I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az"

Átírás

1 8 Közöségs diffriálgltk umrikus mgoldása 8 Dfiíió g Ω IR tartomá IR I ílt itrvallum f : I Ω IR foltoos függvé Az : I IR diffriálató függvékr voatkozó f ( ( I gltt közöségs (lsõrdû pliit diffriálgltk vzzük Az f ( ( I ( fladatot kzdti érték problémáak (KÉP vzzük 8 Dfiíió: Az f függvé a második változójába tljsíti a ipsitz-fltétlt a K Ω kompakt almazoz > mlr f ( f K sté 8 Tétl ( Piard-idlöf Ha az f : I Ω IR foltoos függvé kilégíti a második változójába a ipsitz-fltétlt akkor I és Ω sté a KÉP-ak létzik mgoldása Az : k : f ( t ( t függvésorozat glts kovrgál a KÉP mgoldásáoz (Szuksszív approimáió Mgjgzés A függvésorozatba az itgrálást koordiátákét az f ( f koordiáta függvéir értjük A továbbiakba sak az sttl foglalkozuk k dt f 8 Aalitikus módszrk (Két példá sak a lgismrtbbk Példa Szparábilis (szétválaszató változójú diffriálglt Mgoldás l ( l ( d I A kzdti fltétl: A KÉP mgoldása: Példa Elsõrdû liáris iomogé diffriálglt

2 Mgoldás A omogé glt: vagis Szparábilis gltkét mgoldva kapjuk og az általáos mgoldása: Az iomogé glt mgoldása az álladók variálásáak lvévl törtéik alakba krssük Hlttsítsük b az iomogé gltb: A mgoldást Pariális itgrálást alkalmazva: ( d ( ( ( ( Tát ( alakú d A kzdti fltétlbõl tát a KÉP mgoldása: 8 Kvázi aalitikus (vag kvázi umrikus módszrk A Piard itráió (ásd 8 Tétl függvésorozata Példa Alkalmazzuk a Piard itráiót az Példa fladatára Mgoldás t dt 6 t ( t dt stb átjuk og mid lépésb a mgoldás Talor soráak újabb tagját kapjuk mg B Talor sor módszr A mgoldás Talor sorát közlítjük az mgatározásával ( k ( ( k k! Az ( k ( k drivált értékkt az gltbõl mgatározzuk ( k ( ( ( f ( ( f ( f ( ( f ( f ( f ( stb értékk 8

3 4 Példa Alkalmazzuk a Példa fladatára Mgoldás ( k ( k I k -ra ( k és íg ( k Tát a mgoldás:!! k! 8 umrikus módszrk 8 Dfiíió Diszkrét módszrk vzzük azt az ljárást aml a diffriálglt k I mgoldását végs sok potba állítja lõ A diszkrét módszrt k lépéss módszrk vzzük a az mgoldás potbli k k értékkbõl állítja lõ A továbbiakba : I IR f I Ω IR IR : közlítõ értékét az Ω és I ttszõlgs I Jlölésk: : : ( ( kzdti érték és az ( potos mgoldás közlítés 84 Dfiíió A umrikus módszr kovrgs a I > lim ma ( sté A módszr p -drdb kovrgs a > : p ( ( 85 Dfiíió A umrikus módszr lokális ibája a módszrrl g lépés alatt lkövttt iba a potos értékbõl iduluk azaz d : ( fltév og ( A umrikus módszr globális ibája a módszrrl több lépés utá flalmozódó iba azaz : ( fltév og (

4 84 Epliit Eulr módszr A diszkrtizáiós jlöléskt aszálva az pliit Eulr módszr alakja: : adott f ( ( Motiváió: A drivált közlítésér gakra aszáljuk a diffria áadost: ( ( ( ( Flaszálva az gltb: ( f ( ( I átrdzv f ( 8 Tétl Az pliit Eulr módszr lokális ibája: d ( O( ( azaz > : d Bizoítás Az potos mgoldásra írjuk fl a Talor formulát: ( ( ( O( ( f ( ( O Mivl d ( ( f ( ( O( f ( O( 8 Tétl Ha az f függvé a második változójába tljsíti a ipsitz-fltétlt akkor az pliit Eulr módszr kovrgs Bizoítás A Talor formulából ( ( ( O( ( f ( O az Eulr módszrbõl f ( A kifjzéskt kivova és abszolút értékt vév f ( ( f ( ( f ( ( O( ( ( f ( O( ( ( A továbbiakba tljs idukióval blátjuk og ( -ra ( igaz az állítás Tgük fl og -r igaz bizoítsuk -r : (

5 ( ( (( ( ( Mivl ( továbbá lsõrdb kovrgs ( O a módszr globális ibája p 84 Tétl Ha g pliit glépéss módszr lokális ibájára d alakú bslés adató és az f függvé a második változójába tljsíti a ipsitz-fltétlt akkor a globális ibája p -drdû azaz p ~ Kidolgozott példák Példa Az [ ] itrvallumo vizsgáljuk az pliit Eulr módszrt Mgoldás A KÉP potos mgoldása az összasolításoz: a Például sté írjuk fl az Eulr módszr közlítését b Vizsgáljuk az pliit Eulr módszr lokális- globális ibáját és kovrgiáját ttszõlgs I sté : (

6 f okális ibája: tgük fl og potos O < Globális ibája: tgük fl og potos O Tát az pliit Eulr módszr lsõrdb kovrgs a mgadott KÉP-ra Példa A [ ] itrvallumo vizsgáljuk az pliit Eulr módszrt Mgoldás A KÉP potos mgoldása az összasolításoz: a Például sté írjuk fl az Eulr módszr közlítését 4 6 b Vizsgáljuk az pliit Eulr módszr lokális- globális ibáját és kovrgiáját ttszõlgs I sté :

7 okális ibája: potos! O ξ Globális ibája: potos O Tát az pliit Eulr módszr lsõrdb kovrgs a mgadott KÉP-ra

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

(2) A d(x) = 2x + 2 függvénynek van véges határértéke az x0 = 1 helyen, így a differenciálhányados: lim2x

(2) A d(x) = 2x + 2 függvénynek van véges határértéke az x0 = 1 helyen, így a differenciálhányados: lim2x DIFFERENCIÁLSZÁMÍTÁS MINTAPÉLDÁK.. Példa. Határozzuk mg az f = függvénnk az = hlhz tartozó diffrnciahánados függvénét, majd vizsgáljuk mg, hog f diffrnciálható- az -ban adjuk mg az = hlhz tartozó diffrnciálhánadost.

Részletesebben

1. Vizsgazárthelyi megoldásokkal 1997/98 tél I. évf tk.

1. Vizsgazárthelyi megoldásokkal 1997/98 tél I. évf tk. . Vizsgazárthlyi mgoldásokkal 997/98 tél I. évf..-8.tk.. Döts l, hogy fáll mid A és B halmaz sté a A B) \ B A összfüggés! Ha m, adjo szükségs és légségs fltétlt arra, hogy mikor áll f! A B) \ B A iff A

Részletesebben

SOROK, FÜGGVÉNYSOROK SIMON ANDRÁS. m n=0 ca n = lim c m

SOROK, FÜGGVÉNYSOROK SIMON ANDRÁS. m n=0 ca n = lim c m SOROK, FÜGGVÉNYSOROK SIMON ANDRÁS TARTALOMJEGYZÉK. Numrikus sorok.. limsup és limif 3.. Gyök- és háyadoskritérium 4.3. További kovrgciakritériumok 5.4. Példák 6.5. Zárójl, átrdzés 8. Függvéysorozatok,

Részletesebben

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtl sok vlós számból álló összgkt sorokk vzzük. A sorb szrplő tgokt képzljük l úgy, mit gy bolh ugrásit számgys. A sor összg h létzik ily z szám hov bolh ugrási sorá ljut. Nézzük például kövtkzős sort:...

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISTVÁN EGYETEM AAMAZOTT MECHANIA TANSZÉ 5. MECHANIA-VÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül Vronika g. ts.) V. lőadás. okális aroimáció lv végslm diszkrtizáció gdimnziós fladatra Amint azt

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának

Részletesebben

4. Differenciálszámítás

4. Differenciálszámítás . Diffrnciálszámítás.. Írja fl a diffrnciahányadost a mgadott pontban és határozza mg a határértékét!... f...... f..7. f, f,,..9. f... f... f... f...... f..7...9. f...... f... f... f...,..6. f,,,, f,..8.

Részletesebben

6. SZILÁRDSÁGTANI ÁLLAPOTOK

6. SZILÁRDSÁGTANI ÁLLAPOTOK 6 SZILÁRDSÁGTANI ÁLLAOTOK 6 Alapfogalmak Silárdságta: a trhlés lőtt és utá is tartós ugalomba lvő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés Trhlés: ismrt külső rőrdsr Tartós ugalom:

Részletesebben

( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + +

( ) ( ) Motiváció: A derivált közelítésére gyakran használjuk a differencia hányadost: ( ) ( ) ( ) + + 4 85 Impliit Euler módszer A diszretizáiós elöléseet szálv z impliit Euler módszer l: dott : Motiváió: A derivált özelítésére gr szálu dierei ádost: Felszálv z egeletbe: Ie átredezve vgis eg impliit ormulát

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

12. Kétváltozós függvények

12. Kétváltozós függvények . Kétváltoós üggvénk Értlmés: a = képlt g kétváltoós üggvént ad mg ha a sík bárml pontjáho és üggtln váltoók a üggő váltoó lgljbb g érték tartoik. Ha g sm akkor a üggvén nm értlmtt abban a pontban ha g

Részletesebben

6. Határozatlan integrál

6. Határozatlan integrál . Határozatlan intgrál.. Alkalmazza a hatványfüggvény intgrálására vonatkozó szabályt! d... d... d... d 8...... d... d... d..8. d..9. d..0. d... d... d 8... d... 8... d...... d..8...9. d..0. d d 8 d d..

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni.

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni. Játékok a tanításhoz? - 1 - Tanító játékok? A Lgo kockák gészn biztosan fontos szívügyi gy gész sor gyrk és szül gnráció éltébn. Mi köz van a Lgo kockáknak a tanuláshoz? Vagy lht gyáltalán tanítani /órákat

Részletesebben

5. SZILÁRDSÁGTANI ÁLLAPOTOK

5. SZILÁRDSÁGTANI ÁLLAPOTOK 5 SZILÁRDSÁGTANI ÁLLAOTOK 5 Alapfogalmak Silárdságta: a trhlés lőtt és utá is tartós ugalomba lvő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés Trhlés: ismrt külső rőrdsr Tartós ugalom:

Részletesebben

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár. 8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltán g adjunktus; Bojtár Grgl g Ts; Tarnai Gábor mérnöktanár) 8 Fsültségi állapot smlélttés Adott: Ismrt g silárd tst pontjában a fsültségi állapot

Részletesebben

12. Laboratóriumi gyakorlat MÉRÉSEK FELDOLGOZÁSA

12. Laboratóriumi gyakorlat MÉRÉSEK FELDOLGOZÁSA . Laoratórum gakorlat MÉRÉSK FLDOLGOZÁSA. A gakorlat célja Lgks égztk LS) módszré alapuló polom-llsztés proléma mutatása és a módszr alkalmazása mérés rdmék fldolgozására, lltv érzéklő karaktrsztkák aaltkus

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT (kidolgozta: Trisz Pétr, g. ts.; Tarnai Gábor, mérnöktanár) Síkbli rőrndszr rdő vktorkttős, vonal mntén mgoszló rőrndszrk..

Részletesebben

RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2

RSA. 1. Véletlenszerűen választunk két nagy prímszámot: p1, p2 RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (

Részletesebben

Rácsrezgések.

Rácsrezgések. ácsrzgésk http://physics-imtis.cm/physics/glish/ph_txt.htm ácsrzgésk gitális hllám rúb Nwt II F x x F x V t F F x A x V x x x x x x A hllámszám értlmzési trtmáy végs mért prióiks htárfltétl Br-Kármá t

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

ľ ó Ü ó ĺĺ ľ ľ í í í ó ó ó ó í Ü ö ĺ ó ó í í í ó ü ü Ü ö ü ü í í ö ó óó ĺ í ű ö Ü ö ö ű ó Ĺ ö Á Á ű í ű ó ü ú ű Ü ö ű ó ú ó ó ĺ ó í ö í ó ó ö ű ö í í ö ó ó ó Ú ĺ ó ó ó Ö ó ď í ö ű ó ę ó ű ö í í ó í Ü í

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jgyzt Dr. Goda Tibor 3. Lináris háromszög lm - A végslms mgoldás olyan approximációs függvénykn alapul, amlyk az gys lmk vislkdését írják l (lmozdulás függvény

Részletesebben

Császár Attila: Példatár (kezdemény) gyakorlathoz

Császár Attila: Példatár (kezdemény) gyakorlathoz Császár Attila: Pélatár kzmé a Fizikai kémiai számítások gakorlathoz. ősz Tartalomjgzék I. Ismétlés számok művltk izikai miségk és mértékgségk II. III. IV. Valós üggvéta határérték oltoosság r Dirciálszámítás

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós üggvéek Tartalomjegzék Többváltozós üggvéek... Kétváltozós üggvéek... Nevezetes elületek... 3 Forgáselületek... 3 Kétváltozós üggvé határértéke... 4 Foltoos kétváltozós üggvéek... 6 A parciális

Részletesebben

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő

33 522 04 0001 33 10 Villámvédelmi felülvizsgáló Villanyszerelő A 10/007 (II. 7.) SzMM rndlttl módosított 1/006 (II. 17.) OM rndlt Országos Képzési Jgyzékről és az Országos Képzési Jgyzékb történő flvétl és törlés ljárási rndjéről alapján. Szakképsítés, szakképsítés-lágazás,

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 1. előadás 2015. február 13. 2015. február 13. Budapest Dr. Gaál József BME Hálózati Redszerek és SzolgáltatásokTaszék gaal@hit.bme.hu Bemutatkozás Dr Gaál József doces BME

Részletesebben

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs

Részletesebben

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk.

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk. Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. A trvzés, a modllzés során mgadjuk a

Részletesebben

ü ő ľ ű ľ ľ ľ ú ő ľ ő ľ í ľ ő ő ő í ľ í ö ú ü í Ť ľ ń Ö ő ő ľ ő í ö í í ű í ü ö ö ő ü ö ő ő ľő ľő ľ ľő ű ő ű ö ö őđ í ľ í ö ő ź ü ľ ú ő ü Ö ľ ľ ü ź ö ő ľ ő í ź ő ö í ć ľü ü ł ľ ľ ő ő ő ö ő í ő í ő ľ ő

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

1. RUGALMASSÁGTANI ALAPFOGALMAK

1. RUGALMASSÁGTANI ALAPFOGALMAK RUGALMASSÁGTANI ALAFOGALMAK Silárdságta: a trhlés lőtt és utá is tartós ugalomba lévő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés A értlmésb lőforduló kifjésk magaráata: Trhlés: a

Részletesebben

Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése.

Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése. Aktív lgécillapítá. Máodfokú lgrdzr tztlé.. A gyakorlat célja Jármvk aktív lgé cillapítááak modllzé máodfokú lgrdzrkét. Szoftvrfjlzté a rdzr való idj tztléér, a tztrdméyk kiértéklé.. Elmélti bvzt. A máodfokú

Részletesebben

Vezetéki termikus védelmi funkció

Vezetéki termikus védelmi funkció Budaps, 011. április Bvzés A vzéki rmikus védlmi fukció alapvő a hárm miavélz fázisáram méri. Kiszámlja az ffkív érékk, és a hőmérsékl számíásá a fázisáramk ffkív érékér alapzza. A hőmérséklszámíás a rmikus

Részletesebben

A differenciál- és integrálszámítás alapjai

A differenciál- és integrálszámítás alapjai A dirciál- és itrálszámítás lpji I. Dirci- és dirciálháydos D. Ly : R R értlmzv z itrvllumo. Ly ttszőls lm z itrvllumk. Az háydost z -b vtt dirciháydosák vy külöbséi háydosák vzzük. D. Ly : R R értlmzv

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modllllsztés folt. Méréslmélt: 5. lőadás, 4.3.. Út az adaptív lárásokhoz: 85 és 88 alapá: R P, R P. Ez utóbb mdkét oldalát mgszorozva az R mátrxszal: R. 9 Fltétlzv, hog cs tökélts smrtük az R mátrxról,

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék 3 fbruár 7 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

10 Nemlineáris irányítási algoritmusok

10 Nemlineáris irányítási algoritmusok Nmliáris iráítási algoritmso Az ig bmtatott iráítási algoritmso fltétlzté, hog a rszrt líró moll liáris. Állapottrs moll sté z azt jlti, hog a rszr összs állapotáa ibli változása riváltja flírható az állapoto

Részletesebben

7. Térbeli feladatok megoldása izoparametrikus elemekkel

7. Térbeli feladatok megoldása izoparametrikus elemekkel 7 ébl fladatok mgoldása zoaamtkus lmkkl ébl fladat: A tst (alkatész) alakjáa (gomtájáa) és thlésé nézv nncs smmln kolátozó fltétlzés 7 Összfoglaló smétlés Elmozdulásmző: u ux v wz Elmozdulás koodnáták:

Részletesebben

Numerikus módszerek 1. Alapvető fogalmak és összefüggések. Hogyan mérjük azt, hogy egy függvény nagy vagy kicsi?

Numerikus módszerek 1. Alapvető fogalmak és összefüggések. Hogyan mérjük azt, hogy egy függvény nagy vagy kicsi? umrus módszr. Apvtő ogm és összüggés Hog mérü zt hog g üggvé g vg cs? P. C[ ] - z [ ] trvumo otoos üggvé tré g : m C mmum-orm vg C-orm Eg más htőség: : d -orm Eg hrmd htőség: L és még számt más htőség

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI l.ch TÖBBVÁLTOZÓS ÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI A kétváltoós üggvénk úg működnk hog két valós sámho rndk hoá g harmadik valós sámot másként ogalmava sámpárokho rndk hoá g harmadik sámot.

Részletesebben

ö ö ő ö ö ő ĺ ő Ü í ü ó Ü ő ö ö ó ő ö ĺ ő ó ö ł ĺ í ö Ü ö ő ĺ ő ú ő í ĺ ó ü ó ó ó í ó Ü Ü ó ő ú í ó ó ó ü ú ó Ü ĺ ő ő í ĺ ü ő ó Ü Ü ő ő ő ú ö ö ő ő Ü ó ö ö ö Ú í ő ó ó ö ű ö ü ő ó Ü ú Ü ó ő í ő Ü ö ő ó

Részletesebben

Feladatok megoldással

Feladatok megoldással Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A

Részletesebben

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1 Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum

Részletesebben

Sorozatok. 1. Vizsgálja meg az alábbi sorozatokat monotonitás szempontjából!(indoklással, nem elegendő a sorozat. (a) a n = n+1

Sorozatok. 1. Vizsgálja meg az alábbi sorozatokat monotonitás szempontjából!(indoklással, nem elegendő a sorozat. (a) a n = n+1 Bodó Báta 1 Sorozatok 1. Vizsgálja mg az alábbi sorozatokat mootoitás szmpotjából!idoklással, m lgdő a sorozat éháy lmék kiszámolása.) a) +1 +3 b) +3 1+ szigorúa mooto csökk c) 2 2+ d) B +7 21 szigorúa

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék dcmbr 8 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István

Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István Lináris gynltrndszrk Készíttt: Dr. Ábrhám István A lináris gynltrndszrkt kitrjdtn hsználják optimumszámítási fldtokbn. A tém tárgylásához lőkészültt kll tnni. Mátri fktorizáció A fktorizáció mátri szorzttá

Részletesebben

Ábrahám Gábor: Az f -1 (x)=f(x) típusú egyenletekről. típusú egyenletekről, Megoldás: (NMMV hivatalos megoldása) 6 x.

Ábrahám Gábor: Az f -1 (x)=f(x) típusú egyenletekről. típusú egyenletekről, Megoldás: (NMMV hivatalos megoldása) 6 x. Ábrahám Gábor: Az f - ()=f() típusú gynltkről Az f ( ) = f( ) típusú gynltkről, avagy az írástudók fllősség és gyéb érdksségk Az alábbi cikk a. évi Rátz László Vándorgyűlésn lhangzott lőadásom alapján

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III Dinciálszámítás A inciálszámítás számnka lsősoban aa aló hog mgállapítsk hogan áltoznak a kémiában nag számban lőoló többáltozós üggénk A inciálszámítás mgaja a áltozás sbsségét báml kiszmlt pontban

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn (MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára 0. októbr

Részletesebben

8. Előadás. 1) Üveg félhenger

8. Előadás. 1) Üveg félhenger 8. Előadás Kompe kidolgozott problémák ) Üveg élheger P: Készítsük egy élheger alakú, törésmutatójú testet. Egyik alapja ézze elék! Sugara legye R 5 mm! A sík elületére bocsájtsuk 45 -os szögbe sugarakat

Részletesebben

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel:

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel: SZÉCHENYI ISTÁN EGYETEM AKAMAZOTT MECHANIKA TANSZÉK 7. MECHANIKA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül ronika, g. ts.) II. lőadás.. Rácsos szrkzt vizsgálata húzott-nomott rúdlmkkl: F x m m. ábra: Rácsos

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

6. előadás Véges automaták és reguláris nyelvek

6. előadás Véges automaták és reguláris nyelvek Formális nylvk és automaták Széchnyi István Egytm 6. lőadás Végs automaták és rguláris nylvk dr. Kallós Gábor 2017 2018 Formális nylvk és automaták Széchnyi István Egytm Tartalom Zártsági tulajdonságok

Részletesebben

ő ľ ő Ö ź é ő é é é ü ĺ ó ö ö é ľ é é ü ĺ ĺ ĺü é éľ ľ ó ľ é ľ Í é ü ľ é ó í ľ ő ő ĺ ü ő ő é í ü ő ő ľ ü é ľ é ú é é é ü ó í é é ü ő é é ő ü ű ź ű ö ö ó ö ö é ľé ő źĺ ó ľ é é ő ú é ö ź é ę é ę ü é é í ľő

Részletesebben

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/ . Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

9. HAMILTON-FÉLE MECHANIKA

9. HAMILTON-FÉLE MECHANIKA 9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

PONTRENDSZEREK MECHANIKÁJA. A pontrendszert olyan tömegpontok alkotják, amelyek nem függetlenek egymástól, közöttük kölcsönhatás van (belső erők).

PONTRENDSZEREK MECHANIKÁJA. A pontrendszert olyan tömegpontok alkotják, amelyek nem függetlenek egymástól, közöttük kölcsönhatás van (belső erők). PONTRENDSZEREK ECHANIKÁJA A potrdszrt olya tögpotok alkotják, alyk függtlk gyástól, közöttük kölcsöhatás va (blső rők). F F F F F F F F Blső rők: F Külső rők: F F Nwto III.: rő-llrő párok F F F F A potrdszr

Részletesebben

É ľ ó ľ ľ Í ü ľ ľ ę ľ ó ľ í ř í ź ü í ü É Í É Á Á ľł Á Ü Á É Í ó ľł Á Éľ Ü Éľ É Á ř ľ ľ ľé ü Ę ü ý ľ ü ű ź ó ó ó í ó ó ö ľ ö ö ö ö ó ť í ú ö ź ú ó đ ľ ľ ö í ďó ü ó í í ł ľ ü óđ ö ü ö ü ö ľ í ü ľü ó í ó

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 080 ÉRETTSÉGI VIZSGA 008. novmbr. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szrint,

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 1. A differenciálhányados fogalma

DIFFERENCIÁLSZÁMÍTÁS. 1. A differenciálhányados fogalma DIFFERENCIÁLSZÁMÍTÁS A dirnciálhánados oalma Példa: Ln adva a koordinátarndszrbn üvén raikonja (örbéj) és vizsáljuk, ho adott pontjához hoan lhtn érintőt húzni Mivl adott ( ( )) ponton át ismrt mrdkséű

Részletesebben

A Laplace transzformáció és egyes alkalmazásai

A Laplace transzformáció és egyes alkalmazásai A aplac razormáció é gy alkalmazáai A PTE PMMFK villamomérök zako lvző agozao allgaói zámára kéziraké özállíoa Ki Mikló őikolai adjuku 3 Irodalomjgyzék: Bako Ivá: Elkrocika I-II (KKVMF Budap 969 Duca J:

Részletesebben

ő ü ő ę ü ź ź ĺ Ť ĺ ľ ü ű ö ő ő ő í ź ľ í ü ú ü ö ű ú ö ő ýľ Á Á í ĺí ö ű ű ö ő Á ľ í ľ ü ľ ľ í ű ö ö í Ĺ ĺ ú ö ľ ö ĺ ő Ą ö ő í ő ĺ í ő ý ľ ő ö ő í ő ľ ľ ú ö ľ ć í ő ő ü ő ü í ő ĺ ű ł í ő ő ü ö ź ľ ź ü

Részletesebben

Ö ü ź ü Ő Ű Ü ü ú ĺ ü ü í í ö ú ö ĺ í ü ĺ Ú Ö Ü ü ü í í ĺ Ü í ö í í Ü ź ö íĺ ö í ĺ ĺ í í ĺ ź ö ą ö í í ĺ ĺ Í í í í ĺ ĺ ö í ĺ ą ü ö í í í ĺ ĺĺ í í ű ź í í ĺ ź ĺ ĺ í í ĺ ĺ ĺ ü ĺ í ź ö í ĺ ö ö ü í ö ö ú Í

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

ľ ú á Ö á á ĺ ľ Ż á ö óľ ö ő ö á ó á ü ő ü ú ľ á ü ö ö á ó ó á á í ő ő á á ó ĺ ő í á ő ü á í á ő ó ű ő ú á ö ń ö ő ö ö á ö ü ő Á á á í á á ü ö ü ő Ĺ ö ö ę á ü ü á ő Ĺ ý ź í ú ü Ł ö ő á ő Í á á ź á ö ő

Részletesebben

ó ľ ľ ő ĺ ő ő ó ü ő ő ő ü ő ó ź í ĺľ ĺ ó É Í ý ź ü ź ö í ő í ö É Í ľ Ö ó É É Ü É É Á ą É ł ĺł ĺ ľ ü ĺ ä ü ď ő ő ő ű ó ľü ĺ ú ľ íĺ ő ľ ő ű ú ö ö ű ő ź ľ í ó ó Ĺ ó ó íĺ ľü ő ó ĺíľ ľ źů ö ü ü ó ď ó í ľ ű

Részletesebben

Á Á É É ÉÜ Á Ü Ü ő ó ő í í Á ü ő í í ó ó í ó ő ü ü ő ü ó ó ő ü ő í í ü ő í ü ő í ü ő í í ó ő ó ü ü ó ó ő ü ú ó ó ö í ü ü ő ó ő ü ő í ó ü ő í ő ü ö ü ő ó ő í ó ü í ő ő ö ő ő ö ő ü ő ő ő ő í ü ü í ó íő ü

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x.

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x. Valós váltoós omplx üggvéy, t x t yt rt cost st r t t, t dt b Ft C, t dt F t FbFa a t x t y t b. x, y görb gylt omplx alaba: x, y. a Komplx váltoós omplx üggvéy u x, y v x, y, ahol x y, Drválás: ( ) lm

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Atomok mágneses momentuma

Atomok mágneses momentuma Kvantuchanikai pályaontu: A pályaontu gységkbn kvantált. Az abszolút érték kvantuszáai: l! ( n ) 0,,... l l,, Lˆ rˆ pˆ [ Lˆ x,lˆ y] i! Lˆ z, [ Lˆ y,lˆ z ] i! Lˆ x, [ Lˆ z,lˆ x ] i! Lˆ y L l( l +)! L z

Részletesebben

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1)

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1) A Mozilla ThundrBird lvlzőprogram haszálata (Készíttt: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Vrsion 1.1) Tartalomjgyzék Tartalomjgyzék...1 A Központi Lvlző Szrvr használata... 1 A ThundrBird lvlzőprogram

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

ú ő ö ľ ľ ű ö ľó ú ő ü ö ó ő ö ö ő ő ő ö ł ö ö ő Á ö ú ľ ľ ö ú ľ ö í ö í ö í ľ ő ľ ľ ő ő ő ö ö ź í ú ú ó íĺ ü í ő ü Í ű ó ľ ű ű ľ ű ö ő ű ö í ĺ ü ű ö í í ó í ú ó ö Í ö ľ ĺ ĺľ ö ö ö ó ő ü ę ű ö ő ľ ú í

Részletesebben

Valószínűségszámítás. A standard normális eloszlás karakterisztikus függvénye. További tulajdonságok. További tulajdonságok.

Valószínűségszámítás. A standard normális eloszlás karakterisztikus függvénye. További tulajdonságok. További tulajdonságok. Karakriszikus függvéy Valószíűségszámíás. lőadás 07..05 Kompl érékű valószíűségi válozók: Z=+iY, ahol és Y is valószíűségi válozók. Z):=)+iY). (valós) valószíűségi válozó karakriszikus függvéy: ():= i

Részletesebben