Vízszintes kitűzések gyakorlat: Vízszintes kitűzések

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések"

Átírás

1 Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák, ezért alig fordul elő két egyforma feladat. A kitűzések technológiája meglehetősen kötött, azonban a kitűzési munkát az építés, üzemeltetés szüneteltetése nélkül kell végezni, ezért a sikeres munkavégzés feltétele a helyes kitűzési technológia megválasztása. (Esetleg a helyszínen kell dönteni a kitűzési eljárásról, vagy a választott eljárás módosításáról.) A vízszintes kitűzési feladatokat két csoportra oszthatjuk: - elhelyezési kitűzések (vonalas létesítmények kitűzése) - szerkezeti kitűzések A vonalas létesítmények kitűzése jól elkülöníthető feladat. Itt egyenesek, ívek, átmeneti ívek kitűzését kell elvégezni. A körívkitűzések elméletét kézikönyvek és különböző összefoglaló táblázatok tárgyalják. A szerkezeti kitűzéseket a létesítmény térbeli kijelölése után (elhelyezési kitűzések) végezzük. Ezeknek a kitűzéseknek az a célja, hogy biztosítsa a létesítmények méreteinek és szerkezeti elemeinek helyzeti kijelölését. A gyakorlati munkák során az elhelyezési és szerkezeti kitűzések nem mindig különülnek el egymástól, hanem gyakran olyan szorosan épülnek egymásra (egymásba), hogy nem is lehet megkülönböztetést tenni. A szerkezeti kitűzéseket vagy közvetlenül a kitűzési alaphálózatról végezzük, vagy sok esetben a létesítmény már kitűzött pontjait, szerkezetének tengelyeit használjuk fel. A különböző kitűzési eljárásokat, a kitűzési munka rendjét a mérnökgeodézia elméleti tananyaga részletesen tárgyalja. A következőkben egy részben elhelyezési, részben szerkezeti kitűzési feladat megoldását mutatjuk be egy antennatartó állvány kitűzési munkáján. 1-1

2 Óravázlat a Mérnökgeodézia gyakorlataihoz Feladat: Számítsuk ki az antennatartó szerkezet kitűzési méreteit az A és B ismert koordinátájú alappontokról és készítsük el a kitűzési vázlatot. Majd a kitűzési vázlat alapján, a terepen az O középpontról, mérőállomással tűzzük ki az antennatartó szerkezeti elemeit. Kiindulási adatok: Y X A +1160,000 m ,000 m B +1220,000 m ,000 m O +1190,000 m ,147 m R = 16,000 m M = 6,400 m 1-2

3 Megoldás menete: A függőleges oszlopok alaprajzi középpontjai egy szabályos hatszög sarokpontjai, melynek középpontja az O jelű pont. A hatszög köré írható kör sugara pedig R. A hatszög 1-6 jelű kerületi pontjain függőlegesen felállított oszlopok tartják az 1 és 4 számú pontok által meghatározott irányban 3%-os dőléssel tervezett tartólapot. Az antennatartó középpontjának magassága M. A hat függőleges tartóoszlopot kívülről, az a hosszúságú ferde oszlopok merevítik. A ferde oszlopokat hegesztett kapcsolat erősíti a függőleges oszlopokhoz, a tartólap csatlakozásánál. A ferde tartóoszlopok tengelyének a vízszintesre épített szerelőbeton felülettel való metszéspontjait jelöljük 1-6 -vel. Tűzzük ki az O pontot (elhelyezési kitűzés) derékszögű kitűzési módszerrel, majd az 1-6 és az 1-6 szerkezeti pontokat az O jelű pontból poláris kitűzési módszerrel. A megadott adatokból látható, hogy a kitűzési és a szükséges ellenőrzési méreteket milliméter élességgel kell számítani. Első lépés az O jelű pont kitűzése. A kitűzéshez szükséges adatok egyszerűen számíthatók, mivel a kitűzés alapjául szolgáló A és B pontokat összekötő egyenes párhuzamos az Y tengellyel. Ha a kitűzést az A pontból végezzük, az abszcissza és az ordináta értéke: Y O -Y A = +30,000 m X O -X A,B = +23,147 m A koordinátakülönbségek előjeléből látható, hogy mindkét kitűzési méretet a pozitív tengelyek irányába kell mérni. A függőleges és a ferde merevítő oszlopok kitűzési méreteinek számításához, ezek távolságait kell meghatározni. A távolságokhoz szükséges a függőleges oszlopok magasságának (1-1, 2-2 stb.) számítása a tartólap 3%-os ferdeségének figyelembevételével. Az 1 és 4 pontok magasságkülönbsége 0,960 m, mivel távolságuk 32 m. A 2 és 3 valamint a 6 és 5 pontok magasságkülönbsége a 16 m-es távolságuk miatt 0,480 m. Tehát a függőleges oszlopok magasságai az M adott értékéből kiindulva a következők: 1-1 = 6, ,480 = 6,880 m 2-2 = 6-6 = 6, ,240 = 6,640 m 3-3 = 5-5 = 6,400-0,240 = 6,160 m 4-4 = 6,400 0,480 = 5,920 m A függőleges és ferde oszlopok távolsága Phythagorasz tételéből: 1-1 = 1,291 m 2-2 = 6-6 = 2,216 m 3-3 = 5-5 = 3,325 m 4-4 = 3,735 m 1-3

4 Óravázlat a Mérnökgeodézia gyakorlataihoz A második lépés az O jelű pontból az 1-6 és az 1-6 pontok kitűzése poláris koordinátákkal. A kitűzés tájékozásához ki kell számítani a δ AO irámyszöget: δ AO = 52 O Így ha az O jelű ponton felállított mérőműszerrel megirányozzuk az A pontot és az irányértéket 0 O re beállítjuk, az 1 és 1 pontokhoz tartozó irányérték A 2 és 2, a 3 és 3, stb. pontokhoz tartozó irányértékeket 60 0 hozzáadásával kapjuk. A poláris kitűzéshez szükséges távolságokat az R sugár és a megfelelő függőleges ferde oszloptávolságok összegével nyerjük. A kitűzés ellenőrzésének két fontos mozzanata van: - Egyik a létesítmény helyének és tájolásának az ellenőrzése az alappontokhoz viszonyítva. (Elhelyezési kitűzés ellenőrzése) Ebből a célból kiszámítottuk az AB alapvonalhoz legközelebb fekvő 6 és 5 jelű pontok távolságát az A illetve B alappontokról. További ellenőrzésként célszerű a poláris kitűzés során megnézni, hogy a B alappontra mutató irány irányértéke egyezik-e a számítottal. - A kitűzés ellenőrzésének másik lépése, a kitűzött pontok egymáshoz viszonyított tényleges és a geometriai adatokból számított értékeinek összehasonlítása. (Szerkezeti kitűzés ellenőrzése) Jelen alakzatnál legcélszerűbb az 1-2, 2-3 stb. valamint az 1-2, 2-3 stb. pontok távolságainak számítása, illetve ellenőrző mérése. 1-4

5 Jegyzet: - Bánhegyi István Dede Károly: Segédlet a mérnökgeodéziai gyakorlatokhoz c. jegyzet, oldalig (J.sz.: 91238) 1-5

Magassági kitőzések elve és végrehajtása

Magassági kitőzések elve és végrehajtása 4-6. gyakorlat: Magassági kitőzések elve és végrehajtása Magassági kitőzések elve és végrehajtása Magassági kitőzéskor ismert ú alappontból kiindulva, valamely megadott szintet a követelményeknek megfelelıen

Részletesebben

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai '80 Geodéziai elvű módszerek gépészeti alkalmazások

Részletesebben

Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget

Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget Építészeknél 4 csoport dolgozik egyszerre. Hétfő Kedd Szerda Csütörtök Péntek 1. csoport Szintezés Felmérés Homlokzat Kitűzés Feldolgozások 2

Részletesebben

Mély és magasépítési feladatok geodéziai munkái

Mély és magasépítési feladatok geodéziai munkái Mély és magasépítési feladatok geodéziai munkái Ágfalvi: Mérnökgeodézia 7. modul M2 tervezési segédlet: 6. Kitűzések (5. modul), 7. Kivitelezett állapotot ellenőrző mérések Detrekői-Ódor: Ipari geodézia

Részletesebben

3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel.

3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel. 3. Előadás: Speciális vízszintes alappont hálózatok tervezése, mérése, számítása. Tervezés méretezéssel. Speciális vízszintes alappont hálózatok tervezése, mérése, számítása Egy-egy ipartelep derékszögű

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Poláris részletmérés mérőállomással

Poláris részletmérés mérőállomással Poláris részletmérés mérőállomással Farkas Róbert NyME-GEO Álláspont létesítése, részletmérés Ismert alapponton egy tájékozó irány esetében T z T dott (Y,X ), T(Y T,X T ) l T Mért P l T, l P Számítandó

Részletesebben

4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba

4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba 4. előadás: Magassági hálózatok tervezése 4. Előadás: Magassági hálózatok tervezése, mérése, számítása. Hálózatok megbízhatósága, bekapcsolás az országos hálózatba Magassági hálózatok tervezése, mérése

Részletesebben

Mivel a földrészleteket a térképen ábrázoljuk és a térkép adataival tartjuk nyilván, a területet is a térkép síkjára vonatkoztatjuk.

Mivel a földrészleteket a térképen ábrázoljuk és a térkép adataival tartjuk nyilván, a területet is a térkép síkjára vonatkoztatjuk. Poláris mérés A geodézia alapvető feladata, hogy segítségével olyan méréseket és számításokat végezhessünk, hogy környezetünk sík térképen méretarányosan kicsinyítetten ábrázolható legyen. Mivel a földrészleteket

Részletesebben

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése.

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése. 1. előadás: A mérnökgeodézia alapfogalmai 1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése. A mérnökgeodézia

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Geodéziai számítások

Geodéziai számítások Geodézia I. Geodéziai számítások Pontkapcsolások Gyenes Róbert 1 Pontkapcsolások Általános fogalom (1D, 2D, 3D, 1+2D) Egy vagy több ismeretlen pont helymeghatározó adatainak a meghatározása az ismert pontok

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Geodézia terepgyakorlat számítási feladatok ismertetése 1.

Geodézia terepgyakorlat számítási feladatok ismertetése 1. A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

A félnapos gyakorlatok részletes ismertetése B15. gyakorlat

A félnapos gyakorlatok részletes ismertetése B15. gyakorlat A félnapos gyakorlatok részletes ismertetése B15. gyakorlat Címe: Útív kitűzés. Inflexiós-átmenetiíves ellenívek kitűzési méretei számítása. Rövid címe: Tengelyvonal számítása Helyszíne: Tárgya: Iroda

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

5. Témakör TARTALOMJEGYZÉK

5. Témakör TARTALOMJEGYZÉK 5. Témakör A méretpontosság technológiai biztosítása az építőiparban. Geodéziai terv. Minőségirányítási terv A témakör tanulmányozásához a Paksi Atomerőmű tervezési feladataiból adunk példákat. TARTALOMJEGYZÉK

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

A földmérés szerepe a mérnöki létesítmények teljes életciklusában

A földmérés szerepe a mérnöki létesítmények teljes életciklusában A földmérés szerepe a mérnöki létesítmények teljes életciklusában Németh András geodéziai csoportvezető szakosztály elnök szakcsoport elnök PA Zrt. MIG RTFO Építészeti Osztály MFTTT Mérnökgeodéziai Szakosztály

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

Mély és magasépítési feladatok geodéziai munkái

Mély és magasépítési feladatok geodéziai munkái Mély és magasépítési feladatok geodéziai munkái Alapozások kitűzése Pillérek kitűzése és beállítása Kis alapterületű, magas építmények kitűzése és építés közbeni ellenőrző mérése Földön szerelt Végleges

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

megoldásai a Trimble 5503 DR

megoldásai a Trimble 5503 DR Autópálya építés s kitűzésének speciális megoldásai a Trimble 5503 DR mérőállomás s segíts tségével Zeke Balázs Győző 2006 Magyarország úthálózata Autópálya 522 km Autóú óút t 130 km Csomóponti ágak 205

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Elméleti szöveges feladatok 1. Sorolja fel a geodéziai célra szolgáló vetítéskor használható alapfelületeket

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

Geodéziai számítások

Geodéziai számítások Geodéziai számítások 2. ontkapcsolások számítása 2.. ontkapcsolásokról általában Nagyobb területek felmérése során a részletpontok meghatározásának összhangját alappontok létesítésével biztosítjuk. z ország

Részletesebben

Geodézia 6. A vízszintes mérések alapműveletei

Geodézia 6. A vízszintes mérések alapműveletei Geodézia 6. A vízszintes mérések alapműveletei Tarsoly, Péter, Nyugat-magyarországi Egyetem Geoinformatikai Kar Tóth, Zoltán, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geodézia 6.: A vízszintes

Részletesebben

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Teodolit és a mérőállomás bemutatása

Teodolit és a mérőállomás bemutatása Teodolit és a mérőállomás bemutatása Teodolit története Benjamin Cole, prominens londoni borda-kör feltaláló készítette el a kezdetleges teodolitot 1740 és 1750 között, amelyen a hercegi címer is látható.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás Géprajz - gépelemek AXO OMETRIKUS ábrázolás Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Egyszerű testek látszati képe Ábrázolási módok: 1. Vetületi 2. Perspektivikus

Részletesebben

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA tárgy felépítése Témakör Óraszám Előadások: A mérnökgeodézia fogalma, a tárgy tartalma és témakörei A mérnöki létesítmények tervezésének

Részletesebben

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Péter Tamás Földmérő földrendező mérnök BSc. Szak, V. évfolyam Dr.

Részletesebben

2. óra: Manuálé rajzolása nagyméretarányú digitális térképkészítéshez

2. óra: Manuálé rajzolása nagyméretarányú digitális térképkészítéshez 2. óra: Manuálé rajzolása nagyméretarányú digitális térképkészítéshez A következő órákon nagyméretarányú digitális térképrészletet készítünk, újfelméréssel, mérőállomással. A mérést alappont sűrítéssel

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Földméréstan és vízgazdálkodás

Földméréstan és vízgazdálkodás Földméréstan és vízgazdálkodás Földméréstani ismeretek Előadó: Dr. Varga Csaba 1 A FÖLDMÉRÉSTAN FOGALMA, TÁRGYA A földméréstan (geodézia) a föld fizikai felszínén, illetve a földfelszín alatt lévő természetes

Részletesebben

Matematikai geodéziai számítások 1.

Matematikai geodéziai számítások 1. Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

ÍRÁSBELI FELADAT MEGOLDÁSA

ÍRÁSBELI FELADAT MEGOLDÁSA 33 582 01 1000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 33 582 01 1000 00 00 SZVK rendelet száma: Modul: 6237-11 Ácsszerkezetek

Részletesebben

2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai.

2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai. 2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai. Tevékenység: Olvassa el a jegyzet 45-60 oldalain található tananyagát! Tanulmányozza át a segédlet

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

A (32/2011. (VIII. 25.) NGM 15/2008. (VIII. 13.) SZMM

A (32/2011. (VIII. 25.) NGM 15/2008. (VIII. 13.) SZMM Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Ingatlan felmérési technológiák

Ingatlan felmérési technológiák Ingatlan felmérési technológiák Fekete Attila okl. földmérő és térinformatikai mérnök Photo.metric Kft. www.photometric.hu geodézia. épületfelmérés. térinformatika Áttekintés Mérési módszerek, technológiák

Részletesebben

3. óra: Digitális térkép készítése mérőállomással. II.

3. óra: Digitális térkép készítése mérőállomással. II. 3. óra: Digitális térkép készítése mérőállomással. II. 3. óra: Digitális térkép készítése mérőállomással. II. Sokkia Set 4C mérőállomás (műszerismertető) akkumulátor memória kártya kétoldali, ikonfunkciós

Részletesebben

Segédlet a gördülőcsapágyak számításához

Segédlet a gördülőcsapágyak számításához Segédlet a gördülőcsapágyak számításához Összeállította: Dr. Nguyen Huy Hoang Budapest 25 Feladat: Az SKF gyártmányú, SNH 28 jelű osztott csapágyházba szerelt 28 jelű egysorú mélyhornyú golyóscsapágy üzemi

Részletesebben

Schöck Isokorb V SCHÖCK ISOKORB. Példák az elemek elhelyezésére metszetekkel Méretezési táblázat/alaprajzok Alkalmazási példák...

Schöck Isokorb V SCHÖCK ISOKORB. Példák az elemek elhelyezésére metszetekkel Méretezési táblázat/alaprajzok Alkalmazási példák... Schöck Isokorb SCHÖCK ISOKORB Schöck Isokorb 6/6 Tartalom oldal Példák az elemek elhelyezésére metszetekkel......................................................... 46 Méretezési táblázat/alaprajzok..................................................................

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK

A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK 7.1. Az áruforgalmi létesítmények csoportosítása Az áruforgalmi létesítmények megjelenési formái Árurakodók Áruraktárak Magasrakodók Nyíltrakodók 1. Nyíltrakodó 1. Vágány

Részletesebben

ALKALMAZÁSI ÚTMUTATÓ

ALKALMAZÁSI ÚTMUTATÓ Lapszám: 1/6 ALKALMAZÁSI ÚTMUTATÓ Termék: Összecsukható gyümölcsszedő állványok Állványmagasság: 2000 mm (L=2000) Cikkszám: 92110013 Állványmagasság: 1650 mm (L=1650) Cikkszám: 92110014 Állványmagasság:

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata. A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Verzió 1.0 Magyar. Leica Builder Termékcsalád Mérési útmutató

Verzió 1.0 Magyar. Leica Builder Termékcsalád Mérési útmutató Verzió 1.0 Magyar Leica Builder Termékcsalád Mérési útmutató Builder, Tartalomjegyzék A termék rendeltetésszerű használatához a Használati Útmutatóban találja a 2 részletes biztonsági előírásokat. Tartalomjegyzék

Részletesebben

4/2013. (II. 27.) BM rendelet

4/2013. (II. 27.) BM rendelet 4/2013. (II. 27.) BM rendelet Magyarország, Románia és Ukrajna államhatárai találkozási pontjának megjelölésére felállított TÚR határjelről készült Jegyzőkönyv jóváhagyásáról Az államhatárról szóló 2007.

Részletesebben

2009. májusi matematika érettségi közép szint

2009. májusi matematika érettségi közép szint I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két

Részletesebben

Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával

Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával A menüpont az ITR-4/Feliratok eszköztárán taláható. Készült Peremiczki Péter földmérő javaslata és segítsége alapján. A menüpont

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához A rugók olyan gépelemek, amelyek mechanikai energia felvételére, tárolására alkalmasak. A tárolt energiát, erő vagy nyomaték formájában képesek

Részletesebben

TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ

TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ Alap-tudnivalók A Tegosolar zsindelyek hatékonysága akkor maximális, ha déli tájolásúak. Vagyis válasszuk ki azt, vagy azokat a tetősíkokat, amelyek megfelelnek ennek

Részletesebben

Kit zési eljárások Egyenesek kit zése kit rudakkal

Kit zési eljárások Egyenesek kit zése kit rudakkal Kitűzési eljárások Az alábbiakban a kertépítészeti kivitelezési munkák során alkalmazható kitűzési eljárásokat mutatjuk be. Mivel a kitűzési eljárások módszerei és eszközei gyakorlatilag megegyeznek a

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

6.4. melléklet. Alappontsurítés

6.4. melléklet. Alappontsurítés Alappontsurítés Víszintes értelmu alapppontsurítés A vízszintes értelmu alappontsurítést a Vetületi és az Alappontsurítési Szabályzatok (A.1 és A.5.) eloírásai szerint kell végezni, figyelemmel a GPS alkalmazásával

Részletesebben

6. NÉHÁNY FELADAT A MÉRNÖKGEODÉZIAI GYAKORLATBÓL (KITŐZÉSEK-ELLENİRZİ MÉRÉSEK)

6. NÉHÁNY FELADAT A MÉRNÖKGEODÉZIAI GYAKORLATBÓL (KITŐZÉSEK-ELLENİRZİ MÉRÉSEK) 6. NÉHÁNY FELADAT A MÉRNÖKGEODÉZIAI GYAKORLATBÓL (KITŐZÉSEK-ELLENİRZİ MÉRÉSEK) KITŐZÉSEK: ELHELYEZÉSI (TÉRBELI) KITŐZÉSEK SZERKEZETI KITŐZÉSEK AZ EGYES FELADATOK MEGOLDÁSA FÜGG: AZ ÉPÍTMÉNY JELLEGÉTİL

Részletesebben

TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA

TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA Dr. Busics György Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar bgy@geo.info.hu Megjelent: Geomatikai Közlemények, III.

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Mérnökgeodéziai feladatok az Atomerőműben

Mérnökgeodéziai feladatok az Atomerőműben Mérnökgeodéziai feladatok az Atomerőműben Németh András geodéziai csoportvezető szakosztály elnök szakcsoport elnök PA Zrt. MIG RTFO Építészeti Osztály MFTTT Mérnökgeodéziai Szakosztály TMMK Geodéziai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:

Részletesebben

Lencsék fókusztávolságának meghatározása

Lencsék fókusztávolságának meghatározása Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Skeleton Adaptív modellezési technika használata

Skeleton Adaptív modellezési technika használata Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható belsőégésű motor egyszerűsített összeállítási modelljét adaptív technikával! 1 modellezésnél első lépésként az egész

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak Egy kis elmélet: vakrudak Az egyik lehetőség, ha két rúd szög alatt találkozik (nem egyvonalban vannak), és nem működik a csomópontra terhelés. Ilyen az 1.ábra C csomópontja. Ekkor az ide befutó mindkét

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a

Részletesebben