Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű. Legye X a legjobb ő verseyző helyezése. (Például ha X =, akkor ő lett a versey győztese. Határozzuk meg X súlyfüggvéyét, azaz a P{X = } valószíűségeket, =,,..., 0.. Az X valószíűség változó súlyfüggvéye p( =, =,,,. Határozzuk meg X 0 várható értékét.. Albert és Béla a következőt játszák: Mdkette feldobak egy dobókockát, majd Albert ay fortot kap Bélától amey a két kocká levő potok külöbségéek a égyzete. Béla meg ayt kap Alberttől, amey a két kocká levő potok összege. Melykükek kedvez a játék?. Egy sorsjátéko darab 000 000 Ft-os, 0 darab 0 000 Ft-os, és 00 darab 000 Ft-os yereméy va. A játékhoz 0 000 darab sorsjegyet adak k. Mey legye a jegy ára, hogy egy sorsjegyre a yereméy várható értéke a jegy áráak felével egyezze meg?. Tételezzük fel a 700 Ft, 0 000 Ft, 789 ezer Ft, és mlló Ft fx yereméyeket a lottó. 0 Ft-os jegyárral számolva mekkora az egy lottószelvéye várható yereségük?. Aa és Béla két kockával játszaak. Aa akkor fzet Béláak, ha mdkét feldobott kocká páratla szám szerepel. Béla akkor fzet Aáak, ha potosa egy kockával páros számot dobak. Ha más eset fordul elő, egykük sem fzet. Mlye pézösszegbe állapodjaak meg, hogy a játék méltáyos legye? 7. Legye X egy dobókockával dobott szám. Mey X várható értéke és szórása? M a helyzet oldalú kocka eseté? 8. Egy skolakrádulás sorá égy busz szállítja adákokat. A égy buszba 0,,, lletve 0 dák utazk. Vétleszerűe kválasztuk egy dákot, legye X az ő buszába utazó összes tauló száma. A égy buszsofőr közül szté egyet véletleszerűe kválasztuk, legye Y az ő buszá utazó taulók száma. (a Mt godoluk, E(X vagy E(Y lesz agyobb? Mért? (b Számoljuk k E(X és E(Y értékét. (c Számoljuk k X és Y szórását. 9. Egy dobozból, ambe pros és fehér golyó va, vsszatevés élkül khúzok golyót. Jelölje X a khúzott pros golyók számát. Határozzuk meg X eloszlását, várható értékét, és szórását. 0. Véletleszerűe elhelyezük egy huszárt egy üres sakktáblára. Mey a lehetséges lépése számáak a várható értéke? (A 8 8-as sakktábla (, j égyzeté álló huszár egy lépésbe az ( +, j +, (, j +, (, j +, (, j, (, j, ( +, j, ( +, j, ( +, j + mezőkre léphet, ameybe ezek még a sakktáblá találhatóak.. Két kockával dobva, mey a dobott számok agyobbkáak lletve ksebbkéek várható értéke?
. Egy -től 0-g véletleszerűe kválasztott számot kell ktaláluk, ge-em kérdésekkel. Számítsuk k, hogy várhatóa háy kérdésre va szükségük a következő esetekbe: (a Az -edk kérdésük a következő: A szám?, =,,..., 0. (b Mde egyes kérdéssel megpróbáljuk kzár a lehetséges számok felét, ameyre ez csak lehetséges. Például az első kérdésük A szám agyobb, mt?. Ha ge, a másodk kérdésük A szám agyobb, mt 7?, stb.. Ha E(X = és D (X =, határozzuk meg a következő meységeket: (a E[( + X ], (b D ( + X.. Legye X egy valószíűség változó µ várható értékkel és σ szórással. Határozzuk meg várható értékét és szórását. Y : = X µ σ. Háy véletleszerűe kválasztott emberre va ahhoz szükség, hogy közülük legalább egyek legalább / valószíűséggel ugyaazap legye a születésapja, mt ekem?
Eredméyek. Nylvá ulla a valószíűség, ha >. Sorred élkül: Ha a csak a verseyzők emét ézzük, akkor md a ( 0 lehetséges elredezés egyforma valószíű. Ezek közül meg kell számoluk, háy elredezés eseté lesz férf az első helye, azutá pedg egy ő. Másszóval meg kell számoluk háyféleképpe redezhető el ő és ( = férf az első ő mögött 0 helyre. A válasz ( 0, és a keresett valószíűség ( 0 (0!!! (0!! = =. 0!! (! 0! (! ( 0 Sorreddel: Ebbe az esetbe mde verseyzőt külöbözőek tektük. Meg kell számouk, hogy a 0! lehetőségből háy olya sorred va, ahol az első helye férf va, az -dk helye pedg ő. Az első helyre!/[ ( ]! =!/(! féleképp válogathatuk sorredbe férfakat (smétlés élkül varácó. Ezutá jö lehetőség az -dk hely ő verseyzőjéek kválasztására, majd a maradék 0 helyre (0! féleképpe redezhetjük el a verseyzőket. A keresett valószíűség tehát! (0!. (! 0! A válasz tehát =,,,, és eseté /, /8, /, /8, /, /.. E(X = p( = 0 = 0 + 0 + 0 + 0 = 0.. Legye X a két kocká levő potok külöbségéek égyzete. Ekkor X súlyfüggvéye p(0 = /, p( = 0/, p( = 8/, p(9 = /, p( = /, p( = /, várható értéke E(X = 0 + 0 + 8 + 9 + + = 0 =. Hasolóa, Y a két kocká levő potok összege, súlyfüggvéye p( = p( = /, p( = p( = /, p( = p(0 = /, p( = p(9 = /, p( = p(8 = /, p(7 = /, várható értéke 7=/. Béla tehát hosszú távo jobba jár.. A yereméy várható értéke 0 00 000 000 Ft + 0 000 Ft + 000 Ft = 0 Ft, 0 000 0 000 0 000 a jegyet tehát 00 Ft-ért kell árul.. A várható yereméy ( 8 ( 8 ( 700 + ( 0 000 + ( ( 8 789 000 + ( 90 000 000. Ft. Ha a jegyár 0 Ft, akkor várhatóa 0. Ft-ot vesztük szelvéyekét. Aa = / eséllyel fzet Béláak, Béla pedg + = / eséllyel fzet Aáak. A játék méltáyos, ha Aa kétszer ayt fzet, mt Béla, pl. petákot, míg Béla petákot. 7 oldalú kocka eseté X súlyfüggvéye p( = /, =,,.... A számta sor összegképletével E(X = p( = = ( + = +.
A szóráshoz a másodk mometum s kell, ehhez felhaszáljuk a égyzetszámok összegére voatkozó képletet: E(X = p( = = + + = + +. A szórás ezek segítségével D(X = E(X [E(X] = + + + + =. Kocka eseé =, E(X = 7/, D(X = /. 8.(a Nagyobb eséllyel választuk egy dákot egy tömöttebb buszról, míg a sofőr választásakor mde busz egyelő valószíű. Ezért X várhatóa agyobb lesz Y -ál. (b X súlyfüggvéyét felhaszálva E(X = 0 0 8 + 8 + 8 + 0 0 8 9.8. Y egyelő eséllyel vesz föl bármelyk megadott létszám értékét, E(Y = 0 + + + 0 = 7. (c A szóráshoz meghatározzuk a másodk mometumokat: A szórások E(X = 0 0 8 + 8 + 8 + 0 0 8., E(Y = 0 + + + 0 =.. D(X = E(X [E(X ]. 9.8 9.0, D(Y = E(Y [E(Y ]. 7 9.9. 9. X súlyfüggvéye: ( ( 0 p(0 = ( 0 = ( (, p( = ( 0 = ( (, p( = ( 0 = ( ( 0, p( = 0 ( 0 = 0. Ezek alapjá E(X = 0 + + 0 + 0 =, E(X = 0 + + D(X = E(X [E(X] = [/] = /. 0 + 0 =,.(a Legye X a véletle szám. A módszerük szert ay kérdésre va szükség amey az X értéke. Ezért a válasz E(X =..
(b Legye a stratégák a következő: >? >? > 7? >? >? >? > 9? >? 7 > 8? 0 8 9 Az első kérdésük az, hogy a szám agyobb-e, mt. Eél, és a tovább kérdésekél mdg próbáljuk megfelez a lehetőségeket. Három kérdés szükséges akkor és csak akkor, ha a véletle szám,,,, 7, vagy 0 (azaz /0 valószíűséggel, égy kérdés szükséges akkor és csak akkor, ha a véletle szám,, 8, vagy 9 (/0 valószíűséggel. A kérdések várható száma ezért + = 7 =.. től 0-g terjedő véletle számál a két módszer 0 0 várható dőtartama em külöbözk számottevőe, azoba agy véletle számokál a (b módszer léyegese gyorsabba működk..(a E[( + X ] = E( +E(X + E(X = + E(X + D (X + [E(X] = + ++ =. (b A szóráségyzet eseté az addtív kostas em számít, a multplktaív kostas pedg égyzetese jö k a szóráségyzet alól. Ezért D ( + X = D (X = 9 =.. ( E(Y = E σ X µ = σ σ E(X µ σ = 0, ( D (Y = D σ X µ = σ σ D (X =, ezért D(Y =. Y -t az X változó stadardzáltjáak hívjuk.. Aak valószíűsége, hogy ember közül eggyel sem közös a szülapom ( (szökőéveket em számolva. Aak valószíűsége, hogy legalább eggyel közös a szülapom, (. Ezért keresem azt az -et, melyre ( ( log ( azaz legalább ember szükséges. log ( log (.7,