A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI"

Átírás

1 A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI BEVEZETÉS Alkotórészek: molekulárs modell + statsztka Mért kell a statsztka? Mert 0 23 nagyságrend mkroszkopkus változója van a rendszernek, m ezzel szemben csak néhány makroszkopkus változót smerünk! Ezek a makroszkopkus változók a mkroszkópkus változók valamely átlagolódása révén öltenek testet. Az átlagok kezeléséhez kell a statsztka! Ha már átlagolunk, mlyen átlagolást használjunk? - dbel átlagolás: ha egy rendszer tulajdonságat elég hosszú dn keresztül követjük (a rendszer trajektórája mentén), azok egy átlagos, dtl független értékhez tartanak majd. Például híg gázokra, a molekulák sebesség eloszlása egy dtl független értékhez tart : ez az ergodkus hpotézs - Gbbs (Ensten) ötlete: cseréljük k a mechanka rendszert (amt fgyelemmel kísérünk) és az dbel átlagolást egy ekvvalens átlagolás módra, a sokaságok átlagolására. Sokaságok Az, hogy csak ks számú makroszkopkus változó jellemz a rendszerünk sejtet, hogy sokféle mkroszkopkus elrendezdés lesz konzsztens a makroszkopkus változók értékével. Gbbs javaslata: cseréljük k a vzsgált aktuáls (és valós) rendszerünk olyan rendszerek sokaságára, melyek tartalmazzák a molekulárs változók összes lehetséges eloszlását, úgy, hogy a makroszkopkus változók értékével konzsztens legyen. Ez egy mentáls alkotás. Neve sokaság. Az átlagolást a sokságokra végezzük. Posztuláljuk, hogy az aktuáls fzka rendszerre végzett dátlag egyenl a sokaság átlaggal. XVII/

2 MATEMATIKAI EMLÉKEZTET: SOKASÁG ÁTLAGOK SZÁMÍTÁSA Valószínség változó: az elem események halmazán (eseménytéren) értelmezett függvény, melynél mnden egyes elem eseményhez hozzárendelünk egy valós számot. A valószínség változók lehetnek dszkrétek és folytonosak s. Dszkrét változók. Annak a valószínsége, hogy egy tulajdonság (valószínség változó) egy adott értéket felvesz a sokaságban: n P n ahol n a sokaság elemenek száma, n pedg azon elemek száma, amelyek felveszk a megkívánt értéket. 2. P tulajdonsága : 0 P 3. Egymást kölcsönösen kzáró tulajdonságok: P _ vagy _ j P + Pj 4. Normalzácó: ha P f (), azaz P af (), akkor Ebbl következk: af ( ) a f ( ) P P f ( ) f ( ) 5. Csatolt valószínségek, P, j 6. Korrelált és nem-korrelált mennységek. Korrelált két mennység, ha az egyk valószínsége befolyásolja a máskét. Ellenkez esetben nem-korrelált mennységekrl beszélünk. 7. Sokaság átlagok g g n tagok (szummázás a sokaság mnden tagjára) XVII/2

3 g n g vagy g P g n (szummázás a sokaság mnden azonos eredményt adó tagjára) Varanca: δ g 2 P 2 2 ( g g ) g g 2 Folytonos változók. Annak a valószínsége, hogy egy tulajdonság (valószínség változó), mely folytonos értékeket vehet fel, egy x és x+dx nfntezmáls ntervallumba es értéket vesz fel a sokaságban: P ( x, x + dx) f ( x) dx Az f(x) függvényt a tulajdonság (valószínség változó) valószínség srségfüggvényének nevezzük. 2. Annak a valószínsége, hogy egy tulajdonság (valószínség változó), mely folytonos értékeket vehet fel, egy x és x 2 véges ntervallumba es értéket felvesz a sokaságban: 3. Normalzácó: P ( x, x2 ) x 2 x f ( x) dx f ( x) dx 4. Sokaság átlagok g(x) tulajdonságra Ha g(x) x g g( x) f ( x) dx x xf ( x) dx XVII/3

4 AZ ELSZIGETELT RENDSZER SOKASÁGA: MIKROKANONIKUS SOKASÁG Makroszkopkus smeretek a rendszerrl: N, V, E állandó Els feladat: N és V smeretében a rendszer Schrödnger egyenletének megoldása E értékeket szolgáltat. Ismeretünk a rendszerrl: E rendszer konstans Tehát: a sokaság mnden tagjának olyan állapotban kell lenne, amelyre: Hogyan súlyozzuk a sokaság tagjat: E E rendszer P P (E ) A rendszer megvalósulásának valószínsége csak az energájától függjön, azonos energához azonos valószínség tartozzon! A sokaság tagja olyan kvantumállapotban vannak, melyek azonos energájúak, degeneráltak. Ha az állapot degeneráltsága W, akkor ez a W darab állapot reprezentálja a mkrokanonkus sokaságot úgy, hogy mnden állapotnak azonos a valószínsége. P a Azaz: W P W a Wa a/w XVII/4

5 A mkrokanonkus sokaság valószínség eloszlása és a degenerácó energafüggése ÁBRA: Andrews XVII/5

6 TERMIKUS EGYENSÚLYI RENDSZER SOKASÁGA: KANONIKUS SOKASÁG Makroszkopkus smeretek a rendszerrl: N, V, T állandó A vzsgált objektum: zárt termodnamka rendszer termkus egyensúlyban (datermkus fal) egy htartállyal. Fontos: a rendszer energája nem állandó, htartálytól vehet fel, és a htartálynak adhat át energát. A rendszer energájának várható értéke lesz állandó, e körül fog fluktuáln az energa! Tovább használjuk a mkrokanonkus sokaságnál megsejtett alapvet posztulátumunkat: P P (E ) A rendszer (és így a sokaság mnden elemének) energája felírható kcsny energa hozzájárulások összegeként: E ε + ε + ε j ε j Ebbl a valószínség: P ( ε + ε +...) ε P Hogyan egyszersíthet a kfejezés? Korreláltak a valószínség változók, vagy függetlenek? Ez utóbb esetben: P ( ε + ε + ε + ) p ( ε ) p ( ε ) p ( )... P ε 3 A mkrokanonkus esetben a kcsny energa hozzájárulások nem lehettek függetlenek, hszen az összenergának változatlannak kellett lenne. Itt azonban nncs lyen megkötés, gaz a fent egyenlet! ( ε + ε + ε +...) ln p ( ε ) + ln p ( ε ) + ln p ( ε )... ln P Fejtsük az egyenlet bal oldalát Taylor-sorba: XVII/6

7 ( ε + ε + ε +...) a + a ( ε + ε + ε +...) + a ( ε + ε + ε ) 2 ln + P Azonban, ahhoz, hogy a valószínségek szétessenek ndvduáls valószínségek szorzatára, az kell, hogy ne legyenek kereszttagok az energában. Ezért, az elz egyenletben a négyzetes és magasabb rend tagok koeffcensenek nullának kell lenne! Vagys: ( ε + ε +...) ln P a + a 2 ε Vagy tömörítve: A normalzácó: [ a0 + a ( ε+ ε 2 + ε3+...)] a0 a E P e e e ahol P ae βe, e a 0 a és β a P a a β e e P e βe βe e βe Q E e Q Ez utóbb egyenletek adják a kanonkus sokaság valószínség eloszlását. A e βe tagok összege a sokaság elemere adja Q-t, amt a sokaság állapotösszegének (partícós függvényének) nevezünk. M a? Ks türelem! βe XVII/7

8 XVII/8 A kanonkus sokaság valószínség eloszlása: ÁBRA: Andrews M lesz az energa várható értéke? A valószínség eloszlásból könny megadn: E E e E e E β β Könnyen belátható, hogy ez egy dfferencálhányadossal s kfejezhet: N V Q E, ln β

9 Adott E energával rendelkez állapotok eloszlása nagyon élesen az energa várható értékének környékére esk! ÁBRA: Andrews Oka a kvantumállapotok degenerácója! XVII/9

10 AZ ENTRÓPIA STATISZTIKUS TERMODINAMIKAI INTERPRETÁCIÓJA Termodnamka I. ftétele: du dq + dw Vzsgáljuk meg a munka hatását a sokaság egy elemén, mely E kvantumállapotban van: dw de Az nfntezmáls munka lehet valamely kényszer, például az állandó térfogat, kcsny (de a sokaság mnden elemére azonos) megváltoztatása. A sokaság elemere, természetesen dw és így de más és más lesz. Az átlag azonban számítható: dw P de Azt s tudjuk, hogy az átlagenerga ks megváltozása E P E, PdE + d E EdP. Mvel az átlagos energa ks megváltozását az I. ftétel bels energájának megváltozásával azonosíthatjuk dq E dp Hogy közelebb jussunk az entrópához egy ks matek: vzsgáljuk meg a P ln P kfejezés (állapotfüggvény, csak N, V és T függvénye) nfntezmáls megváltozását: XVII/0

11 d Mvel a jobb oldal utolsó tagja nulla P ln P ln P dp + d Egyensúly rendszereket feltételezve P P ln ln P dp. dp ezért βe βe e e P βe e Q, ln P β E ln Q. Ez utóbb egyenletet használva d P ln P β EdP lnq dp, azaz d P ln P β E dp Ebbl kapjuk az nfntezmáls ks hre vonatkozó összefüggést: d P ln P EdP β dq. Egyenletünk azt jelz, hogy a β dq mennység állapotfüggvény ks megváltozása! Reverzbls folyamatokra a TD II. ftétele szernt: ds dq T XVII/

12 Ezért -nak fordítottan arányosnak kell lenne a TD- hmérséklettel, az arányosság tényez k, a Boltzmann-állandó: β kt Az összefüggés segítségével defnáljuk a statsztkus mechanka entrópa megváltozását: d S kd P ln P Így a statsztkus mechanka entrópa: S k P ln P k ln P Mnd a mkrokanonkus, mnd a kanonkus sokaságra láttuk, hogy P, W ahol W a degeneráltság foka a mkrokanonkus sokaságban, az állapotok száma a kanonkus sokaságban, melyek gyakorlatlag mndegyke az átlagenerga körül csoportosul. Ezért S k ln kw ln k ln. W W W W W Ezzel eljutottunk az entrópa Boltzmann-féle statsztkus mechanka nterpretácójához: S k lnw Szavakban: az állandó N, V, E, vagy N, V, T állapotjelzkkel jellemzett makroszkopkus állapotok (makroállapotok) entrópája a fent makroszkopkus állapotokkal konzsztens mkroszkopkus állapotok (mkroállapotok) számával, W, hozható kapcsolatba a Boltzmann-féle értelmezés szernt. XVII/2

13 A STATISZTIKUS TERMODINAMIKAI ENTRÓPIA TULAJDONSÁGAI Termkus entrópa vs. konfgurácós entrópa A rendszer által elérhet mkroállapotok számának növelése növel a rendszer entrópáját. Két esetet szokás praktkusan megkülönböztetn:. A rendszer energájának (hmérsékletének) növelésével n a hozzáférhet állapotok száma, n az entrópa. Ez a termkus entrópa. 2. A rendszer térfogatának megnövelésével (állandó energa, vagy hmérséklet mellett), szntén n a hozzáférhet állapotok száma, hszen új állapotok válnak hozzáférhetvé, az eredet ksebb térfogat állapotahoz képest. Ez a konfgurácós entrópa. Makroszkopkus példa: az entrópa megváltozása deáls gáz esetén (T, V )(T 2, V 2 ) változásra (ház feladat volt): S( T T2 V2 CV p T2 2, V2 ) S( T, V ) + dt + dv S( T, V ) + Cv ln + nrln T T T T V V V V 2 Az entrópa megváltozásáért felels els jobb oldal tag a termkus entrópa megváltozása, az utolsó tag a konfgurácós entrópa változása. XVII/3

14 Az entrópa: a rendezetlenség mértéke Mvel a hozzáférhet mkroállapotok számának növelését plauzbls a rendszer rendezetlenségének növelésével összekapcsoln, az entrópát gyakran a rendezetlenség mértékeként szokás nterpretáln. Ez az nterpretácó gyakran segít fzka folyamatok entrópa változása eljelének megállapításában. Vegyük példaként a fázsátalakulásokat (fagyás, párolgás, szublmácó): Fagyás rendezetlenség csökken trs SS m,szlárd -S m,folyékony <0 Olvadás rendezetlenség n trs S>0 Párolgás rendezetlenség n trs S>0 Az entrópa megváltozásáért a fent fázsátalakulásokban a konfgurácós rész megváltozása a felels. A fázsátalakulás hmérsékleten a fázsátalakulás reverzbls folyamat, így a folyamatot kísér molárs entrópa változás: trs S trs H /T trs. Most már statsztkus termodnamka megfontolások alapján s beláthatjuk, hogy a fagyás, kondenzálódás exoterm folyamatok, az olvadás, párolgás endoterm folyamatok. A rendezetlenség fogalmának használatával a Trouton szabály (számos folyadékra a standard párolgás entrópa változások közel azonosak) eredete s érthetbbé válk. Párolgáskor sok folyadék esetén közel azonos mérték rendezetlenség növekedés következk be. Ennek oka, hogy hasonló jelleg folyadékok és gzök entrópája hasonló. A Trouton szabálytól azok a folyadékok mutatnak jelents eltérést, melyek valamely rendezettséget bztosító kölcsönhatás jóvoltából alacsonyabb entrópával rendelkeznek folyadékfázsban, azokhoz a folyadékokhoz képest, melyekben gyengék az lyen kölcsönhatások. Így például a víz párolgás entrópája hdrogénkötéses rendszere matt jóval magasabb (~ 09 JK - mol - ) a Trouton szabály által jósolt értéktl (~ 85 JK - mol - ). XVII/4

15 Az entrópa: a TD. III ftétele. Tökéletes krstályokra, kvantummechanka modell számítások alapján 0 Ken, W. A Boltzmann-féle statsztkus értelmezés szernt, ezért az entrópa 0 K-en, S(0 K), nulla tökéletes krstályokra. Nézzük meg a problémát a mérések pontosságának oldaláról: mlyen tökéletlenséget észlelünk kísérletleg? Legyen az entrópa mérésének pontatlansága 0-5 JK R log J K k lnw N 0 W logw 5 23 ( 0 J K )( mol ) ( 8.34J K mol ) 0 8 Ebbl W 8 0 0! Iszonytatóan nagy számú elérhet állapotot jelent! Mt jelent? Nem s feltétlenül szükséges elérn a tökéletes krstály állapotot ahhoz, hogy nulla entrópát mérjünk 0 K-en! A legtöbb krstályra a 0 K megközelítésével elérhet energaállapotok degenerácójának foka jóval alacsonyabb a fent számnál. Ezért kjelenthetjük a Planck-féle htétel fnomított formáját: Ahogy T0, bármely reverzbls folyamat entrópa változása zérushoz tart, amennyben a kndulás anyagok és a végtermékek krstályok, amelyek 0 degenerácójának foka ksebb mnt W 0! 8 XVII/5

16 Az entrópa és az rreverzbltás Legyen t 0 dpllanatban rendszerünk W 0 lehetséges mkroszkopkus állapottal jellemezhet, melyek konzsztensek a rendszerrl smert makroszkopkus nformácónkkal. Ilyen kndulás állapot például: N darab A atom egy V térfogatú, elszgetelt edény fele térfogatát tölt be (elválasztva egy dabatkus fallal a légüres térfogattól). Ezzel a makroállapottal W 0 mkroállapot konzsztens. A kényszer eltávolítása után a hozzáférhet állapotok száma megn, a gáz ktölt a teljes edényt. Irreverzbls folyamatban általában: W kndulás <W végs, azaz a rendszer által hozzáférhet állapotok száma rreverzbls esetben n. Reverzbls változás esetén: W kndulás W végs, Irreverzbls (spontán lejátszódó) folyamatok megfordítottja: W kndulás >W végs. Ez azonban nem jelent ezen folyamatok lejátszódásának abszolút lehetetlenségét, ugyans a fluktuácók elvben vsszafordíthatják a spontán lejátszódó folyamatokat. Ennek valószínsége azonban elenyészen csekély, gyakorlatlag nulla! Az entrópa: alacsony hmérsékletek elérése A technka neve: adabatkus demágnesezés. Paramágneses anyagoknak azon tulajdonságát használja k, hogy mágneses térben a spnek rendezettebbek, a rendszer entrópája csökken. Részletek: Atkns. XVII/6

17 Entrópa: gondolatébreszt gondolatok P. W. Atkns: Teremtés, Gondolat, 987 A változás oka: az entrópa rreverzbls növekedése Az entrópa növekedésének statsztkus értelmezése Kéma reakcó XVII/7

18 Kéma reakcó és az entrópa Az anyag önszervezdése és az entrópa XVII/8

19 Az érzékelés és az entrópa XVII/9

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006 ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA

1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA 1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA.1. Egyensúly termodnamka.1.1. Alapfogalmak, alapjelenségek A termodnamka a klasszkus értelezés szernt a hőserével együtt járó kölsönhatások tudománya. Gőzgép

Részletesebben

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.

Részletesebben

számot a Z felosztáshoz tartozó integrálközelít összegnek nevezzük. Jelöljük Z-vel a s i -számok leghosszabbikát.

számot a Z felosztáshoz tartozó integrálközelít összegnek nevezzük. Jelöljük Z-vel a s i -számok leghosszabbikát. MEMIKI KÖZBEEÉ: INERÁLÁ I. Bronstejn-zemengyajev: Matematikai Zsebkönyv Elsfajú görbementi integrálok Legyen K szakaszonként sima görbedarab, kezdontja, végontja B és uf(x,y) a K görbét tartalmazó tartományban

Részletesebben

Hajdú Angéla

Hajdú Angéla 2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

Fizika II. (Termosztatika, termodinamika)

Fizika II. (Termosztatika, termodinamika) Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

OKTATÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alábbi témáinak elsajátításához

OKTATÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alábbi témáinak elsajátításához OKAÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alább témának elsajátításához 5 Márcus 5 ermodnamka. ermodnamka rendszer, főtételek. 6 Márcus 2 Egyensúly és változás. Knetka. Entrópa és mkroszkópkus értelmezése.

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek)

Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek) Kollod rendszerek defnícója, osztályozása, jellemzése. olekulárs kölcsönhatások. Határfelülelet jelenségek (flud határfelületek) Kollodka helye Bológa Kollodkéma Fzka kéma bokéma Szerves kéma Fzka A kéma

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben

A természetes folyamatok iránya (a folyamatok spontaneitása)

A természetes folyamatok iránya (a folyamatok spontaneitása) A természetes folyamatok iránya (a folyamatok spontaneitása) H 2 +O 2 H 2 O 2 2 2 gázok kitöltik a rendelkezésükre álló teret meleg tárgy lehűl Rendezett Rendezetlen? az energetikailag (I. főtételnek nem

Részletesebben

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik: Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

Elegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés

Elegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés Elegyek Fzka kéma előadások 5. Turány Tamás ELTE Kéma Intézet Elegyedés DEF elegyek: makroszkokusan homogén, többkomonensű rendszerek. Nemreaktív elegyben kéma reakcó nncs, de szerkezet változás lehet!

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Mőanyagok felhasználása - szerkezeti. Mőanyagok felhasználása - technológiai. A faiparban felhasznált polimerek

Mőanyagok felhasználása - szerkezeti. Mőanyagok felhasználása - technológiai. A faiparban felhasznált polimerek Mőanyagok felhasználása - szerkezet Rohamos növekedés Széleskörő alkalmazás Különleges vselkedés Mőanyag: Egy vagy több, fıleg mesterségesen elıállított, polmerbıl és (különbözı célú) adalékanyagokból

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Hitelderivatívák árazása sztochasztikus volatilitás modellekkel

Hitelderivatívák árazása sztochasztikus volatilitás modellekkel Eötvös Loránd Tudományegyetem Természettudomány Kar Budapest Corvnus Egyetem Közgazdaságtudomány Kar Hteldervatívák árazása sztochasztkus volatltás modellekkel Bztosítás és pénzügy matematka MSc Kvanttatív

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

Gázok. Boyle-Mariotte törvény. EdmeMariotte ( ) Robert Boyle ( ) Adott mennyiségű ideális gázra: pv=állandó. két állapotra: p 1 V 1

Gázok. Boyle-Mariotte törvény. EdmeMariotte ( ) Robert Boyle ( ) Adott mennyiségű ideális gázra: pv=állandó. két állapotra: p 1 V 1 Boyle-Marotte törény Gázok Nyomás / atm Robert Boyle (167 1691) EdmeMarotte (160 1684) Adott mennységű deáls gázra: pvállandó két állapotra: Térfogat p 1 V 1 p V http://www.unzar.es/lfnae/luzon/cdr3/termodnamca.htm

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Rozner Bence Péter. Diszkrét matematikai modellek és néhány alkalmazásuk a természettudományokban. Eötvös Loránd Tudományegyetem

Rozner Bence Péter. Diszkrét matematikai modellek és néhány alkalmazásuk a természettudományokban. Eötvös Loránd Tudományegyetem Eötvös Loránd Tudományegyetem Természettudomány Kar Rozner Bence Péter Dszkrét matematka modellek és néhány alkalmazásuk a természettudományokban BSc Szakdolgozat Témavezet : Zemplén András egyetem docens

Részletesebben

Minek kell a matematika? (bevezetés)

Minek kell a matematika? (bevezetés) Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...

Részletesebben

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet Hálózat gazdaságtan jegyzet Kss Károly Mlós, adcs Judt, Nagy Dávd Krsztán Pannon Egyetem Közgazdaságtan Tanszé 0. EVEZETÉS... 3 I. HÁLÓZTOS JVK KERESLETOLDLI JELLEMZŐI HÁLÓZTI EXTERNÁLIÁK ÉS KÖVETKEZMÉNYEIK...

Részletesebben

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek Szennyvíztsztítás technológa számítások és vízmnőség értékelés módszerek Segédlet a Szennyvíztsztítás c. tantárgy gyakorlat foglalkozásahoz Dr. Takács János ME, Eljárástechnka Tsz. 00. BEVEZETÉS Áldjon,

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n) ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Termodinamikai állapot függvények és a mólhő kapcsolata

Termodinamikai állapot függvények és a mólhő kapcsolata ermdnamka állapt függvények és a mólhő kapslata A mólhő mnd állandó nymásn, mnd állandó térfgatn könnyen mérhető. A különböző energetka és mdellszámításkhz vsznt az állapt függvényeket - a belső energát,

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet II. Rákócz Ferenc Kárátalja Magyar Fıskola Patak Gábor STATISZTIKA I. Jegyzet 23 Tartalomjegyzék evezetés... 3 I. Statsztka alafogalmak... 4. Statsztka kalakulása, tudománytörténet összefüggése... 4.2

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

8. Programozási tételek felsoroló típusokra

8. Programozási tételek felsoroló típusokra 8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy

Részletesebben

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán): F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Ferenczy György Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biokémiai folyamatok - Ligandum-fehérje kötődés

Részletesebben

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F 10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus

Részletesebben

Eseményvezérelt szimuláció

Eseményvezérelt szimuláció Hálózat szmulácós technkák (BMEVITTD094/2005) október 3. Vdács Attla Dang Dnh Trang Távközlés és Médanformatka Tanszék Budapest Mszak és Gazdaságtudomány Egyetem Eseményvezérelt szmulácó DES Dscrete-Event

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

TARTALOM. 8. Elegyek és oldatok 2

TARTALOM. 8. Elegyek és oldatok 2 TARTALOM 8. Elegyek és oldatok 8.. A kéma otencál 3 8.. A fázsegyensúlyok feltétele 8 8.3. A Gbbs-féle fázsszabály 0 8.4. Az elegykéződésre jellemző mennységek 3 8.5. Parcáls molárs mennységek 7 8.6. A

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:

Részletesebben

Felhasznált irodalom: Puskás Ágnes Ultrahang Hanglencsék

Felhasznált irodalom: Puskás Ágnes Ultrahang Hanglencsék A használt szennyezőanyagok esetén a meghatározások alapján megállapítható, hogy ezek a kataláz enzm aktvtását csökkentk, ezzel magyarázható, hogy a nagyobb onkoncentrácók esetén nagyobb mennységű hdrogén-peroxd

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Környezetvédelmi analitika

Környezetvédelmi analitika Az anyag a TÁMOP-4...A/- /--89 téma keretében készült a Pannon Egyetemen. Környezetmérnök Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXXIV. kötet Környezetvédelm analtka Rezgés spektroszkópa Blles

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv:

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv: TERMODINAMIKAI EGYENSÚLYOK heterogén és homogén HETEROGÉN EGYENSÚLYOK: - fázisegyensúly vezérlelv: Gibbs-féle fázisszabály: Sz = K + 2 F Sz: a rendszer szabadsági fokainak megfelel számú intenzív TD-i

Részletesebben