ábrák foglalják össze. Helyszínrajzi elemek Hossz-szelvényi elemek Térbeli elemek Egyenes Egyenes Egyenes állandó hosszeséssel Egyenes Ív Egyenes völgyben Egyenes Ív Egyenes hegytetőn

17 Összehangolás Helyszínrajzi elemek Hossz-szelvényi elemek Térbeli elemek Ív Egyenes Ív állandó hosszeséssel Ív Ív Ív völgyben Ív Ív Ív hegytetőn

18 Helyszínrajzi elemek: az egyenes Az egyenes szakaszokat akkor kell alkalmazni, ha azok a forgalom széthúzását szolgálják, vagy ha jól illeszkednek a tájba. A helyszínrajzi egyenesek merevségének kedvezőtlen benyomása enyhül, ha völgyben nagy függőleges lekerekítő sugárral helyezkedik el (lásd az ábrát).

19 Helyszínrajzi elemek: az ív Az egyenesek közötti, kis tangenshosszal rendelkező, rövid ívek perspektívában törésnek tűnnek, és ez csak a körívsugár növelésével kerülhető el. A sugaraknak olyan nagynak kell lenniük, amekkorát a szükséges irányváltozás megkövetel (lásd az ábrát).

20 Elemek sorrendje a helyszínrajzon A helyszínrajzon egymást követő elemek méretét az adott sugárviszonyok, átmeneti ívek és körívek aránya határozza meg. Egy sok ívet tartalmazó nyomvonal biztonságát egy kisebb ívvel lényegében nem lehet csökkenteni. Egy nagyvonalú vonalvezetésben elhelyezett kis sugár azonban balesetveszélyes. Így az utóbbi megoldás feltétlenül kerülendő (lásd az ábrát).

21 A hossz-szelvény tervezési elemei: az egyenesek Az egyenesek elhelyezése nem jelent nehézséget. Egy rövid egyenes két egymást követő homorú lekerekítés között kedvezőtlen (lásd a következő ábrákat). Nem kedvező egy rövid egyenes két egymást követő átlátható domború lekerekítés között.

22 A hossz-szelvény tervezési elemei: az egyenesek A magassági vonalvezetés szempontjából kedvező megoldás látható a következő ábrán:

23 A hossz-szelvény tervezési elemei: a homorú lekerekítés A homorú lekerekítés jó vezetési tulajdonságokkal rendelkező elem. Hosszú egyenesek közötti rövid homorú lekerekítések kerülendők (lásd az alábbi ábrát). Ugyanez a helyzet nagysugarú helyszínrajzi ívek esetén is (lásd a következő ábrát).

24 A hossz-szelvény tervezési elemei: a homorú lekerekítés A vízszintes vonalvezetéstől idegen megoldásra láthatunk példát az alábbi ábrán.

25 A hossz-szelvény tervezési elemei: a domború lekerekítés A térbeli vonalvezetés a domború lekerekítés határain belül kihat a látási viszonyokra. A kis sugarú domború lekerekítés korlátozza a látótávolságot.

26 Elemek sorrendje a hossz-szelvényen Az elemsorrendnek követnie kell a terep vonalát. Dombos terepen a domború lekerekítés sugarának nagyobbnak kell lennie, mint a homorú lekerekítés sugarának, a szükséges látótávolság biztosítása érdekében (lásd az ábrát). Csekély magasságkülönbségeknél (kb. 10 m-ig) és sík terepen a homorú lekerekítés sugarának nagyobbnak kell lennie, mint a domború lekerekítésének.

27 Részletes összehangolási kérdések Az összehangolásra vonatkozó tapasztalatok mutatják, hogy a körívsugár/lekerekítő sugár arány lehetőleg kicsi legyen, de semmiképpen se nagyobb a kb. 0,1 0,2 értéknél. Minél laposabb a terület, annál nagyobb a homorú és domború lekerekítő sugár, ellentétben a helyszínrajzi ív sugarával. Az optikailag, víztelenítés-technikailag és menetdinamikailag előnyös vonalvezetés akkor biztosított, ha az ívek inflexiós pontja a helyszínrajzon és a hossz-szelvényen megközelítőleg azonos helyen fekszik. Ekkor hosszirányban a víz elvezetése megoldott (lásd a következő ábrát). A helyszínrajz és a hossz-szelvény inflexiós pontjainak egybeesése kedvező távlati képet ad (lásd az ezt követő ábrát).

28 A helyszínrajz és a hossz-szelvény elemeinek összehangolása

29 A helyszínrajz és hossz-szelvény összehangolt térbeli képe

30 Részletes összehangolási kérdések Az ívnek nem szabad a domború lekerekítés takarásában lennie, itt a vezetőnek egyidejűleg kell mérlegelnie az irányváltozást és a görbületet (lásd az ábrát).

31 Részletes összehangolási kérdések Hullámos vonalvezetés jön létre, ha a nyomvonalon rövid lekerekítések követik egymást, takart (nem belátható) útszakaszok nélkül (lásd az ábrát).

32 Részletes összehangolási kérdések Nagyobb mértékű hullámosság az úttest lebegéséhez vezet (lásd az ábrát). A hullámzás hatása növekvő pályaszélességgel erősödik, és különösen sötétben balesetveszélyes.

33 Részletes összehangolási kérdések Ha a hullámvonal a nyomvonalat oly módon követi, hogy a szakaszok egymást takarják, önmagát fedő vonalvezetés jön létre (lásd az alábbi ábrákat).

34 Részletes összehangolási kérdések Minél erősebben leng ki a nyomvonal, annál hamarabb jön létre az un. ugrató hatás, amely a vezetőt megtévesztheti a valódi nyomvonalon való haladásban és a szemben haladó forgalom megfigyelésében. További problémát jelent, hogy ez mindenek előtt az előzéseknél mutatkozik meg, melyek önmagukban is veszélyes műveletek (lásd az ábrát).

35 Részletes összehangolási kérdések A csomópontoknak minden irányból lehetőleg völgyben kell feküdniük, a felismerhetőség és beláthatóság miatt (lásd az ábrát). Ez azonban a topográfiai viszonyok miatt nem mindenütt lehetséges, így legalább az egyik, lehetőleg az alárendelt forgalom iránya legyen völgyként kialakítva.

36 Részletes összehangolási kérdések Tehát a legfontosabb az alsóbbrendű utakról való beláthatóság, amelynek az első oka az elsőbbségadás felismerése, második oka a nagy sebességgel közlekedő járművek megállási látótávolságának biztosítása. A műtárgyakat be kell illeszteni a vonalvezetésbe azért, hogy azok merevítő hatását el tudjuk kerülni (lásd az ábrát).

37 Részletes összehangolási kérdések A jól belátható, nagyméretű hidaknál az átlagos körülményekhez képest megváltozott viszonyokra (pl.: oldalszél) is felkészülhet a vezető (lásd az ábrát).

38 Részletes összehangolási kérdések Optikailag különösen kedvezőtlen hatásúak azok a műtárgyak, amelyek az ív kezdetét lefedik (bal felső ábra). Ezért a műtárgyak területén a nyomvonal fekvését jól láthatóan kell a vezető elé tárni (jobb alsó ábra ábra).

39 Pályaszinttörések lekerekítése a részletes tervekben A lekerekítő körívet az építési tervekben egyenlő oldalhosszúságú sokszögvonallal helyettesítjük. A lekerekítő ív sugara (R), a helyettesítő sokszög oldalhossza (a), és a sokszögoldalak esésváltozása (e o ) között az összefüggés az alábbi: [ ] R m 100 = e o a[ m] [%] Az alkalmazandó értékeket a következő táblázat tartalmazza. A lekerekítő ívet helyettesítő sokszög lehet beirt és körül irt (lásd az ezt követő ábrákat).

40 Az esésváltoztató módszer alapadatai A lekerekítő ív sugara R ]m] Az esésváltozat e o [%] 1,0 0,5 0,4 0,2 0,2 0,1 0,1 0,1 0,05 0,05 0,05 0,05 A helyettesítő sokszög oldalhossza a [m]

41 A lekerekítő ívet helyettesítő köréírt sokszög

42 A lekerekítő ívet helyettesítő beírt sokszög

43 Pályaszinttörések lekerekítése a részletes tervekben A beírt sokszög esetén az első és utolsó a [m] hosszon az esésváltozás e o /2, másutt e 0. A sokszögoldalak száma: n = e e [ db] Körülírt sokszög esetén mindenütt e o az esésváltozás: n = Mindkét esetre érvényesek az alábbiak. A lekerekítés hossza: I A tangenshossz: t 0 e [%] e [%] e [%] [ m] = n [ db] a [ m] [ m] = I 0 0 [ db] [ m] n [ db] a [ m] 2 = 2

44 Pályaszinttörések lekerekítése a részletes tervekben Ha (n) páros, akkor a törésponttól jobbra és balra db, a[ m 2 hosszúságú sokszög oldalt kell elhelyezni. Ha n páratlan, egy sokszögoldal középre kerül. Ha n nem egész szám, akkor célszerű felfelé kerekíteni, és a, végeken egy e o -nál kisebb esésváltoztatást tervezni. e, 0 1 = ) 2 e [ e ( n 1 ] e 0 (Itt az n = képlettel számolunk.) e o e o n [ ] ]

45 Síkba eső domború lekerekítések meghatározása szerkesztéssel Az előzőekből látható, hogy a helyszínrajz és a hossz-szelvény összehangolásának egy kedvező esete a helyszínrajzba eső domború függőleges lekerekítés. Ez optimálissá tehető, ha az összehangolást olyan peremfeltételek mellett valósítjuk meg, amelyek ezt az esetet még egy ferde helyzetű hengermetszetté, azaz síkká alakítják. A síkbeliség előnye pedig a korlátlan előreláthatóság.

46 A szerkesztés menete A következő ábrán felrajzolt átmeneti íves körív helyszínrajza egy tetszőleges k pontjának hossz-szelvényi helyét, tehát magasságát kell meghatározni úgy, hogy a pont a metszősík pontja legyen. Ha a helyszínrajzot úgy vesszük fel, hogy az átmeneti íves körív egyik érintője párhuzamos legyen az x 12 tengellyel, akkor az érintő első képe a valóságnak megfelelő e 1 [%] hajlású. A másik érintő torzítva látszik (e 2t [%]). Húzzuk meg a k pont érintőjének első képét. Az érintő az a és a b pontok első képeiben messe az átmeneti íves körív két érintőjét. Ezen pontok második képeit felkeresve megkaphatjuk a k -beli érintőegyenes második képét. Ha erre felvetítjük a k pont első képét, megkapjuk a k pont második képét. Egyetlen pont van, ahol a módszer nem alkalmazható, a k * jelű, ennél a magasság számítása az alábbi aránypár felírásával lehetséges: c' k'* c" k*" = c' d' c" d"

47 A szerkesztés általános elve

48 A szerkesztésen alapuló számítások A helyszínrajzból és a hossz-szelvényből az alábbi adatok ismertek: az R körívsugár [m], az α középponti szög [ ], a p 1 és p 2 paraméterek [-], az e 1, e 2 hajlások [%] és az m kezdőpontmagasság [m], (az e 2 hajlás helyett még az m 2 végpontmagasság is egyértelműen meghatározza a síkot). A számítás menete más a két átmeneti íves és más a tiszta köríves szakaszon, mindhárom esetben közösek azonban az alábbi adatok (lásd a következő ábrákat): α T 1 = x α T2 = x02 + R + R2 tg 2 Ha m 2 nem ismert: ( R + R ) tg d ( ) d ( α ) d R 1 R = 2 sinα m2 = m1 + T1 e1 + T2 e2 ms m e2t = l = cos 180 l1 1 T 2 2

49 A szerkesztésen alapuló számítás a kezdő átmeneti íves szakaszon

50 A kezdőpont felőli átmeneti íves szakasz számítása Az előző ábrán jelölt x k, τ k, t h értékek ismert képletekkel meghatározhatók, a k futóponthoz tartozó 1 k ívhossz alapján. A FSM háromszögből a szinusztétel segítségével: SM sinτ k SF sin( α τ ) = l 2 = SM cos( 180 α ) k a = m1 + e1 t h b = m s e 2 t l 2 e 3t = T 1 b a l t 2 h m k = a + e3t ( x t ) k h

51 A tiszta köríves szakasz szerkesztésen alapuló számítása

52 A tiszta köríves szakasz számítása A tiszta köríves szakaszra a számítás az előző ábra jelöléseinek alkalmazásával, a következő módon végezhető: α k = τ 1 + l k R α k R1 Z = cosα k R tg + 2 sinα k AF R sinα k + x = 01 Az FSM háromszögből: SM = sinα k SF sin( α α ) a = m1 + e1 AF e3 t = T 1 b a AF 1 2 k z SF = T 1 AF l2 = SM cos(180 α ) b = m k m s e 2 t l 2 = a + e3t Z

53 A végpont felőli átmeneti íves szakasz számítása

54 A végpont felőli átmeneti íves szakasz számítása A számítás a kezdő átmeneti íves szakasz számításával azonos módon történik. Különbséget csak a vetületek, illetve magasságok meghatározása jelent (lásd az előző ábrát). sin( τ ) l 2 = ( T 2 th) cos(180 α) k SM = ( T 2 t h ) sin( α τ k ) a = m1 + e1 ( T1 SM ) b = ms e 2 t l2 sin(180 α) b a FM = ( T 2 t h ) e3t = ; sin( α τ k ) FM cos( α τ k ) x k th FK = ; m ( ) k = a + e3t FM FK cos( α τ k ) cosτ k Behelyettesítés és rendezés után: m k b a = b FK FM

55 Vége az előadásnak

Hossz-szelvény tervezés

Hossz-szelvény tervezés Hossz-szelvény tervezés Hossz-szelvény terepvonala Keresztszelvények terepvonala Magassági vonalvezetés tervezése Keresztszelvények megtekintése Földtömegeloszlás Vonalvezetés ellenőrzése 1 Hossz-szelvény

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd

Részletesebben

A tervezési sebesség nagyságát a következő tényezők befolyásolják:

A tervezési sebesség nagyságát a következő tényezők befolyásolják: A vonalvezetés és a tervezési sebesség kapcsolata A tervezési sebesség (vt) befolyásolja a vonalvezetés általános jellegét, megszabja a vonalvezetés minimális és maximális határértékeit. határértékeit

Részletesebben

Az utat szelvényezni kell. A szelvényezést km-ként végzik. A szelvényezés szükséges az építéshez, fenntartáshoz és baleset elhárításhoz.

Az utat szelvényezni kell. A szelvényezést km-ként végzik. A szelvényezés szükséges az építéshez, fenntartáshoz és baleset elhárításhoz. VONALVEZETÉS Az út térben haladó, vonalas létesítmény. Az út vonalvezetése alatt az út tengelyének vonalvezetését értjük. A gépjárművezető szemszögében és szemmagasságában az út térbeli perspektivikus

Részletesebben

Vágánykapcsolások. Szabványos vágánykapcsolások

Vágánykapcsolások. Szabványos vágánykapcsolások Gyakorlati segédlet 003 3. óra (v1.) 10/1 Vágánykacsolások A vágányok kitérőkkel, illetve átszelésekkel történő összekacsolását nevezzük vágánykacsolásnak vagy vágánykacsolatnak. A vágánykacsolatok éítőelemei

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

A félnapos gyakorlatok részletes ismertetése B15. gyakorlat

A félnapos gyakorlatok részletes ismertetése B15. gyakorlat A félnapos gyakorlatok részletes ismertetése B15. gyakorlat Címe: Útív kitűzés. Inflexiós-átmenetiíves ellenívek kitűzési méretei számítása. Rövid címe: Tengelyvonal számítása Helyszíne: Tárgya: Iroda

Részletesebben

Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések

Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák,

Részletesebben

B.3. MAGYARORSZÁGON ALKALMAZOTT SZABVÁNYOS KITÉRŐK

B.3. MAGYARORSZÁGON ALKALMAZOTT SZABVÁNYOS KITÉRŐK B.3. MAGYAOSZÁGON ALKALMAZOTT SZABVÁNYOS KITÉŐK 3.1. A MÁV t. szabványos kitérői A MÁV szabványos kitérőinek főbb adatai A kitérő jele Ívsugár [m] Hajlás Hajlásszög Hossz [m] XI 300 1:9 6-0-5 34,141 XII.

Részletesebben

KÖZLEKEDÉSÉPÍTŐ ISMERETEK

KÖZLEKEDÉSÉPÍTŐ ISMERETEK ÉRETTSÉGI VIZSGA 2018. május 16. KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Közlekedésépítő

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

1.1 A CSOMÓPONTI ALAPESETEK GEOMETRIAI ELRENDEZÉSE

1.1 A CSOMÓPONTI ALAPESETEK GEOMETRIAI ELRENDEZÉSE 1 1.1 A CSOMÓPONTI ALAPESETEK GEOMETRIAI ELRENDEZÉSE 1.1.1 Külterületi csomópontok Alapvető megállapítások Külterületi csomópontok esetén a nagyobb sebességek miatt megkívánt forgalomtechnikai egységesség

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

B.1. A kitérők és átszelések kialakulása, történeti fejlődése

B.1. A kitérők és átszelések kialakulása, történeti fejlődése B. KITÉRŐK B.1. A kitérők és átszelések kialakulása, történeti fejlődése 1.1. A kitérők kialakulása Az erdélyi brádi bányavasút kocsija és kitérője Benjamin John Curr szögvas keresztmetszetű öntöttvas

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 2 A. előadás: Külterületi csomópontok forgalomtechnikai kialakításai Alapelvek Beépített területen kívül az alkalmazási formákra az alábbi alapelvek érvényesek:

Részletesebben

A tűzfalakkal lezárt nyeregtető feladatához

A tűzfalakkal lezárt nyeregtető feladatához 1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. . tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSÉPÍTŐ SMERETEK KÖZÉPSZNTŰ ÍRÁSBEL VZSGA JAVÍTÁS-ÉRTÉKELÉS ÚTMUTATÓ A MNTAFELADATOKHOZ Rövid választ igénylő feladatok 1. feladat 2 pont Az alábbi igaz vagy hamis állítások közül válassza ki a

Részletesebben

Mozgás köríves útpályán

Mozgás köríves útpályán Mozgás köríves útpályán Az úttervezés számára alapvető fontosságú annak ismerete, hogy egy R sugarú körívben v sebességgel haladó gépkocsi biztonsága hogyan alakul, ezt milyen mértékben befolyásolja a

Részletesebben

GBN304G Alkalmazott kartográfia II. gyakorlat

GBN304G Alkalmazott kartográfia II. gyakorlat GBN304G Alkalmazott kartográfia II. gyakorlat TEREPI FELMÉRÉSI FELADATOK Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Földtudományi BSc (Geográfus, Földrajz

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

alapvető fontosságú annak ismerete, hogy egy R sugarú körívben v sebességgel haladó gépkocsi biztonsága hogyan alakul, ezt

alapvető fontosságú annak ismerete, hogy egy R sugarú körívben v sebességgel haladó gépkocsi biztonsága hogyan alakul, ezt Mozgás köríves útpályán Az úttervezés számára alapvető fontosságú annak ismerete, hogy egy R sugarú körívben v sebességgel haladó gépkocsi biztonsága hogyan alakul, ezt milyen mértékben befolyásolja a

Részletesebben

Egy érdekes nyeregtetőről

Egy érdekes nyeregtetőről Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét. Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

Ferde kúp ellipszis metszete

Ferde kúp ellipszis metszete Ferde kúp ellipszis metszete A ferde kúp az első képsíkon lévő vezérkörével és az M csúcsponttal van megadva. Ha a kúpból ellipszist szeretnénk metszeni, akkor a metsző síknak minden alkotót végesben kell

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Aszimmetrikus nyeregtető ~ feladat 2.

Aszimmetrikus nyeregtető ~ feladat 2. 1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának

Részletesebben

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata A keréksín között fellépő Hertzféle érintkezési feszültség vizsgálata közúti vasúti felépítmények esetében Dr. Kazinczy László PhD. egyetemi docens i Műszaki és Gazdaságtudományi gyetem, Út és Vasútépítési

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

1.Háromszög szerkesztése három oldalból

1.Háromszög szerkesztése három oldalból 1 Szerkessz háromszöget, ha három oldala: a=3 cm b=4 cm c=5 cm 1.Háromszög szerkesztése három oldalból (Ugye tudod, hogy az a oldallal szemben A csúcs, b oldallal szemben B stb. van!) (homorú, hegyes,

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

A forgalomsűrűség és a követési távolság kapcsolata

A forgalomsűrűség és a követési távolság kapcsolata 1 A forgalomsűrűség és a követési távolság kapcsolata 6 Az áramlatsűrűség (forgalomsűrűség) a követési távolsággal ad egyértelmű összefüggést: a sűrűség reciprok értéke a(z) (átlagos) követési távolság.

Részletesebben

Az úttengely helyszínrajzi tervezése során kialakuló egyenesekből, átmeneti ívekből és körívekből álló geometriai vonal pontjait számszerűen pontosan

Az úttengely helyszínrajzi tervezése során kialakuló egyenesekből, átmeneti ívekből és körívekből álló geometriai vonal pontjait számszerűen pontosan Úttengeyek számítása és kitűzése Az úttengey heyszínrajzi tervezése során kiaakuó egyenesekbő, átmeneti ívekbő és körívekbő áó geometriai vona pontjait számszerűen pontosan rögzíteni ke, hogy az a terepen

Részletesebben

8. Külön szintű csomópontok

8. Külön szintű csomópontok SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR KÖZLEKEDÉSÉPÍTÉSI TANSZÉK KÖZÚTI FORGALOMTECHNIKA 1. Tantárgykód: NGB_ET009_1 8. Külön szintű csomópontok Dr. Kálmán László egyetemi adjunktus Győr, 2014.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III. Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél 3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél A cikk két olyan eljárást mutat be, amely a függõleges napórák elkészítésében nyújt segítséget. A fal tájolásának

Részletesebben

1. Bevezetés a trigonometriába

1. Bevezetés a trigonometriába 1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

A MŰSZAKI SZABÁLYOZÁS HATÁSA A TERVEK MINŐSÉGÉRE

A MŰSZAKI SZABÁLYOZÁS HATÁSA A TERVEK MINŐSÉGÉRE A MŰSZAKI SZABÁLYOZÁS HATÁSA A TERVEK MINŐSÉGÉRE Keresztes László Eger, 2017. október 19. Tervezés: Jogszabály: NFM rendelet a közutak tervezéséről (KTSZ-rendelet) UME: - KTSZ-UME - Kerékpárforgalmi létesítmények

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben