KLASSZIKUS TERMODINAMIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KLASSZIKUS TERMODINAMIKA"

Átírás

1 Klasszkus termodnamka KLASSZIKUS ERMODINAMIKA Póta György: Modern fzka kéma (Dgtáls ankönyvtár, 2013), 1.1 fejezet P. W. Atkns: Fzka kéma I. (ankönyvkadó, Budapest, 2002) Amkor először tanulod, egyáltalán nem érted meg. Amkor másodjára tanulod, azt hszed, érted, legfeljebb egy-két csekélység kvételével. Amkor harmadszorra tanulod, már tudod, hogy mégsem érted, de addgra már annyra hozzászoktál ehhez, hogy többé nem s zavar. Perre Perrot (1939 ) franca fzkus Az első főtétel Az energamegmaradás tételének általános érvényű megfogalmazása. Kmondásához a belső energa, munka és hő fogalmát kell átsmételnünk. Belső energa, U A termodnamka rendszert alkotó részecskék összes mozgás és helyzet (potencáls, kölcsönhatás) energája. A kéma termodnamkában megállapodás szernt nem számít bele a rendszer, mnt egész helyzet és mozgás energája. A belső energát rendszernt a térfogat, a hőmérséklet és az anyagmennységek függvényének tekntjük: U V,,n,n,...,n ) ( 1 2 k Extenzív sajátság és állapotfüggvény. Energaközlés módok hő, : a részecskék között mkroszkopkus munkavégzés, energaátadás; térfogat munka: -p ex dv (ahol p ex a külső nyomás, dv pedg az elem térfogatváltozás); egyéb munka, δw e : mnden energaközlés vagy elvétel, am nem hő és nem térfogat munka. Az első főtétel Zárt rendszerben (ahol nncs anyagcsere a környezettel): du pexdv δwe Nyílt rendszerben, kvázsztatkus folyamatokkal, ha nncs egyéb (hasznos) munka: du H dn Σ: a rendszer és környezet között anyagáramláshoz kapcsolódk. H (parcáls molárs entalpa) fzka tartalma: anyag be- és káramlásakor mndg van valamlyen nyomás, amely ellen az áramlásnak munkát kell végezne, s e munka hozzáadódk az áram által szállított belső energához. 1

2 Entalpa, H Hőkapactás, C Defnícója: H U pv Rendszernt a nyomás, a hőmérséklet és az anyagmennységek függvényének tekntjük: H p,,n,n,...,n ) ( 1 2 k Extenzív sajátság és állapotfüggvény. Ha a vzsgált folyamatban az elem hőmennység d hőmérsékletváltozást okoz, akkor a folyamat hőkapactása: C d A hőkapactás az a hőmennység, amely a rendszer hőmérsékletét egy fokkal változtatja meg. (A dfferencáls defnícó azért szükséges, mert a hőkapactás függhet a hőmérséklettől.) Állandó térfogatú (zochor, zoszter) folyamatban: U CV d V,n Állandó nyomású (zobár) folyamatban: H C p d p,n Irreverzíbltás A gyakorlatban lejátszódó számos folyamat megfgyelése nyomán kalakult az rreverzíbltás fogalma. Az rreverzíbls (megfordíthatatlan) termodnamka folyamatoknál a rendszer kezdet állapota nem állítható vssza anélkül, hogy a környezetben ne maradna vssza valamlyen változás. A reverzíbls (megfordítható) folyamat a kevéssé rreverzíbls folyamatok elv határesete. Reverzíbls folyamat a valóságban nncs ugyan, fogalma mégs hasznos, mert segítségével a tényleges folyamatokra nézve hasznos korlátok vezethetők le. Másodk főtétel öbbféle, egymással kapcsolatban levő, de nem feltétlenül egyenértékű megfogalmazása smeretes: Nem létezk olyan hőerőgép, amelynek egyetlen hőtartálya volna, s ennek hűlése árán cklkusan munkát tudna végezn. (ehát kell legalább két hőtartály.) Hő önként csak a melegebb helyről áramlk a hdegebb felé. Az adott körülmények között ténylegesen lejátszódó természet folyamatok mnd rreverzíblsek. Entrópa, S Defnícója: rev ahol rev a reverzíbls folyamat elem szakaszán felvett vagy leadott hő, pedg az e szakaszon érvényes hőmérséklet. Az S entrópa állapotfüggvény és extenzív sajátság. Zárt rendszerben lejátszódó rreverzíbls folyamatokra érvényes a Clausus-egyenlőtlenség: ahol az entrópa elem megváltozása, pedg a folyamatban ténylegesen felvett vagy leadott elem hő. Entrópa, S Az rreverzíbls termodnamka felé mutató lépés, ha a entrópaváltozást külső (d k S) és belső (d b S) összetevőre bontjuk: d k S d S d k S a környezettel kcserélt hő matt lép fel: d k S d b S a rendszer belső rreverzíbltásának, a benne lejátszódó rreverzíbls folyamatoknak (pl. nyomás-, hőmérséklet-, koncentrácókegyenlítődés, kéma reakcó) a következménye. Irreverzíbls folyamatok esetén poztív: dbs dks 0 b 2

3 Szabadenerga (Helmholtz-függvény), F Defnícója: ahol U a belső energa, S az entrópa, pedg a hőmérséklet. A szabadenerga extenzív sajátság és állapotfüggvény. A szabadenerga megváltozása zárt rendszerben egyrészt: másrészt (egyéb vagy hasznos munka nélkül): A két egyenletből: F U S du Sd Sd 1 p du dv Szabadenerga (Helmholtz-függvény), F Nyílt rendszerben egyrészt: másrészt: du Sd Sd ahol μ az -edk anyagfajta kéma potencálja. Ezekből az egyenletekből: dn 1 p 1 du dv dn Szabadenerga (Helmholtz-függvény), F Szabadentalpa (Gbbs-függvény), G Zárt rendszer Nyílt rendszer Defnícója: G H S du Sd Sd 1 p du dv Állandó V és esetén: δw e Ha a folyamat munkát termel (δw e < 0): δw e Ha nncs munka: 0 du Sd Sd dn 1 p 1 du dv dn A szabadentalpa extenzív sajátság és állapotfüggvény. Szabadentalpa (Gbbs-függvény), G Harmadk főtétel Zárt rendszer dh Sd Vdp Sd 1 V dh dp Állandó p és esetén: δw e Ha a folyamat munkát termel (δw e < 0): δw e Ha nncs munka: 0 Nyílt rendszer dh Sd Vdp Sd dn 1 V 1 dh dp dn A harmadk főtétel egyk megfogalmazása szernt az abszolút zérus fokon a tszta, tökéletesen krstályos anyagok entrópája nulla. Ez összhangban áll Boltzmann formulájával. Az lyen anyagokban ugyans létezk egy határozott legksebb energasznt és az abszolút zérus fokon mnden részecske ezen az energasznten helyezkedk el. Ennek az állapotnak a termodnamka valószínűsége W = 1, így S = klnw = 0. Következménye, hogy lehetővé tesz az entrópa abszolút értékének meghatározását, ha az ntegrálás ntervallumában nncs fázsváltozás: C S( V, ) 0 0 V d 3

4 Harmadk főtétel A harmadk főtétel egy másk lehetséges megfogalmazása az, hogy az abszolút zérus fok elérhetetlen. Ennek megértéséhez úgy s eljuthatunk, hogy fgyelembe vesszük: a szlárd anyagok hőkapactása a hőmérséklet csökkentésével nullára csökken. A rendszer hűtésekor tehát a kísérlet hba révén beszökő kcsny hő s órás hőmérsékletnövekedést okoz az abszolút zérus fok környezetében. Fontos derváltak Gbbs-Helmholtz-egyenlet: G H 2 p, n Szabadenerga ( Sd) derváltja: F F p S V,n V,n Szabadentalpa ( Vdp Sd) derváltja: G p,n V G S p,n Parcáls molárs mennységek etszőleges X extenzív mennység parcáls molárs X értékén a következő parcáls derváltat értjük: X X n p,,n j Beszélhetünk parcáls molárs térfogatról, belső energáról, entalpáról, entrópáról, szabadenenergáról és szabadentalpáról. Parcáls molárs mennységek A parcáls molárs térfogat és entalpa deáls elegyben rendre megegyezk a tszta összetevő molárs térfogatával és entalpájával. A parcáls molárs entrópa és parcáls molárs szabadentalpa (azaz kéma potencál, μ) esetében az egyenlőség deáls elegyben sem áll fenn. Kéma potencál, μ Defnícója: G G n p,,n j öbbkomponensű és többfázsú rendszerben egy adott anyagfajta akkor van egyensúlyban, ha kéma potencálja mnden fázsban ugyanaz. Ha ez nem teljesül, az adott anyagfajta az alacsonyabb kéma potencálú fázsba gyekszk átmenn. A tszta anyag kéma potencálján amelyet az egységes szemléletmód kedvéért értelmezünk a molárs szabadentalpáját értjük. Belátható, hogy: U H F n n n V,S,n j p,s,n j V,, n j A klasszkus termodnamka krtkája A klasszkus termodnamka szokásos prezentácó az dőt nem tartalmazzák, vszont építenek a reverzíbltás fogalmára. A reverzíbltás fogalma önmagában s sok problémát vet fel. Mértékadó szerzők szernt (pl. Fényes Imre) a reverzíbltással kapcsolatos fogalm kérdések elkerülhetők, ha a klasszkus termodnamkát nem a hőből és munkából kndulva alapozzuk meg. A kéma termodnamkában azonban épp az e két mennységből knduló építkezés a jellemző. 4

5 A klasszkus termodnamka krtkája A fzkában meghonosodott értelemben nncs gaz dnamkáról szó, az állapotok dőtől függetlenek, sztatkusak, az állapotokat összekötő reverzíbls változások, folyamatok pedg nem valóságosak, hanem nkább elképzelt utak az állapotváltozók terében. A klasszkus termodnamkában nncsenek specáls dnamka törvények, amkor a formalzmust mégs dőbelnek tekntett folyamatokra alkalmazzuk, mndg feltételezzük, hogy az dőben változó rendszerre, folyamatra a sztatkus esetben megsmert formulák alkalmazhatók. A klasszkus termodnamka krtkája Az nfntézmáls mennységek (du,, d, stb.) matematkalag s kfogástalan használata olyan elmélet megalapozást gényel, amelyet a matematkusok csak az 1970-es évekre fejlesztettek k (nemstandard analízs). Az anyagmennységet folytonos változónak tekntjük (pl. dn-nek csak így van értelme), holott a kéma részecskealapú szemléletet tart helyesnek, ezért a kfejezések nem használhatók néhány molekulából/atomból/onból álló rendszerekben. A kéma potencált és a koncentrácót (aktvtást) összekötő, gen elterjedten használt képletek a koncentrácó logartmusát tartalmazzák, ezért egy komponens távolléte (nulla koncentrácó) elv értelmezés és numerkus problémákhoz vezet. A klasszkus termodnamka krtkája A klasszkus termodnamka továbbfejlesztését célzó elméletek többé-kevésbé az említett hányosságokat gyekeztek vagy gyekeznek kküszöböln, egyszer a logka-matematka szerkezetre másszor pedg a fzka tartalomra összpontosítva. RACIONÁLIS ERMODINAMIKA, SZOCHASZIKUS (SAISZIKUS) ERMODINAMIKA IRREVERZÍBILIS FOLYAMAOK ERMODINAMIKÁJA RACIONÁLIS ERMODINAMIKA Póta György: Modern fzka kéma (Dgtáls ankönyvtár, 2013), 1.2 fejezet Raconáls termodnamka Alapját az a felsmerés képezte, hogy a klasszkus termodnamka fogalm és matematka pontossága messze elmarad az egyéb fzka dszcplnákétól, s ezen olyan módon lehet segíten, ha vsszatérünk az alapokhoz, s az egész termodnamkát mmár fogalmlag és matematkalag pontosan újra felépítjük, fgyelembe véve esetleg előremutató, de elfeledett eredményeket s. Raconáls termodnamka Clfford Ambrose ruesdell III ( ) amerka matematkus Bernard D. Coleman (1929 ) amerka fzkus Walter Noll (1925 ) német származású amerka matematkus Hazánkban Érd Péter és óth János sztochasztkus termodnamka kutatásakhoz kapcsolódva az elsők között alkalmazták és népszerűsítették a raconáls termodnamka eredményet. 5

6 Ugyanezen könyv ugyanezen olvasója azután elérkezk a termodnamkáról szóló fejezethez, ahol a axómával találja szemben magát. Elárasztják olyan szavak arzenáljával, mnt dugattyú, bojler, sűrítő, hőfürdő, rezervoár, deáls gép, tökéletes gáz, kvázsztatkus, cklkus, egyensúly közelében, zolált, vlágegyetem s azt várják a tudomány szegény dákjától, hogy ezekkel megtanuljon a hátralevő életében dobálózn, alg pontosabb retorkával, mnt a házasszony a fűszerboltban Clfford Ambrose ruesdell III Posztulátumok Első axóma: Léteznek olyan állapotok, amelyeket egyensúly állapotnak nevezünk, és amelyeket egyszerű rendszerekben makroszkopkusan egyértelműen meghatároz azok U belső energája, V térfogata, valamnt a rendszert alkotó K anyagfajta n 1, n 2, n K anyagmennysége. Posztulátumok Másodk axóma: Létezk az extenzív paramétereknek egy entrópának nevezett, S-sel jelölt függvénye, amely mnden egyensúly állapotra értelmezhető. Egy zolált összetett rendszerben adott belső kényszerfeltétel hányában az extenzív változók olyan egyensúly értékeket vesznek fel, amelyek maxmalzálják az entrópát az összes lehetséges olyan egyensúly rendszer felett, amelyben az adott belső kényszerfeltétel fennáll. Posztulátumok Harmadk axóma: Egy összetett rendszer entrópája addtív a rendszer része fölött. Az entrópa folytonos, dfferencálható, és a belső energának szgorúan monoton növekvő függvénye. Negyedk axóma: Bármely rendszer entrópája zérus abban az állapotában, amelyben a dervált értéke zérus. U S V,n j 6

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006 ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

FIZIKAI KÉMIA IV. Lente Gábor

FIZIKAI KÉMIA IV. Lente Gábor FIZIKAI KÉMIA I. Lente Gábor Ajánlott iroalom: P. W. Atkins: Fizikai kémia I-III. (ankönyvkiaó, Buaest, 2002) Keszei Ernő: Bevezetés a kémiai termoinamikába (htt://keszei.chem.elte.hu/fizkem1/ankonyv.f)

Részletesebben

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része I. A munka ogalma, térogat és egyéb (hasznos) munka. II. A hő ogalma. III. A belső energa denícója és molekulárs értelmezése. I. A termodnamka első őtételének néhány megogalmazása.. Az entalpa ogalma,

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA egyensúlyok és transzportjelenségek legáltalánosabb tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com

Részletesebben

Elegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés

Elegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés Elegyek Fzka kéma előadások 5. Turány Tamás ELTE Kéma Intézet Elegyedés DEF elegyek: makroszkokusan homogén, többkomonensű rendszerek. Nemreaktív elegyben kéma reakcó nncs, de szerkezet változás lehet!

Részletesebben

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része

rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része I. A munka ogalma, térogat és egyéb (hasznos) munka. II. A hő ogalma. III. A belső energa denícója és molekulárs értelmezése. I. A termodnamka első őtételének néhány megogalmazása.. Az entalpa ogalma,

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

Alapvető elektrokémiai definíciók

Alapvető elektrokémiai definíciók Alapvető elektrokéma defnícók Az elektrokéma cella Elektródnak nevezünk egy onvezető fázssal (másodfajú vezető, pl. egy elektroltoldat, elektroltolvadék) érntkező elektronvezetőt (elsőfajú vezető, pl.

Részletesebben

OKTATÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alábbi témáinak elsajátításához

OKTATÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alábbi témáinak elsajátításához OKAÁSI SEGÉDANYAG AZ ORVOSI BIOFIZIKA II alább témának elsajátításához 5 Márcus 5 ermodnamka. ermodnamka rendszer, főtételek. 6 Márcus 2 Egyensúly és változás. Knetka. Entrópa és mkroszkópkus értelmezése.

Részletesebben

II. AZ ENTRÓPIA TERMODINAMIKAI ÉS STATISZTIKUS DEFINÍCIÓJA II. AZ ENTRÓPIA TERMODINAMIKAI ÉS STATISZTIKUS DEFINÍCIÓJA

II. AZ ENTRÓPIA TERMODINAMIKAI ÉS STATISZTIKUS DEFINÍCIÓJA II. AZ ENTRÓPIA TERMODINAMIKAI ÉS STATISZTIKUS DEFINÍCIÓJA A ERMODINAMIKA MÁSODIK FŐÉELE I. A II. őtétel néány megogalmazása. II. Az entrópa termodnamka és statsztkus denícója. Entrópatétel. III. A rendszer, a környezet és ezek együttes entrópájának változása

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. TERMODINAMIKA az egyensúlyok és folyamatok tudománya

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. TERMODINAMIKA az egyensúlyok és folyamatok tudománya SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA az egyensúlyok és folyamatok tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com U = Q+

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA

1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA 1. AZ ENERGIAÁTALAKULÁS TÖRVÉNYEI, BIOENERGETIKA.1. Egyensúly termodnamka.1.1. Alapfogalmak, alapjelenségek A termodnamka a klasszkus értelezés szernt a hőserével együtt járó kölsönhatások tudománya. Gőzgép

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA. A termodinamika alapproblémája

A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA. A termodinamika alapproblémája A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA A termodinamika alapproblémája Első észrevétel: U, V és n meghatározza a rendszer egyensúlyi állapotát. Mi történik, ha változás történik a rendszerben? Mi lesz

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

TARTALOM. 8. Elegyek és oldatok 2

TARTALOM. 8. Elegyek és oldatok 2 TARTALOM 8. Elegyek és oldatok 8.. A kéma otencál 3 8.. A fázsegyensúlyok feltétele 8 8.3. A Gbbs-féle fázsszabály 0 8.4. Az elegykéződésre jellemző mennységek 3 8.5. Parcáls molárs mennységek 7 8.6. A

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

Fizika II. (hőtan, termosztatika, termodinamika) előadási jegyzet Élelmiszermérnök, Biomérnök és Szőlész-borász mérnök hallgatóknak

Fizika II. (hőtan, termosztatika, termodinamika) előadási jegyzet Élelmiszermérnök, Biomérnök és Szőlész-borász mérnök hallgatóknak Fzka II. (hőtan, termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Bomérnök és Szőlész-borász mérnök hallgatóknak Dr. Frtha Ferenc Dr. Vozáry Eszter, Dr. Zana János Fzka-Automatka Tanszék 0 Tartalom

Részletesebben

KÉMIAI TERMODINAMIKA. (Grofcsik András előadásvázlata alapján)

KÉMIAI TERMODINAMIKA. (Grofcsik András előadásvázlata alapján) KÉMIAI TERMODINAMIKA (Grofcsk András előadásvázlata alaján) 1 A termodnamka rendszer fogalma, tíusa és jellemzése Rendszernek nevezzük a vlágnak azt a kézelt vagy valós határfelülettel elkülönített részét,

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió λ x ELTE II. Fzkus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzbls termodnamka Dffúzó Az átlagos szabad úthossz (λ) és az átlagos ütközés dı (τ): λ = < v> τ A N = n (A x); A σ σ π (2r)

Részletesebben

I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA A TERMODINAMIKA MÁSODIK FŐTÉTELE I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA

I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA A TERMODINAMIKA MÁSODIK FŐTÉTELE I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA I. A II. FŐTÉTEL NÉHÁNY MEGFOGALMAZÁSA A ERMODINAMIKA MÁSODIK FŐÉELE I. A II. őtétel néány megogalmazása. II. Az entrópa termodnamka és statsztkus denícója. Entrópatétel. III. A rendszer, a környezet és ezek együttes entrópájának változása

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Fizika II. (Termosztatika, termodinamika)

Fizika II. (Termosztatika, termodinamika) Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3

Részletesebben

A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI

A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI BEVEZETÉS Alkotórészek: molekulárs modell + statsztka Mért kell a statsztka? Mert 0 23 nagyságrend mkroszkopkus változója

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F 10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

2. Energodinamika értelmezése, főtételei, leírási módok

2. Energodinamika értelmezése, főtételei, leírási módok Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Általános esetben az atomok (vagy molekulák) nem függetlenek, közöttük erős

Általános esetben az atomok (vagy molekulák) nem függetlenek, közöttük erős I. BEVEZETÉS A STATISZTIKUS MÓDSZEREKBE Ebben a fejezetben konkrét példán vzsgáljuk meg, hogy mlyen jellegzetes tulajdonsága vannak a makroszkopkus testeknek statsztkus fzka szempontból. A megoldás során

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

2012/2013 tavaszi félév 8. óra

2012/2013 tavaszi félév 8. óra 2012/2013 tavasz félév 8. óra Híg oldatok törvénye Fagyáspontcsökkenés és forráspont-emelkedés, Ozmózsnyomás Molárs tömeg meghatározása kollgatív tulajdonságok segítségével Erős elektroltok kollgatív tulajdonsága

Részletesebben

IDA ELŐADÁS I. Bolgár Bence október 17.

IDA ELŐADÁS I. Bolgár Bence október 17. IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol

Részletesebben

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület

Részletesebben

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika. Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 3. előadás Előadó: Dr. Ertsey Imre Vszonyszámok Statsztka munka: adatgyűjtés, rendszerezés, összegzés, értékelés. Vszonyszámok: Két statsztka adat arányát kfejező számok, Az un. leszármaztatott

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Elméleti fizikai kémia II. Felületek termodinamikája nts/tamop/mfk/ch05.html

Elméleti fizikai kémia II. Felületek termodinamikája  nts/tamop/mfk/ch05.html Elmélet fzka kéma II Felületek termodnamkája http://www.ttk.undeb.hu/docume nts/tamop/mfk/ch05.html Az előadások tartalma 1. A (határ)felületek fogalma, termodnamka sajátsága. A felület feszültség, Laplace-nyomás,

Részletesebben

Zrínyi Miklós. Történeti visszatekintés. Történeti visszatekintés. Biofizikai termodinamika (Bio-termodinamika) Az energiamegmaradás tétele

Zrínyi Miklós. Történeti visszatekintés. Történeti visszatekintés. Biofizikai termodinamika (Bio-termodinamika) Az energiamegmaradás tétele SEMMELWEIS EGYEEM Bofzka és Sugárbológa Intézet, Nanokéma utatócsoort Bofzka termodnamka (Bo-termodnamka) Zríny Mklós egyetem tanár, az MA levelező tagja mkloszrny@gmal.com örténet vsszatekntés -A hőmérséklet

Részletesebben

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Elemi szelekciós elmélet

Elemi szelekciós elmélet Elem szelekcós elmélet Meszéna Géza 018. május 8. 1. Exponencáls növekedés, szelekcó és regulácó Állandó körülmények között egy populácó létszáma exponencálsan változk, hsz úgy a születések, mnt a halálozások

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

IMPRESSA C5 Használati útmutató

IMPRESSA C5 Használati útmutató IMPRESSA C5 Használat útmutató Kávé Prof Kft. 1112 Budapest, Budaörs út 153. Tel.: 06-1-248-0095 kaveprof@freemal.hu A TÜV SÜD független német mnôségvzsgáló ntézet Az IMPRESSA kézkönyvének és a hozzá tartozó

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató

Részletesebben

10. Transzportfolyamatok folytonos közegben

10. Transzportfolyamatok folytonos közegben 10. Transzportfolyamatok folytonos közegben erőtörvény: mechanka Newton dff-egyenlet: pl. rugó: mat. nga: állapot -> jóslás: F a v x(t) jelenség -> magyarázat: x(t) v a F F = m & x m & x = -D x x m & x

Részletesebben

Molekuláris dinamika: elméleti potenciálfelületek

Molekuláris dinamika: elméleti potenciálfelületek Molekulárs dnamka: elmélet potencálfelületek éhány szó a potencál felület meghatározásáról Szemempírkus és ab nto potencál felületek a teles felület meghatározása (pontos nem megy részletek: mndárt éhány

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

TERMODINAMIKA Alapfogalmak útfüggvény: munka (w), hő (q) állapotfüggvény: U, H, S, A, G

TERMODINAMIKA Alapfogalmak útfüggvény: munka (w), hő (q) állapotfüggvény: U, H, S, A, G TERMDINAMIKA Alapfogalmak útfüggvény: munka (w), hő (q) állapotfüggvény: U,, S, A, G belsőenerga-változás U = q + w állandó V-on hő entalpa = U + pv állandó p-n hő entrópaváltozás S = q rev /T folyamat

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

AZ ENTRÓPIAPROBLÉMA I. RÉSZ

AZ ENTRÓPIAPROBLÉMA I. RÉSZ Karen Lews és munkatársa 2008-ban pulzárok jelének perodkus késését vzsgálták, és arra keresték a választ, hogy egy rendszerben kerngô exohold mlyen mértékben módosítja a vzsgált pulzárjelek peródusát

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

Termokémia. Termokémia Dia 1 /55

Termokémia. Termokémia Dia 1 /55 Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 27. Az entrópia A természetben a mechanikai munka teljes egészében átalakítható hővé. Az elvont hő viszont nem alakítható át teljes egészében mechanikai

Részletesebben

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai 3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,

Részletesebben

Szerelési útmutató FKC-1 síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára

Szerelési útmutató FKC-1 síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára Szerelés útmutató FKC- síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára 604975.00-.SD 6 70649 HU (006/04) SD Tartalomjegyzék Általános..................................................

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

KOLLOIDKÉMIA: NANORENDSZEREK ÉS HATÁRFELÜLETEK. egyetemi jegyzet

KOLLOIDKÉMIA: NANORENDSZEREK ÉS HATÁRFELÜLETEK. egyetemi jegyzet KOLLOIDKÉMIA: NANORENDSZEREK ÉS HATÁRFELÜLETEK egyetem jegyzet Glány Tbor ELTE Kollodkéma és Kollodtechnológa Tanszék Budapest, 2005 A kollodkéma tárgya A kollodkéma tárgyának meghatározásához nduljunk

Részletesebben

Gázok. Boyle-Mariotte törvény. EdmeMariotte ( ) Robert Boyle ( ) Adott mennyiségű ideális gázra: pv=állandó. két állapotra: p 1 V 1

Gázok. Boyle-Mariotte törvény. EdmeMariotte ( ) Robert Boyle ( ) Adott mennyiségű ideális gázra: pv=állandó. két állapotra: p 1 V 1 Boyle-Marotte törény Gázok Nyomás / atm Robert Boyle (167 1691) EdmeMarotte (160 1684) Adott mennységű deáls gázra: pvállandó két állapotra: Térfogat p 1 V 1 p V http://www.unzar.es/lfnae/luzon/cdr3/termodnamca.htm

Részletesebben

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre Tanulmányok Jövedelem és szubjektív jóllét: az elemzés módszer megválasztásának hatása a levonható következtetésekre Hajdu Tamás, az MTA Közgazdaságés Regonáls Tudomány Kutatóközpont Közgazdaságtudomány

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben