Regresszióanalízis. Példák. A regressziószámítás alapproblémája. Informatikai Tudományok Doktori Iskola

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Regresszióanalízis. Példák. A regressziószámítás alapproblémája. Informatikai Tudományok Doktori Iskola"

Átírás

1 Regressziólízis Iformtiki udomáyok Doktori Iskol A regressziószámítás lpprolémáj Regressziószámításkor egy változót egy (vgy tö) másik változóvl ecslük. Y függıváltozó,,... p függetle változók Y f(,,... p ) ecslés f F E(Y- f * (,,... p )) mi E(Y- f(,,... p )) f F Példák. A Du vízállásák elırejelzése Budpeste. A prdicsom eérési idejéek ecslése 3. Mőholdkép lpjá úz terméshozmák ecslése 4. Mőholdkép lpjá Mrs vstrtlmák ecslése 5. Predikciók, tredek idısorokál 6. Lieáris közgzdsági modellek

2 A regressziószámítás lpprolémáj H ismerjük z Y és z,,... p együttes eloszlását, kkor prolém elméletileg megoldott: f (,,... p ) E ( Y,,... p ). Gykorlt zo csk egy dtmátri dott: Y Y M Y M M L L O L p p M p Feltételes várhtó érték, folytoos eset I. Feltételes várhtó érték, folytoos eset II.

3 Feltételes várhtó érték, folytoos eset III. A regresszió tuljdosági Az összes függvéy közül regressziós görével lehet legpotos közelítei! Regresszió ormális eloszlás eseté f Y σ πσ ρ σ ( y) σ ( ) ρ e µ + ρ( y µ ) Normális kompoesek eseté regressziós összefüggés lieáris! 3

4 Elméleti lieáris regresszió Elméleti lieáris regresszió Láttuk, hogyh,y együttes eloszlás ormális, kkor regresszió lieáris lesz! A regressziószámítás lpprolémáj F {f(,,, p,,,c,,, c, vlós prméterek} A függvéyhlmzól zt z elemet fogjuk kiválszti, melyél: h(,,c,...) Σ (Y i - f( i, i,..., pi,,,c,... )) i mi,,c,... Ez legkise égyzetek módszere! 4

5 A regressziólízis fjtái Lieáris regresszió f() B + B öváltozós lieáris regresszió f(,,..., p ) B + B + B B p p Poliomiális regresszió f(,,..., p ) B + B + B B p p,,..., p p Kétprméteres (lieárisr visszvezethetı) regresszió pl. Yf() B o e B ly B + l B o A regressziólízis fjtái Nemlieáris regressziók két változó között I. f( ) B + B ep(b 3 ) szimptotikus I. f( ) B - B (B 3 ) f( ) (B + B ) -/B3 f( ) B (- B 3 ep(b )) szimptotikus II. sőrőség Guss f( ) B ep( - B ep( - B 3 ))) Gompertz f( ) B ep( - B /( + B 3 )) Johso-Schumcher A regressziólízis fjtái Nemlieáris regressziók két változó között II. f() (B + B 3 ) B f() B - l( + B ep( - B 3 ) f() B + B ep( - B 3 ) f() B / ( + B ) log-módosított log-logisztikus Metcherlich Michelis Mete f() (B B +B 3 B4 )/(B + B4 ) Morg-Merczer-Flori f() B /(+B ep( - B 3 +B 4 + B 5 3 )) Pel-Reed 5

6 A regressziólízis fjtái Nemlieáris regressziók két változó között III. f() (B + B +B 3 + B 4 3 )/ B 5 3 köök ráy f() (B + B +B 3 )/ B 4 égyzetek ráy f() B /((+B 3 ep(b )) (/B4) Richrds f() B /((+B 3 ep(b )) Verhulst f() (B (-B4) B ep( - B 3 )) /(-B4) Vo Bertlffy f() B - B ep( -B 3 B4 ) f() /(B + B +B 3 ) Weiull Yield sőrőség A regressziólízis fjtái Szkszokéti lieáris regresszió Poligoiális regresszió A regressziólízis fjtái 6

7 A regressziólízis fjtái öváltozós lieáris regresszió ktegóri-változóvl A regressziólízis fjtái Logisztikus regresszió, h z A eseméy ekövetkezik Y dichotóm Y {, h z A eseméy em következik e A eseméy,,..., p A válsztó fog szvzi A páciesek szívifrktus lesz Az üzletet meg fogják köti ordiális szitő függetle változók eddig háyszor met el, kor, iskol, jövedelem pi cigi, pi pohár, kor, stressz ár, meyiség, pici forglom, rktárkészlet A regressziólízis fjtái Logisztikus regresszió P(Y) P(A) - e -Z Z B + B + B B p p P(A) ODDS - P(A) e Z log (ODDS) Z B + B + B B p p 7

8 Logisztikus regresszió A regressziólízis fjtái A leggyo vlószíőség elve L(ε,ε,...,ε ) P(Y ε, Y ε,..., Y ε ) P(Y ε ) P(Y ε ) L P(Y ε ) L - e -Z - e -Z - e -Z l L(ε,ε,...,ε ) Σ ( l ) - ep (B + B + B B p p ) Lieáris regresszió A lieáris kpcsolt kitütetett: () legegyszerő és leggykori, köyő két prmétert értelmezi () két dimeziós ormális eloszlás eseté kpcsolt em is lehet más (vgy lieáris vgy egyáltlá ics) Lieáris regresszió Az empirikus lieáris regresszió együtthtóit legkise égyzetek módszerével kphtjuk meg: Az empirikus lieáris regresszió együtthtói z elméleti regressziós egyees együtthtóitól yi külöözek, hogy képleteke z elméleti mometumok helyett mitáól számolt megfelelı empirikus mometumok állk: 8

9 Lieáris regresszió A teljes égyzetösszeg A mrdékösszeg A regressziós összeg A lieáris regresszió Q Q res + Q reg y res ( i, y i ) reg (, y ) yˆ i ( i, ˆ ) y i + i A lieáris regresszió A teljes égyzetösszeg felotás: Q Q res + Q reg f reg szdsági fok -, mert tgú z összeg, de ezek között két összefüggés v. f res szdsági fok midössze, mert z átlg kosts H ics lieáris regresszió, vriciák háydos (, -) szdsági fokú F eloszlást követ. F Q reg s f Q ( ) reg reg reg s Q res res Q res f res 9

10 A lieáris regresszió A legkise égyzetek módszere lpelve: y yˆ i + i ( 3, y 3) ( 5, y 5) e 5 e 3 e 4 (, y ) e e ( 4, y 4) (, y ) Megjegyzések: A lieáris regresszió.. A lieáris regresszió ervezett (determiisztikus) megfigyelés Fıleg mőszki lklmzsok gykori, hogy méréseket Y -r elıírt eálltásokál végzik el, és így keresik z ismeretle Y~f() függvéykpcsoltot. A modell ilyekor z, hogy Y f() +ε, hol ε mérési hiát jeletı vlószíőségi változó, melyre E ε és σ ε véges.

11 Guss-Mrkov-tétel Lieárisr visszvezethetı kétprméteres regresszió I { f ( ;, ) } E * * ( Y f ( ;, )) mi E( Y f ( ;, f I )) Ameyie tlálhtók oly lklms g, h, k, k függvéyek, mivel prolém lierizálhtó: y f ( ;, ) g( y) k(, ) h( ) + k(, ) * * E( g( Y) k h( ) k ) mi E( g( Y ) k h( ) k ) k, k A trükkel em z eredeti miimlizálási feldt megoldását * * * * * * k ( k, k), k ( k, k) kpjuk meg, csk ttól em túl messze esı közelítéseket! Lieárisr visszvezethetı kétprméteres regresszió epoeciális függvéykpcsolt: y e E P 6 5 yep(.*) * y l y + l k + k growth függvéy: y ep( + ) * y l y + compoud függvéy: y * y l y l + l

12 Lieárisr visszvezethetı kétprméteres regresszió y htváyfüggvéy: y** H A V Arrheius: e y * * l l k k y y + +, k e k yep(-5/) A R R H y + reciprok: y y + * y/(+5*) R E C I Lieárisr visszvezethetı kétprméteres regresszió y + rcioális:,, * * k k k k k y y + + y/(+5*) R A C I y + homogé kvdrtikus: y y + * y*+5* K V A D R hiperolikus: y + y+5/ H I P E R Lieárisr visszvezethetı kétprméteres regresszió logritmikus: ( ) y l l l + yl(5*) L O G

13 Lierizálás, pl. Poliomiális regresszió A poliomiális regressziós feldtot töváltozós lieáris regresszióvl oldhtjuk meg, prediktor változók ilyekor z változó htváyi: i i! Poliomiális regresszió 3

14 Poliomiális regresszió A függetle változók zo lieáris komiációját keressük, melyél függıváltozót legkise égyzetes hiávl tudjuk közelítei: ~ Yi Yi + ε i ε i i k ki i Y ( ) ~ ε ε i ( Y ) ( Y ) i Y i Y i Y Y Y i + Y Y Y + Q( ) mi Az együtthtók meghtározás legkise égyzetek módszerével: Q Y + Y ( ) Y 4

15 Szóráslízis (ANOVA) modell érvéyességéek eldötésére A ullhipotézis z, hogy függetle változók midegyike, vgyis egyik prediktor változó sem mgyrázz célváltozót! H : β β... β k SSR ( k ) SSE ( k) F k, k F-próávl döthetük ullhipotézisrıl. Bét-együtthtók S i BEA i S y i Si S y i ( i,,..., k) A ét-együtthtók egyfjt z i-edik regressziós szempotól együtthtó, miısítik változók fotosságát lieáris összefüggése. H egy változók gy z együtthtój szolút z i-edik változó stdrd szórás, értéke, kkor fotos, h kicsi, kevésé fotos. célváltozó stdrd szórás. 5

16 R (coefficiet of determitio) meghtározottsági együtthtó H csk egy SSR SSE mgyrázó változó R, R v, kkor R éppe SSO SSO korrelációs együtthtó égyzete! R ± SSR SSO ( i )( Yi Y ) i ( i ) ( Yi Y ) i i Megmuttj, hogy lieáris regresszióvl célváltozó vriciáják mekkor háydát lehet mgyrázi, R. Az R érték megmuttj lieáris kpcsolt mértékét Korrigált (djusztált) meghtározottsági muttó R dj ( R ) SSE / p SSO ( p ) /( ) p függetle változók szám A korrekció zért szükséges, mert új változók evoásávl R utomtikus ı, és túl optimist képet mutt modell illeszkedésérıl. Az djusztált változt ütetjük túl sok változó evoását modelle. p esete em korrigáluk. 6

17 Modell-építési techikák Egy tipikus töváltozós lieáris regressziós prolémáál dott z Y célváltozó és gy számú,,, p mgyrázó változó. Az elemzés kezdetekor zt sem tudjuk, melyek zok változók, mik ekerülek, és melyek zok, mik em kerülek mjd e modelle. H mide lehetséges komiációt ki krák próáli, kkor összese Már 4 változó p p p eseté 5 modellt kellee illeszteük! k k modellillesztést kellee elvégezük! Modell-építési techikák Nyilvá szőkíteük kell kell z illesztedı modellek számát! Alklmzhtjuk z ENER eljárást, melye zokt mgyrázó változókt vesszük e változólistáól modelle, mely változókt szereték, hogy ee legyeek. Ezeket modelleket utólg értékeli kell meghtározottsági együtthtó gyság, és regressziós együtthtók szigifikci szitje lpjá. A módosításokkl újr el kell végezi z illesztést. Modell-építési techikák Automtikus modellépítési techikák: SEPWISE FOREWARD BACKWARD REMOVE A felhszálók csk z idulási mgyrázó változó listát kell specifikáli, z SPSS progrm eıl válsztv állít elı jó modelleket, mik közül válszthtuk végsı megoldást. 7

18 A prciális F-pró R R együk fel, hogy evotuk p-edik mgyrázó változót modelle. H z új változó mgyrázó ereje elhygolhtó, kkor z lái sttisztik, -p- szdságfokú Fisher-eloszlást követ: F p R R p R ( ) z új p változós modell meghtározottsági együtthtój, régi p- változós modell meghtározottsági együtthtój, A prciális F-pró A p-edik változót kkor vojuk e modelle, h hol ε ( R ) ( p ) K < R R K ε oly kritikus érték, hogy: ( < K ) ε P F,-p- ε FOREWARD modell-építés Alulról építkezı modellépítési eljárás. Mide modellépítési lépése listáól zt változót vojuk e, mely F-tesztjéhez legkise ε szit trtozik. A evoási folymt ddig trt, míg ez legkise ε szit egy eállított PIN korlát ltt mrd. Elıye, hogy viszoylg kevés mgyrázó változó lesz modelle, így köye modellt értelmezi. 8

19 BACKWARD modell-építés Felülrıl leotó eljárás. Kezdete z összes változót erkjuk modelle. Mide lépése zt változót hgyjuk el modellıl, melyél prciális F-próáál leggyo ε érték trtozik. Akkor álluk meg, h z elıre eállított POU küszöérték lá megy ez z ε. A BACKWARD modellépítéssel viszoylg sok mgyrázó változó mrd e modelle. SEPWISE modell-építés A FOREWARD eljárást úgy módosítjuk, hogy mide lépése elleırizzük modelle korá már evot változókhoz trtozó ε szigifikci-szitet, és zt elhgyjuk, hol ez szit gyo mit POU. Nem kerülük végtele ciklus, h PIN<POU. (Szokásos eállítás: PIN,5 és POU,. REMOVE modell-építés A REMOVE eljárás z ENER eállításáól idul ki, egyszerre hgy el változókt modellıl, összehsolításkét csk kosts tgot trtlmzó modell eredméyeit közli. 9

20 Multikollieritás Multikollieritáso mgyrázó változók között fellépı lieáris kpcsolt meglétét értjük. A multkollieritás jeleléte rotj modell értékelhetıségét. A multikollieritás mérıszámi: tolerci vrici ifláló fktor (VIF) kodíciós ide (CI) vrici háyd A multikollieritás mérıszámi. tolerci zt méri, hogy z i-edik mgyrázó változót z összes töi milye szoros htározz meg. A ullához közeli tolerci jeleti zt, hogy közel függvéyszerő kpcsolt v mgyrázó változók között. Értéke -R i, hol R i z i-edik változók töivel vett lieáris regresszióják korrelációs együtthtój, töszörös korrelációs együtthtó. A vrici ifláló fktor (VIF) tolerci reciprok: VIF/(-R i ). Ezért, h mgyrázó változók között szoros kpcsolt, VIF végtele gy is lehet. H mgyrázó változók korreláltlok, VIF értéke. A multikollieritás mérıszámi. A kodíciós ide (CI) mgyrázó változók korrelációs mátriák sjátértékeiıl számolt sttisztik. A leggyo és legkise sjátértékek háydosák égyzetgyöke. A CI>5 esetée megállpíthtó z erıs kollieritás. CI λ λ m mi Vrici háyd is utlht multikollieritásr. H egy-egy gy kodíciós ide sorá tö regressziós együtthtók v mgs vrici háyd. A regressziós együtthtók vriciáit sjátértékek között szétosztjuk.

21 A ecslést efolyásoló potok feltárás A lieáris regressziós modell értékeléséek fotos lépése z egyes dtpotok fotosságák feltárás. Melyek zok z dtpotok, melyek végleges összefüggést legerısee muttják, erısítik, és melyek zok z ú. outlier potok, melyek legkevésé illeszkedek z dott regressziós összefüggése. A ecslést efolyásoló potok feltárás A Y célváltozó és lieáris ecslés közötti kpcsolt: ~ Y B ~ e Y Y ( E H )Y ( ) Y H Y A ecslés hivektor, mrdékösszeg, regressziós összeg: SSE Y ( E H )Y H ( ) SSR Y H Y ( y ) A ecslést efolyásoló potok feltárás ( ) H leverge (htlom) vgy ht mátri A mátri szimmetrikus, h ii digoális elemei zt muttják, hogy z i-edik eset mekkor htást fejt ki regressziós ecslésre. h ii ( ) i i, hol i h p + ii i z i-edik esetvektor h ii

22 A ecslést efolyásoló potok feltárás p + Az i-edik eset efolyás átlgos, h ezek tipikus h ii esetek! Az i-edik eset efolyás jeletıs, h p + h ii > H <, h ii z i-edik eset evohtó z elemzése H, h ii <, 5 kockáztos z i-edik eset evoás,5 h ii z i-edik esetet ki kell hgyi, outlier pot A mrdéktgok (reziduálisok) elemzése Közöséges reziduális: e Y Yˆ i i i A lieáris ecslés elkészítésekor em számoluk z i-edik esettel, töröljük. ei örölt reziduális: e i i Yi Yˆ ( ) ( i ) i hii ei Stdrdizált reziduális: z p Belsıleg studetizált reziduális: i i e i r i e i ei i p h ii A mrdéktgok (reziduálisok) elemzése Heteroszkedszticitás: A mrdéktgok ull szit körüli szóródásák lehetséges típusi.) szóródás megfelel lieáris modellek,.) em lieáris modellhez trtozk mrdéktgok, c.) szóródások em zoosk, d.) hitgok em függetleek egymástól.

23 Péld kétváltozós lieáris regressziór Keressük lieáris összefüggést z employee dt állomáy kezdıfizetés és jelelegi fizetés között! Péld kétváltozós lieáris regressziór Péld kétváltozós lieáris regressziór 3

24 Péld kétváltozós lieáris regressziór mrdéktgok Heteroszkedszticitás jelesége megfigyelhetı: gyo -hez gyo szórás trtozik! Péld kétprméteres emlieáris regressziór Keressük emlieáris kpcsoltot Crs állomáy lóerı és fogysztás között! Péld kétprméteres emlieáris regressziór 4

25 Péld kétprméteres emlieáris regressziór Depedet Vrile: Miles per Gllo Model Summry d Prmeter Estimtes Equtio Lier Logrithmic Iverse Power Epoetil Logistic Model Summry Prmeter Estimtes Costt R Squre F df df Sig.,595 57,79 39, 39,855 -,57,658 75,88 39, 8,45-8,536, ,63 39, 3,963 88,7,75 933,576 39, 3,877 -,836, ,834 39, 47,3 -,7, ,834 39,,,7 he idepedet vrile is Horsepower. Péld kétprméteres emlieáris regressziór Péld kétprméteres emlieáris regressziór Depedet Vrile: Miles per Gllo Model Summry d Prmeter Estimtes Equtio Power Model Summry Prmeter Estimtes Costt R Squre F df df Sig.,75 933,576 39, 3,877 -,836 he idepedet vrile is Horsepower. 5

26 Péld töváltozós lieáris regressziór Végezzük lieáris elemzést z employee dt állomáyo! A jelelegi fizetés legye célváltozó, mgyrázó változók kezdıfizetés, lklmzás ideje (jotime) és dolgozó kor legye! Péld töváltozós lieáris regressziór A kosts szerepe elhygolhtó modelle. 6

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

Regresszióanalízis. Példák. A regressziószámítás alapproblémája. A regressziószámítás alapproblémája. Informatikai Tudományok Doktori Iskola

Regresszióanalízis. Példák. A regressziószámítás alapproblémája. A regressziószámítás alapproblémája. Informatikai Tudományok Doktori Iskola A regresszószámítás alapproblémája egresszóaalízs egresszószámításkor egy változót egy (vagy több) másk változóval becslük. Y,,... p függıváltozó függetle változók Y f(,,... p ) becslés f F Iformatka udomáyok

Részletesebben

PDF created with FinePrint pdffactory Pro trial version Adott egy X folytonos változó, ami normális eloszlású.

PDF created with FinePrint pdffactory Pro trial version  Adott egy X folytonos változó, ami normális eloszlású. Á dott egy X folytonos változó, ami normális eloszlású. X ( µ,σ ) dottak ezen kívül az Y,Y,,Y k diszkrét változók (faktorok) total H 0 : X - re nincs hatással Y Q = Q + Q +... + Q + Q + Q3 +... + Q k hiba

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus) A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

Lineáris programozás

Lineáris programozás LP LP 2 Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek egységár és z, hogy z egyes termékek egy egységéek előállításához

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

ALGEBRA. 1. Hatványozás

ALGEBRA. 1. Hatványozás ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok

Részletesebben

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

Valószínőségszámítás

Valószínőségszámítás Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

Statisztika II előadáslapok. 2003/4. tanév, II. félév

Statisztika II előadáslapok. 2003/4. tanév, II. félév Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete:

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete: æ REGRESSZIÓANALÍZIS Az alapprobléma a következő: Az X, Y v.v. együttes eloszlásáak ismeretébe közelítei szereték Y-t X mérhető t fv.-ével legkisebb égyzetes értelembe: E(Y t(x)) 2 mi. t be. Tudjuk, hogy

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Formális nyelvek I/2.

Formális nyelvek I/2. Formális nyelvek I/2. Véges utomták minimlizálás Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Véges utomták minimlizálás Két utomt ekvivlens, h ugynzt

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Matematika A2a - Vektorfüggvények elméleti kérdései

Matematika A2a - Vektorfüggvények elméleti kérdései Mtemtik A2 - Vektorfüggvéyek elméleti kérdései (műszki meedzser szk, 2018. tvsz) Első típusú improprius itegrál: Végtele trtomáyo korlátos függvéy Legye f itegrálhtó mide β > eseté z [, β]-. H β β és véges,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai

A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis. i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. X i

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis. i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. 2/52

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika

Eddig megismert eloszlások Jelölése Eloszlása EX D 2 X P(X = 1) = p Ind(p) P(X = 0) = 1 p. Leíró és matematikai statisztika Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakiráy Zempléi Adrás Valószíűségelméleti és Statisztika Taszék Matematikai Itézet Természettudomáyi Kar Eötvös Lorád Tudomáyegyetem

Részletesebben

24. tétel Kombinatorika. Gráfok.

24. tétel Kombinatorika. Gráfok. Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

PCA LDA MDS, LLE, CCA. Adatbányászat. Dimenziócsökkentő eljárások. Szegedi Tudományegyetem. Adatbányászat

PCA LDA MDS, LLE, CCA. Adatbányászat. Dimenziócsökkentő eljárások. Szegedi Tudományegyetem. Adatbányászat Dimeziócsökkető eljárások Szegedi Tudomáyegyetem Dimeziócsökketés szerepe Az adatpotok reprezetálására haszált dimeziók számáak csökketésével spórolhatuk Tödimeziós adatpotok vizualizálása (pl. 2 vagy

Részletesebben

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók Eergetk gzdságt 3. gykorlt Gzdság muttók GAZDASÁGTAN, PÉNZÜGY JELLEMZŐK A gykorlt célj, hogy hllgtók A. elsjátítsák gzdálkodásb szokásos pézügytechk meységek között összefüggéseket; B. egyszerű gzdságosság

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137

Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137 ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Sorozatok határértéke

Sorozatok határértéke I. Becsüljük kifejezéseket! Kidolgozott feldtok: Soroztok htárértéke. Számológép hszált élkül djuk becslést z lábbi kifejezések értékére h = 000 000! Hszáljuk közbe gyságredi becsléseket számláló és evező

Részletesebben

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak ábr: Ábr Bodó Be, Simoé Szbó Klár Mtemtik. közgzdászokk IV. modul: Számsoroztok 8. lecke: Számsorozt foglm és tuljdosági Tulási cél: A számsorozt foglmák és elemi tuljdoságik megismerése. A mootoitás,

Részletesebben

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra . Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + + LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,

Részletesebben

1. Fejezet A sorozat fogalmának intuitív megközelítése

1. Fejezet A sorozat fogalmának intuitív megközelítése SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtl sok vlós számból álló összgkt sorokk vzzük. A sorb szrplő tgokt képzljük l úgy, mit gy bolh ugrásit számgys. A sor összg h létzik ily z szám hov bolh ugrási sorá ljut. Nézzük például kövtkzős sort:...

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben