Minimum kérdések a Lineáris algebra vizsga beugró részéhez. Az R n vektortér
|
|
- Andor Mészáros
- 8 évvel ezelőtt
- Látták:
Átírás
1 Miiu kérdések Lieáris lger vizsg eugró részéhez z R vektortér. Lieáris koiáció, triviális lieáris koiáció fogl Legyeek,,, k -dieziós vektorok és λ, λ,, λ k sklárok. Ekkor λ + λ + + λ k k R vektort z,, k vektorok λ,, λ k sklárokkl vett lieáris koiációják evezzük. H lieáris koiáció z összes sklár ull, kkor triviális lieáris koiációról eszélük. Triviális lieáris koiáció eredéye (árilye,, k vektorok eseté) idig ullvektor.. Lieáris függetleség, lieáris összefüggőség fogl z,, k R vektorokt lieáris függetleekek evezzük, h előlük csk triviális lieáris koiációvl (csup ull együtthtóvl) állíthtó elő ullvektor. z,, k R vektorokt lieáris összefüggőekek hívjuk, h előlük e triviális lieáris koiációvl is előállíthtó ullvektor. 3. Vektorhlz rgják fogl z {,, k } R vektorhlz rgj r, h vektorok közül kiválszthtó r dr lieáris függetle vektor, de árely r + dr vektor ár lieáris összefüggő. 4. Geerátorredszer, ázis fogl Legye G R egy vektorhlz. G geerátorredszer z R vektortére, h G eleeiől lieáris koiációvl z R vektortér árely vektor előállíthtó. Legye B R egy vektorhlz, ely lieáris függetle és geerátorredszer. Ekkor B-t z R vektortér egy ázisák hívjuk. 5. ltér fogl H R vektorhlzt ltérek hívjuk z R vektortére, h árely, H vektorok és árely λr eseté + H és λ H is teljesül. (H zárt vektorűveletekre.)
2 Mátriok. Mátri trszpoáltják fogl z -es átri trszpoáltjá zt z es átriot értjük, elyek (i,j)-edik elee egyelő z átri (j,i)-edik eleével. Jel.: T ( trszpoált átriot z eredeti átriól sorok és oszlopok felcserélésével kpjuk.). Speciális átriok (égyzetes, digoális, egységátri, szietrikus, ullátri) fogl Négyzetes átri: -es átri Digoális átri: oly égyzetes átri, elyek főátló kívüli eleei id ullák. Egységátri: oly digoális átri, elyek főátlójá egyesek állk. Szietrikus átri: oly =( ij ) égyzetes átri, elye ij = ji i,j =,,. Nullátri: oly átri, elyek ide elee ull. 3. Mátriűveletek (összedás, sklárrl vló szorzás, átriszorzás) defiíciój Mátriok összedás: Legye = ( ij ) és B = ( ij ) két zoos éretű átri. Ekkor és B összege: + B = ( ij + ij ) Mátri sklárrl vló szorzás: Legye = ( ij ) és λr. Ekkor z átri λ-szoros: λ = (λ ij ) Mátriok szorzás: Legyeek = ( ij ) és B = ( jk ) p átriok. Ekkor z és B átriok szorzt z C p-s átri, elyek (i,k)-dik elee: c ik = i k + i k + + i k Két átri összeszorozhtóságák feltétele, hogy z első átri oszlopik szá egegyezze ásodik átri sorik száávl. 4. Mátri rgják fogl Egy átri oszloprgjá z oszlopvektoriól álló vektorhlz rgját értjük, íg egy átri sorrgjá sorvektoriól álló vektorhlz rgját értjük
3 Igzolhtó, hogy árely átri eseté sor- és oszloprg egegyezik. Ezt közös értéket rövide átri rgják evezzük: r() = r s () = r o () 5. Négyzetes átri ivertálhtóság, z iverz átri fogl Legye egy -es égyzetes átri. -t ivertálhtók evezzük, h v oly X -es átri, elyre X = X = E. Ekkor X-t z átri iverzéek hívjuk és - -gyel jelöljük. 6. Mi szükséges és elégséges feltétele k, hogy egy égyzetes átri ivertálhtó legye? z -es átri ivertálhtó r () =. z -es átri ivertálhtó det() Részátri fogl Legye = ( ij ) -es átri. z átri ij elehez trtozó részátriá zt z (-)(-)- es átriot értjük, elyet z átriól k i-edik sorát és j-edik oszlopát elhgyv kpuk. Jel.: ij. 8. Négyzetes átri deteriásák fogl () Legye = [ ] -es átri. Ekkor deteriás: det () =. () Legye = ( ij ) -es átri, hol. Ekkor deteriás: (első sor szeriti kifejtés) j det( ) ( ) j det( 9. Isertesse sziguláris és esziguláris átriok jellezőit! Sziguláris átriokr z lái állítások ekvivlesek: j j ) oszlopvektorok lieáris összefüggőek r( ) ( átri e teljes rgú) e ivertálhtó det() = 0 Nesziguláris átriokr z lái állítások ekvivlesek: oszlopvektorok lieáris függetleek r( ) = ( átri teljes rgú) ivertálhtó det() 0
4 Lieáris egyeletredszerek. Írj fel lieáris egyeletredszerek áltláos lkját részletes forá, vektoregyelet forájá, illetve átrios írásóddl! Részletes lk: Vektoregyelet for: hol: Mátrios for: hol:. Hoogé és ihoogé egyeletredszer fogl z = lieáris egyeletredszert hoogéek evezzük, h = o. z = lieáris egyeletredszert ihoogéek evezzük, h o. 3. Mi lieáris egyeletredszerek egoldhtóságák szükséges és elégséges feltétele? z = li. egyeletredszer egoldhtó r () = r ([,]), hol [,] z egyeletredszer kiővített átri:,,,,., ) (
5 4. Mit tuduk egy hoogé lieáris egyeletredszer egoldásvektorik szááról? z = o hoogé lieáris egyeletredszer idig egoldhtó, z = o egoldásvektort triviális egoldásk evezzük. z = o hoogé li. egyeletredszerek csk triviális egoldásvektor v r() =, hol z iseretleek szá. z = o hoogé li. egyeletredszerek végtele sok egoldásvektor v r() <, hol z iseretleek szá. 5. Mit tuduk egy ihoogé lieáris egyeletredszer egoldásvektorik szááról? z = ihoogé li. egyeletredszer e oldhtó eg r () < r ([,]). z = ihoogé li. egyeletredszerek egy dr egoldásvektor v r() = r ([,]) =, hol z iseretleek szá. z = ihoogé li. egyeletredszerek végtele sok egoldásvektor v r() = r ([,]) <, hol z iseretleek szá. 6. Isertesse Crer szályt! Tekitsük z = li. egyeletredszert, hol z együtthtóátri égyzetes: = [ ]. Legye D = det(), D = det([ ]), D = det([ ]), D = det([ ]). Ekkor: D k = D k, k =,,.
6 Lieáris leképezések. Lieáris leképezés, lieáris trszforáció fogl z : R R típusú fv.-t lieáris leképezések evezzük, h árely, y R, R eseté: y y dditív hoogé H speciális =, kkor lieáris trszforációról eszélük.. Mgtér, képtér fogl Legye : R R lieáris leképezés. z leképezés gtere oly R -eli vektorokól áll, elyekhez z R ullvektorát redeli: ker Lieáris leképezés képtere: képvektorok hlz: 3. Lieáris leképezés átriák fogl R Legye : R R lieáris leképezés, e,,e koikus ázis R -e. z li. leképezés (koikus ázisokr votkozó) átriá zt z -es átriot értjük, elyek oszlopvektori z (e ),, (e ) képvektorok. Jel.: M(), 4. Mi szükséges és elégséges feltétele egy lieáris leképezés ijektivitásák? o i ( ) R R z : R R lieáris leképezés ijektív (ivertálhtó) ker() = o}. 5. Lieáris trszforáció sjátértékéek, sjátvektorák fogl z lieáris trszforáció sjátértékéek evezzük R száot, h v oly vr, vo vektor, elyre ( v) v teljesül. Ekkor vr vektort sjátértékhez trtozó sjátvektork evezzük. 6. Négyzetes átri sjátértékéek, sjátvektorák fogl Legye -es átri. z átri sjátértékéek evezzük R száot, h v oly v -es oszlopvektor, hol vo, és elyre v = v teljesül. Ekkor v oszlopvektort sjátértékhez trtozó sjátvektork evezzük.
7 7. Krkterisztikus polio, krkterisztikus egyelet fgl Legye -es átri. z égyzetes átri krkterisztikus poliojá P() = det(e) polioot, krkterisztikus egyeleté P() = det(e) = 0 egyeletet értjük. Lieáris trszforáció krkterisztikus poliojá átriák krkterisztikus polioját értjük. Lieáris trszforáció krkterisztikus egyeleté átriák krkterisztikus egyeletét értjük.
8 Skláris szorztos terek. Skláris szorzt fogl R -e Legye = (,,, ) és = (,,, ) két R -eli vektor. Ekkor z és vektorok skláris szorztá (sklárszorztá) z lái száot értjük: Jelölés:,, Vektor oráják és egységre orált vektork fogl Legye R. Ekkor z vektor oráj (hossz): Jelölés:, Egy R vektort egységre oráltk (egységvektork) evezük, h = 3. Ortogoális vektorok, ortogoális vektorhlz, ortoorált vektorhlz fogl Legye és két R -eli vektor. z és vektorokt ortogoáliskk evezzük, h skláris szorztuk ull. Egy H R vektorhlz ortogoális, h párokét ortogoális, ullvektortól külööző vektorok lkotják. Egy H R vektorhlz ortoorált, h ortogoális és vektori egységre oráltk. 4. Vektorhlz ortogoális kopleeteréek fogl Legye S R, S., z R vektort S-re ortogoálisk hívjuk, h ortogoális z S vektorhlz ide vektorár. z S vektorhlz ortogoális kopleetere z S-re ortogoális vektorok összessége: S = { R árely s S eseté, s = 0}. 5. ltérre votkozó ortogoális projekció fogl Legye H ltér z R vektortére. Tekitsük következő leképezést: : R R, h,
9 hol = h + h és h H, h H. feti leképezést H ltérre vló ortogoális projekciók (erőleges vetítések) evezzük. () vektort z vektor H ltérre eső ortogoális vetületvektorák hívjuk.
10 sztrkt vektorterek. sztrkt vektortér fogl Legye V egy hlz, egy test (pl. vlós vgy kople szátest), és legyeek dottk + : V V V és : V V űveletek. Tegyük fel, hogy árely,, c V, λ, eseté V: ( + ) + c = + ( + c ) (sszocitivitás) V: + = + (kouttivitás) V3: Létezik oly ov ele, hogy árely V eseté + o =. (ullele létezése) V4: Bárely V eseté létezik oly V, hogy + = o, hol =(-), z elletettje. (elletett létezése) V5: (λ+μ) = λ + μ V6: λ ( + ) = λ + λ V7: λ (μ ) = (λμ) V8: = Ekkor V-t test feletti vektortérek, V eleeit vektorokk, eleeit sklárokk hívjuk. =R eseté vlós vektortérről, =C eseté kople vektortérről eszélük.. sztrkt vektorterek közti lieáris leképezés fogl Legyeek V és W zoos test ( ) feletti vektorterek. z : V W leképezést lieárisk evezzük, h árely,y V és eseté (+y)= ()+ (y) ()= () dditív hoogé 3. Lieáris izoorfizus és izoorf vektorterek fogl ijektív lieáris leképezéseket lieáris izoorfizusokk evezzük. V és W vektorterek izoorfk, h létezik : V W lieáris izoorfizus. Jel.: V W
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
Lineáris egyenletrendszerek. Összeállította: dr. Leitold Adrien egyetemi docens
Lieáris egyeletredszerek Összeállított: dr. Leitold Adrie egyetei doces Li. egyeletredszerek /2 Lieáris egyeletredszerek áltláos lkj Áltláos (részletes) lk: egyelet iseretle:,, Jelölések: 2 2 2,, 2 2 2,,
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám
n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix.
Vektorok, átrok dezós átr: egy soról és oszlopól álló szátálázt. L L Jelölés: A A, L hol z -edk sor -edk elee. dezós (oszlop)vektor egy soról és oszlopól álló átr. Jelölés: u u,...,, hol z -edk koordát.
Absztrakt vektorterek
Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és
Vektorok, mátrixok. n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. az i-edik sor j-edik. , ahol b i
Biomtemtik I. (SZIE ÁOTK zoológs szk) Hros Adre - Reiczigel Jeő, ősz Vektorok, mátriok m dimeziós mátri: egy soról és m oszlopól álló számtálázt. m m m Jelölés: A A, hol i z i-edik sor -edik m eleme. dimeziós
Lineáris algebrai alapok *
Lieáris geri po * dieziós átri: z soró és oszopó áó ós szátáázt. Jeöés: dieziós etor z soró és oszopó áó átri. Jeöés:, ho i z i-edi oordiát., ho i z i-edi sor -edi eee. dieziós etor z z dieziós etor, eye
A Gauss elimináció ... ... ... ... M [ ]...
A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
Mátrixok és determinánsok
Mátrixok és determiások Mátrixlgebr mátrix foglm, lpműveletek mátrix oly számtáblázt, melyek m sor és oszlop v, hol m és pozitív egész számok tábláztb tetszőleges vlós számok szerepelhetek, zz mátrix
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
Mátrixok. Bevezetés és példák 1/12. Mátrix aritmetikai bevezetés
Mátrixok. Bevezetés és példák / Mátrix ritmetiki bevezetés Trtlom. Bevezetés Mátrixelemek és jelölések 3. Mátrixok fjtái: 4. Elemi műveletek mátrixokkl 4. Egyelőség 4. Trszpoálás 4.3 Szorzás 4.3. Szorzás
PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1
PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)
Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
LI Definíció: mátri LI Legyen m és n pozitív egész szám. Az : m : m......... n n : mn tábláztot m n típusú mártink nevezzük, és zt mondjuk, hogy A-nk m sor és n oszlop vn. ij z A mátri i-deik soránk j-edik
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Matematika A2a - Vektorfüggvények elméleti kérdései
Mtemtik A2 - Vektorfüggvéyek elméleti kérdései (műszki meedzser szk, 2018. tvsz) Első típusú improprius itegrál: Végtele trtomáyo korlátos függvéy Legye f itegrálhtó mide β > eseté z [, β]-. H β β és véges,
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Vektorok (folytatás)
Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl
VII. Lineáris terek, lineáris algebra
VII Leárs terek, leárs lger A leárs terek és leárs lger külööse kvtummechkávl kpcsoltos fzk-kém prolémák megoldás sorá kemelte fotos, de kém sok területé kerülek foglm és techká lklmzásr Foglmk () A leárs
II. Lineáris egyenletrendszerek megoldása
Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
/0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük
Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált
ANALÍZIS II. Bártfai Pál
ANALÍZIS II. Bártfi Pál. Kétváltozós függvéyek.. Deriválás A z = f(x, y) kétváltozós függvéyél z függő változó értékét z x és z y függetle változók értékéől számoljuk ki. A függvéyt háromdimeziós koordiátredszere
Hatványozás és négyzetgyök. Másodfokú egyenletek
Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x
(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---
A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris
MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA
MÁTRIXOK DETERMINÁNS, SJÁTÉRTÉKE ÉS SJÁTVEKTOR DEFINÍCIÓ: H z gy d( ) p I ( p) i ip( i) -s mári, kkor drmiás hol p mári lmik oszlopidik prmuációi, I(p) pdig zkk prmuációkk z irziószám. Ez gy igzá rmk dfiíció,
1. Sajátérték és sajátvektor
1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b
8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris
-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +
LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra
Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel
A valós számok halmaza
A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós
Matematika A1 vizsga elméleti kérdések
Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Lineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
Algebrai struktúrák, mátrixok
A számítástudomány mtemtiki lpji Algebri struktúrák, mátrixok ef.: Algebri struktúrán olyn nemüres hlmzt értünk melyen leglább egy művelet vn definiálv. ef.: A H nemüres hlmzon értelmezett kétváltozós
forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden
Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
A közönséges geometriai tér vektorai. 1. Alapfogalmak
VEKTORALGEBRA A közönséges geometrii tér vektori 1. Alpfoglmk A hétköznpi tér z elemi geometri háromdimenziós euklideszi tere két különöző pontj, z A és B közti szksznk kétféleképpen dhtunk irányítást.
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Matematika A2 tételek
Matematika A2 tételek. Tétel Csoport: Defiíció: Legye A olya halamaz, amelye értelmezve va egy * művelet. Akkor modjuk, hogy A csoportot akkor a * műveletre ézve, ha Gyűrű: - a * művelet asszociatív -
1. függelék. Mátrixszámítási praktikum-i. Mátrixaritmetikai eljárások
. függelék-/5 oldl Eötvös Lóránd Tudományegyetem Természettudományi Kr Budpest Kemometri tnfolym, Szepesváry Pál. függelék Mátrixszámítási prktikum-i. Mátrixritmetiki eljárások . függelék-2/5 oldl Bevezető
3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)
A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:
ACTA CAROLUS ROBERTUS
ACTA CAROLUS ROBERTUS Károly Róbert Főiskol tudomáyos közleméyei Alpítv: 3 ( ACTA CAROLUS ROBERTUS 3 ( Mtemtik szekció KOMPLETTEN POZITÍV LEKÉPEZÉSEK ÉS R V KADISON EGY SEJTÉSE Összefogllás KOVÁCS ISTVÁN
IV. Algebra. Algebrai átalakítások. Polinomok
Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol
A2 Vektorfüggvények minimumkérdések szóbelire 2015
A2 Vektorfüggvéyek miimumkérdések szóbelire 215 Lieáris algebra I. 1. Csoport, gyűrű, test félcsoport: olya halmaz, melybe a kétváltozós műveletek asszociatívak (pl. természetes számok eseté az összeadás)
2. függelék. Mátrixszámítási praktikum-ii. Lineáris algebrai eljárások
függelék /9 oldal Eötvös Lórád udomáyegyetem ermészettudomáyi Kar Budapest Kemometria tafolyam, Szepesváry Pál függelék Mátrixszámítási praktikum-ii Lieáris algerai eljárások függelék /9 oldal Bevezető
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete
Lieáris egyelet algebrai egyelet kostasok és első fokú ismeretleek pl.: egyees egyelete Lieáris egyeletredser y a b lieáris egyeletek csoportja ugya ao a váltoó halmao Lieáris egyeletredser B b B b B b
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)
Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
1. Mit jelent az, hogy egy W R n részhalmaz altér?
Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál
Alkalmazott matematika, II. félév Összefoglaló feladatok I.
lklmott mtemtik II. félé Össefoglló feldtok I. Műeletek mátriokkl determináns meghtároás mátri foglm. Neeetes mátriok. Mátriok egenlősége. Műeletek mátriokkl (össedás sklárrl ló sorás mátriok lineáris
Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:
Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,
A vezetői munka alapelemei - Döntéselmélet, döntéshozatal lehetséges útjai
A vezetői muk lpelemei - Dötéselmélet, dötéshoztl lehetséges útji Szkgyógyszerész-jelöltek képzése Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi
2.4. Vektor és mátrixnormák
4 Vektor és mátrormák következõkbe összefoglluk témkörhöz felhszálásr kerülõ már tult smeretgot s Defícó : IK IR, ( IN, I K vlós vg komle számok hlmzát elöl) többváltozós függvét vektorormák evezzük, h
Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
Lineáris egyenletrendszerek
Lieáris egyeetredszere dott z ábbi ieáris egyeetredszer: b b b meye mátrios j övetező: b H z -ed redű égyzetes mátri reguáris rgj, i det, or feti egyeetredszer egyérteműe megodhtó, meyre étfée umerius
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
Vektorok által generált altér, lineáris összefüggőség, függetlenség, generátorrendszer, bázis, dimenzió
Vektorok által geerált altér lieáris összefüggőség függetleség geerátorredszer ázis dimezió Ee a része általáosítjuk a téreli ektorokra már megismert haszos fogalmakat. A legfotosa hogy ármely ektortére
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
2018/2019-es iskolaév, júniusi vizsgaidőszak A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL
MŰSZAKI ISKOLA ÉRETTSÉGI VIZSGA ADA, 09 árcius 08/09-es iskolév, júniusi vizsgidőszk A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL Munkterület: GÉPÉSZET, ELEKTROTECHNIKA, ÉPITÉSZET Tntárgy: MATEMATIKA
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
i=1 λ iv i = 0 előállítása, melynél valamelyik λ i
Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,
Valószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Lineáris programozás
LP LP 2 Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek egységár és z, hogy z egyes termékek egy egységéek előállításához
Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra
. Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó
Hanka László. Fejezetek a matematikából
Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet
Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.
5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:
ALGEBRA. 1. Hatványozás
ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:
Frissítve: Síkidomok másodrendű nyomatékai. Egy kis elmélet 1 / 21
Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki Eg kis elmélet 1 / 21 Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki 1. péld: Számítsk ki súlponti és tengelekre számított másodrendű nomtékokt! Megjegzés:
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
Lineáris algebra I. Vektorok és szorzataik
Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális