Rejtett részcsoportok és kvantum-számítógépek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rejtett részcsoportok és kvantum-számítógépek"

Átírás

1 Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23.

2 Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció, példák 3 Orákulum hívása szuperpozícióra Fourier-transzformáció 4 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok

3 Kvantum bitek Kvantum kapuk Kvantum-ármakörök Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b 1 szuperpozíció (lineáris kombináció), ahol a 2 + b 2 = 1 Kitüntetett bázis: 0, 1 Mérés után: 0: a 2 valószín séggel, 1: b 2 valószín séggel.

4 Kvantum bitek Kvantum kapuk Kvantum-ármakörök n kvantum bites rendszer Állapot: a B n = C 2n egységvektora: komplex euklideszi tér egy a s S a s s szuperpozíció, ahol S = {0, 1} n és s S a s 2 = 1. Kitüntetett bázis: s, ahol s S: , , Mérés után: az s bitsorozat: a s 2 valószín séggel.

5 Kvantum bitek Kvantum kapuk Kvantum-ármakörök Kvantum kapuk Példák: d bites kvantum kapu: egy 2 d dimenziós unitér transzformáció Hadamard-kapu: H : ( ), Kontrollált fáziseltolás: 0x 0x, 10 10, ( 0 1 ). 11 ω 11, ahol ω = 1.

6 Kvantum-áramkör: számolás Kvantum bitek Kvantum kapuk Kvantum-ármakörök n kvantum bites rendszeren egy- és kétbites kvantum kapuk sorozata megadva az is, hogy mely kvantum bit(ek)en hatnak ("drótozás", sorrend is számít) formálisan: a megfelel transzformáció identitás M velet: a kapuknak megfelel transzformációk szorzata Id igény (lépésszám): a sorozat hossza Megjegyzés: konstans d > 2-re legfeljebb d bites kapukból álló áramkörök: az 1-2 bitessel polinomiálisan ekvivalens modell.

7 Kvantum-áramkör: mérés/m ködés Kvantum bitek Kvantum kapuk Kvantum-ármakörök a kapuk szorzata az input bitsorozatnak megfelel báziselemre végül mérés randomizált algoritmushoz hasonló jelleg a megfelel nyelvosztály: BPQ Megjegyzés: Véges ún. univerzális kapukészlettel a kapuk közelítése segítségével szintén polinomiálisan ekvivalens modell hapható.

8 Háttér Deníció, példák Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció, példák 3 Orákulum hívása szuperpozícióra Fourier-transzformáció 4 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok

9 Háttér Kvantum bitek és kvantum-áramkörök Háttér Deníció, példák Shor 1994: faktorizáció és diszkrét logaritmus polinomid ben kvantum-számítógéppel megsokszorozódtak a kvantum-számítógépek építésére fordított er források a rejtett részcsoport problémája: fenti feladatok érdemi részfeladatainak a grázomorzmus-problémát is tartalmazó közös általánosítása Jelenleg minden kvantumos exponeciális gyorsulás lényegében ide tartozik

10 Háttér Deníció, példák Deníció G (véges) csoport Az f : G {bitsorozatok} függvény a H G részcsoportot rejti, ha f (x) = f (y) xh = yh f orákulummal (vagy hatékony algoritmussal) adott. Kvantum orákulum: x 0 x f (x) Feladat: keressük meg H-t (pl. H egy generátorrendszerét) lehet leg poly log G id ben!

11 Háttér Deníció, példák Példák Csoportelem rendje G = Z, a A, f (k) = a k. H = mz, ahol m = a rendje. Diszkrét logaritmus G = Z Z, a, b A f (k, l) = a k b l. H = {(k, l) a k = b l }.

12 Háttér Deníció, példák Grázimorzmus permutált gráf: Γ gráf az {1,..., n} csúcsokon, σ S n, a permutált Γ σ gráf élei: [i, j], ahol [σ(i), σ(j)] éle Γ-nak. Automorzmuscsoport, mint rejtett részcsoprt G = S n f (σ) = Γ σ. a rejtett részcsoport = Aut(Γ) Gráfok izomorája Gráfok automorizmuscsoportja Γ 1, Γ 2 összefügg. Γ 1 = Γ2 Aut(Γ 1 Γ 2 ) = 2 Aut(Γ 1 ) Aut(Γ 2 ).

13 Orákulum hívása szuperpozícióra Fourier-transzformáció Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció, példák 3 Orákulum hívása szuperpozícióra Fourier-transzformáció 4 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok

14 Orákulum szuperpozícióra 1. Orákulum hívása szuperpozícióra Fourier-transzformáció 1 G 1 G 0..0 (uniform szuperpozíció elkészítése) 1 x 0..0 (orákulum hívása) G x G 1 x f (x) = G s x G x G f (x) = s x s = 1 G ax f (a) a T x H T : baloldali mellékosztályok reprezentánsrendszere

15 Orákulum szuperpozícióra 2. Orákulum hívása szuperpozícióra Fourier-transzformáció 1 G : H a T 1 G ax f (a) = a T x H ( ) 1 ax f (a) H x H rögzített a T -re az els regiszter tartalma mellékosztályátlag: ah := 1 ax H x H a második regiszter tartalma állandó, azt nem bántjuk tovább mintha "el rehoznánk" a második regiszter mérését

16 Fourier-transzformáció Orákulum hívása szuperpozícióra Fourier-transzformáció Kommutatív G csoport Fourier-transzformációja g 1 χ(g) χ G χ Ĝ lineáris kiterjsztése CG -re. Hatékony közelít kvantum implmentációk vannak. x H 1 ax H χ Ĝ x H 1 1 χ(ax) χ = H G 1 G χ Ĝ ( ) χ(a) χ(x) χ H x H

17 Fourier transzformáció 2. Orákulum hívása szuperpozícióra Fourier-transzformáció χ együtthatója χ(a) G : H 1 H χ(x) = x H { χ(a) G:H ha χ H = 1, 0 egyébként. Biz.: 1 H és χ H ortogonalitása: 1 H χ valószín sége: x H χ(x) = { 1 ha χh = 1, 0 egyébként { 1 G:H 0 egyébként. ha χ H,

18 H kiszámítása Orákulum hívása szuperpozícióra Fourier-transzformáció H = {χ Ĝ χ H = 1} a Ĝ egy részcsoprtja. Várhatóan O(log G ) ismétléssel H egy Γ generátorrendszere gy lik össze. Ekkor H = {x G χ(x) = 1 for every χ Γ}. ( lineáris egyenletrendszer)

19 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció, példák 3 Orákulum hívása szuperpozícióra Fourier-transzformáció 4 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok

20 Nemkommutatív Fourier-transzformáció Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok g ρ b G d ρ i,j=1 d dρ ρ G i,j=1 ρ(g) ij ρ, i, j Ĝ : G komplex irreducibilis unitér mátrixreprezentációi minden ekvivalencia-osztályból egy d ρ : ρ foka a transzformáció unitér, függ ρ választásától elég sok csoportra ismert hatékony kvantum-implementáció

21 Gyenge standard Fourier-módszer Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok a kommutatív esetet követi csak ρ-t használja a mérés után ρ valószín sége: h H χ ρ(h). H G esetén d ρ G 0 valószín ség, ha H ker ρ, "eléggé egyenletes" a H ker ρ tulajdonságúakra H-t polinom sok próba után valszeg egyért. meghat. Er s standard módszer: i, j-t is méri csak egy ismert esetben jobb bizonyítottan nem jó gráf-izomorzmusra!

22 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok A szimmetrikus csoport gyenge módszerrel polinom id ben érzékelhet részcsoportjai Ezek a konstans minimális fokú permutációcsortok H minimális foka: H \ {1}-be tartozó permutációk által mozgatott elemek min. száma. Polinom sok konstans elemet mozgató permutáció van ilyen H az 1-t l megkülönböztethet klasszikus módszerrel is polinom id ben. Kempe és Shalev sejtette és bizonyította spec. esetekre Pyber László bizonyította általánosan f eredménye: egy, a permutációcsoportok rendje és minimális fokszáma közötti aszimptikus összefüggés igazolása

23 Pozitív eredmények rekordok Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok a lekérdezési bonyolultság polinomiális Ettinger, Hoyer, Knill 2004 a negatív eredmények jellege Ez vagy az a konkrét megközelítés nem m ködik... D n diéder csoportra log n-ben exponenciális Kuperberg 2005 Fontos indukciós eszköz lenne feloldható csoportokra korlátos exponens, korlátos hosszú feloldható csoportokra polinomiális módszer Friedl,, Magniez, Sántha, Sen 2003 Z n p Z 2 -n (konstans p) alapuló rekurzió

24 Rekordok 2. Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok Polinomiális idej módszerek vannak még p 3 rend csoportokra Bacon, Childs, van Dam 2005 Az ún. Pretty Good Measurement hatékony implementációja Extraspeciális p-csoportokra, Sántha, Sanselme 2007 Nem az el z módszer kiterjesztése! Ötlet: reprezentációk hangolása automorzmusokkal. 2 osztályú csoportokra általánosítható???

25 Nemkommutatív Fourier-transzformáció A standard módszer a szimmetrikus csoportban Pozitív eredmények - rekordok Reprezentációk hangolása G = p exponens, p 2m+1 rend extraspeciális csoport z = Z(G) generátora, ω = p 1 j = 1,..., p 1: φ j p m dim. irrep.: φ j (z) = ω j I. φ 0 = 1-dimenziós reprezentációk φ i φ j = φi+j egy direkt hatványa α 0,... α p 1 End(G), amelyekre α k φ j = φ k 2 j Adott j 1, j 2, j 3 -ra keresend k 1, k 2, k 3, amelyekre k 2 1 j 1 + k 2 2 j 2 + k 2 3 j 3 = 0, így α k1 φ j1 α k2 φ j2 α k3 φ j3 = a φ0 egy hatványa φ 0 -ból G/G Fourier trafójával H modulo G.

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Kvantum-számítógépek, univerzalitás és véges csoportok

Kvantum-számítógépek, univerzalitás és véges csoportok Kvantum-számítógépek, univerzalitás és véges csoportok Ivanyos Gábor MTA SZTAKI BME Matematikai Modellalkotás szeminárium, 2013 szeptember 24. Kvantum bit Kvantum bitek Kvantum kapuk Kvantum-áramkörök

Részletesebben

Az euklideszi algoritmusról

Az euklideszi algoritmusról Az euklideszi algoritmusról Ivanyos Gábor 2012 március 12 Fazekas 196977 Seress Ákos, IG Elekes György Tablókép Tanárok a 70-es évekb l Surányi László gy jteményéb l ELTE 197883 Lovász László Pelikán József

Részletesebben

Kvantumszámítógépes algoritmusok

Kvantumszámítógépes algoritmusok Kvantumszámítógépes algoritmusok Hallgatói jegyzetek Ivanyos Gábor el adásai alapján Debreceni Egyetem, 0 tavaszi félév Tartalomjegyzék. Bevezetés (Barnák Albert) 3.. n dimenziós kvantumrendszer.........................

Részletesebben

Kvantum-kommunikáció komplexitása I.

Kvantum-kommunikáció komplexitása I. LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri.

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri. Számításelmélet Dr. Olajos Péter Miskolci Egyetem Alkalmazott Matematika Tanszék e mail: matolaj@uni-miskolc.hu 2011/12/I. Készült: Péter Gács and László Lovász: Complexity of Algorithms (Lecture Notes,

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

Lineáris különböz ségek

Lineáris különböz ségek Ivanyos Gábor MTA SZTAKI 2010 december 13 A feladat Titok: u = (µ 1,..., µ n ) n dimenziós vektor Z n 3 -b l Z 3 = az egész számok modulo 3 Gombnyomásra kapunk: véletlen v i = (a i1,..., a in ) vektorokat,

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

Információelmélet Szemináriumi gyakorlatok

Információelmélet Szemináriumi gyakorlatok Információelmélet Szemináriumi gyakorlatok. feladat. Adott az alábbi diszkrét valószínűségi változó: ( ) a b c d X = Számítsuk ki az entróiáját: H(X ) =?. feladat. Adott az alábbi diszkrét valószínűségi

Részletesebben

Kombinatorikus problémák a távközlésben

Kombinatorikus problémák a távközlésben Kombinatorikus problémák a távközlésben Tapolcai János BME Távközlési és Médiainformatikai Tanszék MTA-BME Lendület Jövő Internet Kutatócsoport High Speed Networks Laboratory Rónyai Lajos BME Algebra Tanszék,

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

1. A hőmérsékleti sugárzás vizsgálata

1. A hőmérsékleti sugárzás vizsgálata 1. A hőmérsékleti sugárzás vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós, Molnár László, Plachy Emese 2006.03.29. Beadva: 2006.05.18. Értékelés: A MÉRÉS LEÍRÁSA A mérés

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Algoritmuselmélet. Király Zoltán ELTE Matematikai Intézet. 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.

Algoritmuselmélet. Király Zoltán ELTE Matematikai Intézet. 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm. Algoritmuselmélet Király Zoltán ELTE Matematikai Intézet 2013. február 18. Legfrissebb, on-line verzió: http://www.cs.elte.hu/~kiraly/algelm.pdf 1.3. verzió Tartalomjegyzék I. Alapvető algoritmusok 6 1.

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK A gazdaság változómennyiségeit (jövedelem, fogyasztás, beruházás,...) általában bizonyos időszakonként (naponta, hetente, havonta, évente) figyeljük meg. Ha ezeket a megfigyeléseket

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Munkapiaci áramlások Magyarországon

Munkapiaci áramlások Magyarországon Kónya István MTA-KRTK Közgazdaságtudományi Intézet és Közép-európai Egyetem 2015.11.13 MTA KRTK KTI Motiváció Munkapiaci áramlások központi szerepe Munkapiac keresési modellje Munkanélküliség és aktivitás

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

Fonatok csavarása és a Homfly polinom

Fonatok csavarása és a Homfly polinom Fonatok csavarása és a Homfly polinom Kálmán Tamás Tokiói Egyetem MTA Rényi Intézet szemináriuma 2008. március 28. Definíciók és a Morton Franks Williams egyenlőtlenség áttekintése A Homfly polinom bizonyos

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Tanúsítási jelentés HUNG-TJ-002-1-2003 amely a HUNG-E-002-1-2003 számí értékelési jelentésen alapul.

Tanúsítási jelentés HUNG-TJ-002-1-2003 amely a HUNG-E-002-1-2003 számí értékelési jelentésen alapul. Tanúsítási jelentés HUNG-TJ-00-1-003 amely a HUNG-E-00-1-003 számí értékelési jelentésen alapul. 1. A vizsgált eszköz, szoftver meghatározása A vizsgálat az IBM Corp. által előállított és forgalmazott

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369.

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369. Enying Város Önkormányzata Képviselő-testületének 20/2010. (X. 05.) önkormányzati rendelete az Enying Város Önkormányzatának 2100. évi költségvetéséről szóló 7/2010. (II. 26.) önkormányzati rendelete módosításáról

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

Számításelmélet 2 - El adás jegyzet

Számításelmélet 2 - El adás jegyzet Számításelmélet 2 - El adás jegyzet Rózsa Gábor 2007. els félév 1 Bevezetés Ajánlott irodalom: Katona-Recski: Bevezetés a véges matematikába Rónyai-Ivanyos-Szabó: Algoritmusok Lovász: Aloritmusok bonyolultsága

Részletesebben

ADDITÍV KONVOLÚCIÓS ÖSSZEGEK SPEKTRÁLIS FELBONTÁSA

ADDITÍV KONVOLÚCIÓS ÖSSZEGEK SPEKTRÁLIS FELBONTÁSA ADDITÍV KONVOLÚCIÓS ÖSSZEGEK SPEKTRÁLIS FELBONTÁSA HARCOS GERGELY Ha a(n) eg számelméleti függvén, akkor természetes feladat a a(m)a(n)w(m, n) m±nh alakú additív konvolúciós összegek vizsgálata. Ha W :

Részletesebben

AES kriptográfiai algoritmus

AES kriptográfiai algoritmus AES kriptográfiai algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 2. 28. Smidla József (RSZT) AES 2012. 2. 28. 1 / 65 Tartalom 1 Bevezetés 2 Alapműveletek Összeadás,

Részletesebben

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben

Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége

Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége Eötvös Loránd Tudományegyetem Természettudományi Kar Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége Alkalmazott matematikus MSc Operációkutatás szakirány Szakdolgozat Témavezető: Jordán

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

Téma: A szerkezeti acélanyagok fajtái, jelölésük. Mechanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása

Téma: A szerkezeti acélanyagok fajtái, jelölésük. Mechanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása 1. gakorlat: Téma: A szerkezeti acélanagok fajtái, jelölésük. echanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása A szerkezeti acélanagok fajtái, jelölésük: Ádán Dulácska-Dunai-Fernezeli-Horváth:

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Funkcionálanalízis az alkalmazott matematikában

Funkcionálanalízis az alkalmazott matematikában EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Simon Péter Funkcionálanalízis az alkalmazott matematikában egyetemi jegyzet A jegyzet az ELTE IK 2010. évi Jegyzettámogatási pályázat támogatásával készült

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Alumínium és ötvözeteinek hegesztése

Alumínium és ötvözeteinek hegesztése Budapesti Műszaki és Gazdaságtudományi Egyetem Alumínium és ötvözeteinek hegesztése Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Hegesztés előadások Szerző: dr. Palotás Béla 1

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

Komáromi Éva LINEÁRIS PROGRAMOZÁS

Komáromi Éva LINEÁRIS PROGRAMOZÁS OPERÁCIÓKUTATÁS No.2. Komáromi Éva LINEÁRIS PROGRAMOZÁS Budapest 2005 Komáromi Éva LINEÁRIS PROGRAMOZÁS Javított kiadás OPERÁCIÓKUTATÁS No.2 Megjelenik az FKFP 0231 Program támogatásával a Budapesti Közgazdaságtudományi

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 2. Előadás: Fizikai réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Fizikai réteg

Részletesebben

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

3. gyakorlat Dinamikus programozás

3. gyakorlat Dinamikus programozás 3. gyakorlat Dinamikus programozás 1. Az 1,2,...,n számoknak adott két permutációja, x 1,...,x n és y 1,...,y n. A két sorozat egy közös részsorozata egy 1 i 1 < < i k n, és egy 1 j 1

Részletesebben

Farkas Gábor: Diszkrét matematika II. (elıadás diák) Lektorálta: Láng Csabáné

Farkas Gábor: Diszkrét matematika II. (elıadás diák) Lektorálta: Láng Csabáné Farkas Gábor: Diszkrét matematika II. (elıadás diák) Lektorálta: Láng Csabáné Felhasznált irodalom: Járai Antal & al: Láng Csabáné: Láng Csabáné: Gonda János: Láng Csabáné: Bevezetés a matematikába ELTE

Részletesebben

6.1.3. A hang terjedés számítása és szemléltetése...47 6.1.4. Irányhallás számítása a vízszintes síkban...48 6.2. Műfejbe épített mikrofonokkal

6.1.3. A hang terjedés számítása és szemléltetése...47 6.1.4. Irányhallás számítása a vízszintes síkban...48 6.2. Műfejbe épített mikrofonokkal Tartalomjegyzék Tartalomjegyzék...1 Bevezetés...3 2. Hang...4 2.1. Hangtani alapfogalmak...4 2.1.1. Hanghullám...4 2.1.2. Hangnyomás és intenzitás...4 2.1.3. Terjedési sebesség:...5 2.1.4. Hangforrás...6

Részletesebben

VÉGES CIKLIKUS CSOPORTOKNAK VÉGES CIKLIKUS CSOPORTOKKAL VALÓ SZÉTES BVÍTÉSEIRL

VÉGES CIKLIKUS CSOPORTOKNAK VÉGES CIKLIKUS CSOPORTOKKAL VALÓ SZÉTES BVÍTÉSEIRL 2 HUBER LÁSZLÓ VÉGES CIKLIKUS CSOPORTOKNAK VÉGES CIKLIKUS CSOPORTOKKAL VALÓ SZÉTES BVÍTÉSEIRL 995 BARÁTOMNAK ÉS URANITA TESTVÉREMNEK SZERETETTEL 995. 2. 08. Mota 3 Köszönettel tartozom Corrádi Keresztélynek

Részletesebben

Előadó: Dr. Bukovics Ádám

Előadó: Dr. Bukovics Ádám SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek

Részletesebben

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont Elôzmények A fázisátalakulások és kritikus jelenségek a mindennapi életben is gyakran elôforduló

Részletesebben

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly.

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly. Oktatási segédlet Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra a Létesítmények acélszerkezetei tárgy hallgatóinak Dr. Jármai Károly Miskolci Egyetem 013 1 Acél- és alumínium-szerkezetek

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14. Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok

Részletesebben

Mintavételezés: Kvantálás:

Mintavételezés: Kvantálás: Mintavételezés: Időbeli diszkretizálást jelent. Mintavételezési törvény: Ha a jel nem tartalmaz B-nél magasabb frekvenciájú komponenseket, akkor a jel egyértelműen visszaállítható a legalább 2B frekvenciával

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Differenciaegyenletek 1 / 24 3.1 Differenciaegyenlet fogalma, egzisztencia- és unicitástétel

Részletesebben

Gravitáció mint entropikus erő

Gravitáció mint entropikus erő Gravitáció mint entropikus erő Takács Gábor MTA-BME Lendület Statisztikus Térelméleti Kutatócsoport ELFT Elméleti Fizikai Iskola Szeged, Fizikai Intézet 2012. augusztus 28. Vázlat 1. Entropikus erő: elemi

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. *************** JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ

Részletesebben

Véletlenszám generátorok

Véletlenszám generátorok Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,

Részletesebben

Szepesvári Csaba. 2005 ápr. 11

Szepesvári Csaba. 2005 ápr. 11 Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Véletlenített algoritmusok. 4. előadás

Véletlenített algoritmusok. 4. előadás Véletlenített algoritmusok 4. előadás Tartalomjegyzék: elfoglalási probléma, születésnap probléma, kupongyűjtő probléma, stabil házassági feladat, Chernoff korlát (példák), forgalomirányítási probléma.

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Komputeralgebrai Algoritmusok

Komputeralgebrai Algoritmusok Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,

Részletesebben

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben