Vízszintes kitűzések gyakorlat: Vízszintes kitűzések

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések"

Átírás

1 Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák, ezért alig fordul elő két egyforma feladat. A kitűzések technológiája meglehetősen kötött, azonban a kitűzési munkát az építés, üzemeltetés szüneteltetése nélkül kell végezni, ezért a sikeres munkavégzés feltétele a helyes kitűzési technológia megválasztása. (Esetleg a helyszínen kell dönteni a kitűzési eljárásról, vagy a választott eljárás módosításáról.) A vízszintes kitűzési feladatokat két csoportra oszthatjuk: - elhelyezési kitűzések (vonalas létesítmények kitűzése) - szerkezeti kitűzések A vonalas létesítmények kitűzése jól elkülöníthető feladat. Itt egyenesek, ívek, átmeneti ívek kitűzését kell elvégezni. A körívkitűzések elméletét kézikönyvek és különböző összefoglaló táblázatok tárgyalják. A szerkezeti kitűzéseket a létesítmény térbeli kijelölése után (elhelyezési kitűzések) végezzük. Ezeknek a kitűzéseknek az a célja, hogy biztosítsa a létesítmények méreteinek és szerkezeti elemeinek helyzeti kijelölését. A gyakorlati munkák során az elhelyezési és szerkezeti kitűzések nem mindig különülnek el egymástól, hanem gyakran olyan szorosan épülnek egymásra (egymásba), hogy nem is lehet megkülönböztetést tenni. A szerkezeti kitűzéseket vagy közvetlenül a kitűzési alaphálózatról végezzük, vagy sok esetben a létesítmény már kitűzött pontjait, szerkezetének tengelyeit használjuk fel. A különböző kitűzési eljárásokat, a kitűzési munka rendjét a mérnökgeodézia elméleti tananyaga részletesen tárgyalja. A következőkben egy részben elhelyezési, részben szerkezeti kitűzési feladat megoldását mutatjuk be egy antennatartó állvány kitűzési munkáján. 1-1

2 Óravázlat a Mérnökgeodézia gyakorlataihoz Feladat: Számítsuk ki az antennatartó szerkezet kitűzési méreteit az A és B ismert koordinátájú alappontokról és készítsük el a kitűzési vázlatot. Majd a kitűzési vázlat alapján, a terepen az O középpontról, mérőállomással tűzzük ki az antennatartó szerkezeti elemeit. Kiindulási adatok: Y X A +1160,000 m ,000 m B +1220,000 m ,000 m O +1190,000 m ,147 m R = 16,000 m M = 6,400 m 1-2

3 Megoldás menete: A függőleges oszlopok alaprajzi középpontjai egy szabályos hatszög sarokpontjai, melynek középpontja az O jelű pont. A hatszög köré írható kör sugara pedig R. A hatszög 1-6 jelű kerületi pontjain függőlegesen felállított oszlopok tartják az 1 és 4 számú pontok által meghatározott irányban 3%-os dőléssel tervezett tartólapot. Az antennatartó középpontjának magassága M. A hat függőleges tartóoszlopot kívülről, az a hosszúságú ferde oszlopok merevítik. A ferde oszlopokat hegesztett kapcsolat erősíti a függőleges oszlopokhoz, a tartólap csatlakozásánál. A ferde tartóoszlopok tengelyének a vízszintesre épített szerelőbeton felülettel való metszéspontjait jelöljük 1-6 -vel. Tűzzük ki az O pontot (elhelyezési kitűzés) derékszögű kitűzési módszerrel, majd az 1-6 és az 1-6 szerkezeti pontokat az O jelű pontból poláris kitűzési módszerrel. A megadott adatokból látható, hogy a kitűzési és a szükséges ellenőrzési méreteket milliméter élességgel kell számítani. Első lépés az O jelű pont kitűzése. A kitűzéshez szükséges adatok egyszerűen számíthatók, mivel a kitűzés alapjául szolgáló A és B pontokat összekötő egyenes párhuzamos az Y tengellyel. Ha a kitűzést az A pontból végezzük, az abszcissza és az ordináta értéke: Y O -Y A = +30,000 m X O -X A,B = +23,147 m A koordinátakülönbségek előjeléből látható, hogy mindkét kitűzési méretet a pozitív tengelyek irányába kell mérni. A függőleges és a ferde merevítő oszlopok kitűzési méreteinek számításához, ezek távolságait kell meghatározni. A távolságokhoz szükséges a függőleges oszlopok magasságának (1-1, 2-2 stb.) számítása a tartólap 3%-os ferdeségének figyelembevételével. Az 1 és 4 pontok magasságkülönbsége 0,960 m, mivel távolságuk 32 m. A 2 és 3 valamint a 6 és 5 pontok magasságkülönbsége a 16 m-es távolságuk miatt 0,480 m. Tehát a függőleges oszlopok magasságai az M adott értékéből kiindulva a következők: 1-1 = 6, ,480 = 6,880 m 2-2 = 6-6 = 6, ,240 = 6,640 m 3-3 = 5-5 = 6,400-0,240 = 6,160 m 4-4 = 6,400 0,480 = 5,920 m A függőleges és ferde oszlopok távolsága Phythagorasz tételéből: 1-1 = 1,291 m 2-2 = 6-6 = 2,216 m 3-3 = 5-5 = 3,325 m 4-4 = 3,735 m 1-3

4 Óravázlat a Mérnökgeodézia gyakorlataihoz A második lépés az O jelű pontból az 1-6 és az 1-6 pontok kitűzése poláris koordinátákkal. A kitűzés tájékozásához ki kell számítani a δ AO irámyszöget: δ AO = 52 O Így ha az O jelű ponton felállított mérőműszerrel megirányozzuk az A pontot és az irányértéket 0 O re beállítjuk, az 1 és 1 pontokhoz tartozó irányérték A 2 és 2, a 3 és 3, stb. pontokhoz tartozó irányértékeket 60 0 hozzáadásával kapjuk. A poláris kitűzéshez szükséges távolságokat az R sugár és a megfelelő függőleges ferde oszloptávolságok összegével nyerjük. A kitűzés ellenőrzésének két fontos mozzanata van: - Egyik a létesítmény helyének és tájolásának az ellenőrzése az alappontokhoz viszonyítva. (Elhelyezési kitűzés ellenőrzése) Ebből a célból kiszámítottuk az AB alapvonalhoz legközelebb fekvő 6 és 5 jelű pontok távolságát az A illetve B alappontokról. További ellenőrzésként célszerű a poláris kitűzés során megnézni, hogy a B alappontra mutató irány irányértéke egyezik-e a számítottal. - A kitűzés ellenőrzésének másik lépése, a kitűzött pontok egymáshoz viszonyított tényleges és a geometriai adatokból számított értékeinek összehasonlítása. (Szerkezeti kitűzés ellenőrzése) Jelen alakzatnál legcélszerűbb az 1-2, 2-3 stb. valamint az 1-2, 2-3 stb. pontok távolságainak számítása, illetve ellenőrző mérése. 1-4

5 Jegyzet: - Bánhegyi István Dede Károly: Segédlet a mérnökgeodéziai gyakorlatokhoz c. jegyzet, oldalig (J.sz.: 91238) 1-5

Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget

Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget Építészeknél 4 csoport dolgozik egyszerre. Hétfő Kedd Szerda Csütörtök Péntek 1. csoport Szintezés Felmérés Homlokzat Kitűzés Feldolgozások 2

Részletesebben

Mivel a földrészleteket a térképen ábrázoljuk és a térkép adataival tartjuk nyilván, a területet is a térkép síkjára vonatkoztatjuk.

Mivel a földrészleteket a térképen ábrázoljuk és a térkép adataival tartjuk nyilván, a területet is a térkép síkjára vonatkoztatjuk. Poláris mérés A geodézia alapvető feladata, hogy segítségével olyan méréseket és számításokat végezhessünk, hogy környezetünk sík térképen méretarányosan kicsinyítetten ábrázolható legyen. Mivel a földrészleteket

Részletesebben

Poláris részletmérés mérőállomással

Poláris részletmérés mérőállomással Poláris részletmérés mérőállomással Farkas Róbert NyME-GEO Álláspont létesítése, részletmérés Ismert alapponton egy tájékozó irány esetében T z T dott (Y,X ), T(Y T,X T ) l T Mért P l T, l P Számítandó

Részletesebben

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése.

1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése. 1. előadás: A mérnökgeodézia alapfogalmai 1. Előadás: A mérnökgeodézia általános ismertetése. Alapfogalmak, jogszabályi háttér. Vízszintes értelmű alappont hálózatok tervezése, létesítése. A mérnökgeodézia

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Péter Tamás Földmérő földrendező mérnök BSc. Szak, V. évfolyam Dr.

Részletesebben

megoldásai a Trimble 5503 DR

megoldásai a Trimble 5503 DR Autópálya építés s kitűzésének speciális megoldásai a Trimble 5503 DR mérőállomás s segíts tségével Zeke Balázs Győző 2006 Magyarország úthálózata Autópálya 522 km Autóú óút t 130 km Csomóponti ágak 205

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

A (32/2011. (VIII. 25.) NGM 15/2008. (VIII. 13.) SZMM

A (32/2011. (VIII. 25.) NGM 15/2008. (VIII. 13.) SZMM Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai.

2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai. 2.1. A fogaskerekek csoportosítása, a fogaskerékhajtások alapfogalmai, az evolvens foggörbe tulajdonságai. Tevékenység: Olvassa el a jegyzet 45-60 oldalain található tananyagát! Tanulmányozza át a segédlet

Részletesebben

Kit zési eljárások Egyenesek kit zése kit rudakkal

Kit zési eljárások Egyenesek kit zése kit rudakkal Kitűzési eljárások Az alábbiakban a kertépítészeti kivitelezési munkák során alkalmazható kitűzési eljárásokat mutatjuk be. Mivel a kitűzési eljárások módszerei és eszközei gyakorlatilag megegyeznek a

Részletesebben

ALKALMAZÁSI ÚTMUTATÓ

ALKALMAZÁSI ÚTMUTATÓ Lapszám: 1/6 ALKALMAZÁSI ÚTMUTATÓ Termék: Összecsukható gyümölcsszedő állványok Állványmagasság: 2000 mm (L=2000) Cikkszám: 92110013 Állványmagasság: 1650 mm (L=1650) Cikkszám: 92110014 Állványmagasság:

Részletesebben

TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA

TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA TÁVMÉRŐ-KALIBRÁLÓ ALAPVONAL FELHASZNÁLÁSA GPS PONTOSSÁGI VIZSGÁLATOKRA Dr. Busics György Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar bgy@geo.info.hu Megjelent: Geomatikai Közlemények, III.

Részletesebben

4/2013. (II. 27.) BM rendelet

4/2013. (II. 27.) BM rendelet 4/2013. (II. 27.) BM rendelet Magyarország, Románia és Ukrajna államhatárai találkozási pontjának megjelölésére felállított TÚR határjelről készült Jegyzőkönyv jóváhagyásáról Az államhatárról szóló 2007.

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

3. óra: Digitális térkép készítése mérőállomással. II.

3. óra: Digitális térkép készítése mérőállomással. II. 3. óra: Digitális térkép készítése mérőállomással. II. 3. óra: Digitális térkép készítése mérőállomással. II. Sokkia Set 4C mérőállomás (műszerismertető) akkumulátor memória kártya kétoldali, ikonfunkciós

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Segédlet a gördülőcsapágyak számításához

Segédlet a gördülőcsapágyak számításához Segédlet a gördülőcsapágyak számításához Összeállította: Dr. Nguyen Huy Hoang Budapest 25 Feladat: Az SKF gyártmányú, SNH 28 jelű osztott csapágyházba szerelt 28 jelű egysorú mélyhornyú golyóscsapágy üzemi

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Ipari mérőrendszerek. Mérnökgeodézia II. Ágfalvi Mihály Tóth Zoltán

Ipari mérőrendszerek. Mérnökgeodézia II. Ágfalvi Mihály Tóth Zoltán Ipari mérőrendszerek Mérnökgeodézia II. Ágfalvi Mihály Tóth Zoltán Történeti áttekintés '80 Geodéziai elvű módszerek gépészeti alkalmazások (Werner 1987) Metrológia Gépészeti mérőeszközök: Kis mérési tartományban

Részletesebben

A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK

A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK A.7. ÁRUFORGALMI LÉTESÍTMÉNYEK 7.1. Az áruforgalmi létesítmények csoportosítása Az áruforgalmi létesítmények megjelenési formái Árurakodók Áruraktárak Magasrakodók Nyíltrakodók 1. Nyíltrakodó 1. Vágány

Részletesebben

Ingatlan felmérési technológiák

Ingatlan felmérési technológiák Ingatlan felmérési technológiák Fekete Attila okl. földmérő és térinformatikai mérnök Photo.metric Kft. www.photometric.hu geodézia. épületfelmérés. térinformatika Áttekintés Mérési módszerek, technológiák

Részletesebben

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés

Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés Távérzékelés gyakorlat Fotogrammetria légifotó értelmezés I. A légifotók tájolása a térkép segítségével: a). az ábrázolt terület azonosítása a térképen b). sztereoszkópos vizsgálat II. A légifotók értelmezése:

Részletesebben

Szerelési útmutató. Táblás kerítésrendszer. NYLOFOR 3D NYLOFOR Medium

Szerelési útmutató. Táblás kerítésrendszer. NYLOFOR 3D NYLOFOR Medium Szerelési útmutató Táblás kerítésrendszer NYLOFOR 3D NYLOFOR Medium Szerelési útmutató NYLOFOR 3D táblák Táblák A táblák szélessége 2500 mm, magassága 1030-2430 mm. A táblák az egyik oldalon 30 mm-es

Részletesebben

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET

MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA GBNFMGEOB ÓE AREK GEOINFORMATIKAI INTÉZET MÉRNÖKGEODÉZIA tárgy felépítése Témakör Óraszám Előadások: A mérnökgeodézia fogalma, a tárgy tartalma és témakörei A mérnöki létesítmények tervezésének

Részletesebben

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800 Építész Informatika Batyu Előveszünk egy Új lapot 1. Szintek beállítása Lenullázzuk!!!!! A táblázat kitöltését az Alap szinten kezdjük az alap alsó síkjának megadásával. (-0,800) Beírni csak a táblázatba

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

között geodéziai csoportvezető MVM PA Zrt. MIG RTFO Építészeti Osztály TMMK Geodéziai és Geoinformatikai Tagozat Szakcsoportja

között geodéziai csoportvezető MVM PA Zrt. MIG RTFO Építészeti Osztály TMMK Geodéziai és Geoinformatikai Tagozat Szakcsoportja Mérnökgeodéziai feladatok a reaktorok karbantartási tevékenységei Németh András között geodéziai csoportvezető PA Zrt. MIG RTFO Építészeti Osztály szakosztály elnök MFTTT Mérnökgeodéziai Szakosztály szakcsoport

Részletesebben

MUNKAANYAG. Horváth Lajos. Hossz- keresztszelvényezés. A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai

MUNKAANYAG. Horváth Lajos. Hossz- keresztszelvényezés. A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai Horváth Lajos Hossz- keresztszelvényezés A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai A követelménymodul száma: 2246-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

KERETES ÁLLVÁNY TARTOZÉK LISTA MJ- KOMPAIBILIS PLETTAC

KERETES ÁLLVÁNY TARTOZÉK LISTA MJ- KOMPAIBILIS PLETTAC KERETES ÁLLVÁNY TARTOZÉK LISTA MJ- KOMPAIBILIS PLETTAC ACÉL FŰGGŐLEGES KERET Magasság Szélesség Acélcső Ø 48,3 mm x 2,7 mm, horganyzott 2,00 0,70 16,80 1,50 0,70 15,00 1,00 0,70 11,30 0,50 0,70 8,50 ALUMINIUM

Részletesebben

TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ

TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ TEGOSOLAR ALKALMAZÁSTECHNIKAI ÚTMUTATÓ Alap-tudnivalók A Tegosolar zsindelyek hatékonysága akkor maximális, ha déli tájolásúak. Vagyis válasszuk ki azt, vagy azokat a tetősíkokat, amelyek megfelelnek ennek

Részletesebben

Földmérés Egyszerűen

Földmérés Egyszerűen Földmérés Egyszerűen Bevezetés Kedves diákok, tanárok, és mindenki, akit érdekel a földmérés! Az utóbbi években a modern és egyszerűen használható mérőműszerek fejlődése hozzájárult ahhoz, hogy az ilyen

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TENGELYVÉG CSAPÁGYAZÁSA, útmutató segítségével d. A táblázatban szereplő adatok alapján

Részletesebben

Forgalomtechnikai helyszínrajz

Forgalomtechnikai helyszínrajz Forgalomtechnikai helyszínrajz Szakdolgozat védés Székesfehérvár 2008 Készítette: Skerhák Szabolcs Feladat A szakdolgozat célja bemutatni egy forgalomtechnikai helyszínrajz elkészítésének munkafolyamatát.

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

ALKALMAZÁSI ÚTMUTATÓ

ALKALMAZÁSI ÚTMUTATÓ Lapszám: 1/6 ALKALMAZÁSI ÚTMUTATÓ Termék: Halmozható gyümölcsszedő állványok Állványmagasság: 2000 mm (L=2000) Cikkszám: 92110004 Állványmagasság: 1650 mm (L=1650) Cikkszám: 92110005 Állványmagasság: 1200

Részletesebben

Tervezés katalógusokkal kisfeladat

Tervezés katalógusokkal kisfeladat BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes tervezés, méretezés és gyártás (BME KOJHM401) Tervezés katalógusokkal kisfeladat Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:.........................................

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Bevezetés a geodézia tudományába

Bevezetés a geodézia tudományába Bevezetés a geodézia tudomány nyába Geodézia Görög eredetű szó. Geos = föld, geometria = földmérés A geodézia magyarul földméréstan, a Föld felületének, alakjának, méreteinek, valamint a Föld felületén

Részletesebben

Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával

Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával A menüpont az ITR-4/Feliratok eszköztárán taláható. Készült Peremiczki Péter földmérő javaslata és segítsége alapján. A menüpont

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

KATONAI ALAPISMERETEK

KATONAI ALAPISMERETEK Katonai alapismeretek középszint 0803 ÉRETTSÉGI VIZSGA 2012. május 24. KATONAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

MAGYAR GEODÉTÁK SZÍRIÁBAN 2011

MAGYAR GEODÉTÁK SZÍRIÁBAN 2011 MAGYAR GEODÉTÁK SZÍRIÁBAN 2011 Margat, vagy al-marqab arabul Qalaat al-marqab ( قلع ة المرق ب, a Megfigyelőhely ) a Szentföld legnagyobb keresztes lovagvárai közé tartozik. A Szent János Ispotályos (Johannita)

Részletesebben

Hidak és hálózatok. Geodéziai alapponthálózatok kialakítása hidak építésénél. Bodó Tibor. Mérnökgeodézia Kft.

Hidak és hálózatok. Geodéziai alapponthálózatok kialakítása hidak építésénél. Bodó Tibor. Mérnökgeodézia Kft. Hidak és hálózatok Geodéziai alapponthálózatok kialakítása hidak építésénél Bodó Tibor Mérnökgeodézia Kft. Általános elvek Természetesen a hidak, műtárgyak építésénél kialakított alaponthálózatokra is

Részletesebben

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. : Vetületi alapfogalmak Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a GEO-ért

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

Játéktól a kutatásig. Írta: Bozóki Gergő Zoltán és Polereczki Fanni

Játéktól a kutatásig. Írta: Bozóki Gergő Zoltán és Polereczki Fanni Játéktól a kutatásig Írta: Bozóki Gergő Zoltán és Polereczki Fanni A fő témánk a Geometria és a geometriai földrajz. Diákokat 3 csoportra szedtük szét. Az első csoport Általános iskola alsó, körülbelül

Részletesebben

Fedélszerkezet kivitelezése

Fedélszerkezet kivitelezése Fedélszerkezet kivitelezése Összeállította: Kreinbacher Imre Nemes András - 1 - Fedélszerkezeti elemek gyártás előkészítése Fedélszerkezet kivitelezésének feltétele, hogy a fed élszerkezet alkotó elemeit

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági 1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi

Részletesebben

Az építőipar ismert és ismeretlen veszélyei, a kockázatkezelés alapját képező lehetséges megoldások

Az építőipar ismert és ismeretlen veszélyei, a kockázatkezelés alapját képező lehetséges megoldások Az építőipar ismert és ismeretlen veszélyei, a kockázatkezelés alapját képező lehetséges megoldások Az építőipari tevékenységekre vonatkozó követelményeket, szervezett munkavégzés esetén alapvetően a 4/2002.

Részletesebben

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6

Papp Ferenc Barlangkutató Csoport. Barlangtérképezés. Fotómodellezés. Holl Balázs 2014. negyedik változat hatodik kiegészítés 4.6 Papp Ferenc Barlangkutató Csoport Barlangtérképezés Fotómodellezés Holl Balázs 2014 negyedik változat hatodik kiegészítés 4.6 (első változat 2011) A felszíni térképezés már egy évszázada a légifotókon

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Tájékoztatás 2015.04.21.

Tájékoztatás 2015.04.21. Tájékoztatás a részarány földkiadás során keletkezett osztatlan közös tulajdon megszűntetésére irányuló eljárásban, a mezőgazdászi szakterültet érintően, az adatszolgáltatás megkezdéséről 2015.04.21. Az

Részletesebben

Az MS Word szövegszerkesztés modul részletes tematika listája

Az MS Word szövegszerkesztés modul részletes tematika listája Az MS Word szövegszerkesztés modul részletes tematika listája A szövegszerkesztés alapjai Karakter- és bekezdésformázás Az oldalbeállítás és a nyomtatás Tabulátorok és hasábok A felsorolás és a sorszámozás

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

ANTENNAMÉRÉSEK ELŐKÉSZÍTÉSE

ANTENNAMÉRÉSEK ELŐKÉSZÍTÉSE Leírás ANTENNAMÉRÉSEK ELŐKÉSZÍTÉSE R12A - ANTENNAMÉRÉSEK ELŐKÉSZÍTÉSE ANTENNÁK HARDVERELEMEK VIZSGÁLATA R1 - A TÉRBELI RÁDIÓFREKVENCIÁS AZONOSÍTÁS LEHETŐSÉGEINEK KUTATÁSA BUDAPEST, 2013 Tartalomjegyzék

Részletesebben

KATONAI ALAPISMERETEK

KATONAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 24. KATONAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 24. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Klímavizsgálati módszerek természetes szellőzésű tehénistállókhoz Dr. Bak János 1.1.36.017.5.

Klímavizsgálati módszerek természetes szellőzésű tehénistállókhoz Dr. Bak János 1.1.36.017.5. Klímavizsgálati módszerek természetes szellőzésű tehénistállókhoz Dr. Bak János 1.1.36.017.5. A mikroklíma jellemzői és tehénre gyakorolt élettani hatásai A környezeti levegő hőmérséklete, relatív páratartalma,

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban

Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban Gyenes Róbert, NYME GEO Geodézia Tanszék, Kulcsár Attila, NYME GEO Térinformatika Tanszék 1. Bevezetés Karunkon a hároméves nappali

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0821 ÉRETTSÉGI VIZSGA 2008. október 20. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Készítsen elvi szabadkézi vázlatokat! Törekedjen a témával kapcsolatos lényeges jellemzők kiemelésére!

Készítsen elvi szabadkézi vázlatokat! Törekedjen a témával kapcsolatos lényeges jellemzők kiemelésére! 1 9 ) M u t a s s a b e a s z e r e l v é n y e k e t a z a l á b b i v á z l a t f e l h a s z n á l á s á v a l Készítsen elvi szabadkézi vázlatokat! Törekedjen a témával kapcsolatos lényeges jellemzők

Részletesebben

7. Koordináta méréstechnika

7. Koordináta méréstechnika 7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta

Részletesebben

Ajánlás a beruházásokkal kapcsolatos kockázatkezelési eljárás kialakításához

Ajánlás a beruházásokkal kapcsolatos kockázatkezelési eljárás kialakításához 9/2009. (IV. 28.) rendelet 1. számú melléklete Ajánlás a beruházásokkal kapcsolatos kockázatkezelési eljárás kialakításához Az előkészítés, a kivitelezés, az üzembe helyezés, az elkészült létesítmény működtetése

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Speciális tetőfedések és ács szerkezetei

Speciális tetőfedések és ács szerkezetei Speciális tetőfedések és ács szerkezetei 57 Hajlatképzés A hajlatképzést többnyire a bádogos szerkezetek kiváltására alkalmazzák. Fő jellemzője, hogy kis méretű palákból jobbos vagy balos fedéssel íves

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak 1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,

Részletesebben