A sztochasztikus idősorelemzés alapjai

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A sztochasztikus idősorelemzés alapjai"

Átírás

1 A szochaszikus idősorelemzés alapjai Ferenci Tamás BCE, Saiszika Tanszék december 19.

2 Taralomjegyzék 1. Az idősorelemzés fogalma, megközelíései Az idősor fogalma Deerminiszikus és szochaszikus idősorelemzési megközelíések Deerminiszikus idősorelemzés Szochaszikus idősorelemzés Egy példa a ké filozófiára: a deerminiszikus és a szochaszikus rend Sacionariás A sacionariás fogalmának szükségessége Erős és gyenge sacionariás Erős sacionariás Gyenge sacionariás Sacionárius idősorok nevezees jellemzői A sacionariás ellenőrzése, sacionarizálás, rend- és differenciasacionárius idősorok 15 1

3 1. fejeze Az idősorelemzés fogalma, megközelíései Ebben a fejezeben elsőkén definiáljuk az idősor fogalmá (1.1. pon), majd bemuajuk az idősorok elemzésével foglalkozó ké alapveő megközelíési módo (1.2. pon) Az idősor fogalma Az idősor fogalmá megragadhajuk sokasági (elmélei idősor) és mina (empirikus idősor) szemléleben. Sokasági érelemben idősornak nevezzük valószínűségi válozók egy indexel {Y, N} családjá 1, ahol a indexe idő -nek fogjuk nevezni. (Az indexelés, amire az egyes valószínűségi válozóknál az alsó index ual, a valószínűségi válozók közö egy sorrende állí fel: Y 1 előbb van, Y 2 később.) Ilyen érelemben ez ehá lényegében valószínűségi válozók egy sorbarendeze halmaza. Jelenhei például Y a nap végi OTP záróárfolyamo, a nap végi HUF/EUR árfolyamo, a évbeli magyarországi gabonaermelés sb. Néha az is hasznos lesz, ha úgy gondolunk erre, min egy öbbdimenziós valószínűségi válozóra, melynek Y -k a komponensei (csak épp, szemben a szokásos öbbdimenziós eloszlásokkal, a sorrendjünk nem indifferens). N a leheséges időponok halmaza; ez a közgazdasági gyakorlaban legöbbször diszkré, nagyon gyakran egy véges halmaz, például N = {1, 2,..., T }. Ekkor ehá T számú időponunk van, melyeke 1-ől T -ig indexelünk; a valószínűségi válozóink így ehá: Y 1, Y 2,..., Y T. (Műszaki és ermészeudományos gyakorlaban előfordulnak folyonos indexhalmazok is, pl. lehe N = R +. Mi ilyen, ún. folyonos idejű idősorokkal a ovábbiakban nem foglalkozunk, csak diszkré idejűekkel, és az egyszerűség kedvéér azon belül is az N = {1, 2,..., T } eseel.) Lehe például az indexelés jelenése az, hogy = 1 a jövő héfői OTP záróárfolyam, = 2 a jövő keddi sb., és T = 5 (azaz a jövő hé ö munkanapjára vonakozó OTP záróárfolyam az idősorunk). Mina megközelíésben idősornak az a y 1, y 2,..., y T saiszikai adasor (adabázis) nevezzük, amelynek az megfigyelési egységei sorbarendezeek, valamilyen időponhoz kööek. (I már láhaóan alkalmazuk az a konvenció, hogy az időponjaink az {1, 2,..., T } halmaz elemei.) Míg ehá az előbbiekben valószínűségi válozók (sorbarendeze) sorozaával van dolgunk, i már konkré számok (sorbarendeze) sorozaával. Nyilvánvaló, hogy ez uóbbi az előbbi egy realizációja. (Ponosan ugyanúgy, ahogy az 1406 eladásra kínál lakás is egy-egy, összesen 1406 realizáció a kínálai ár, alaperüle sb. válozók (ismerelen) együes eloszlásából.) 1 Ponosan ugyanez a fogalma a valószínűségszámíásban szochaszikus folyamanak szokás nevezni. 2

4 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI 3 Ez uóbbi megjegyzés rögön muaja az idősorelemzés legnagyobb problémájá (és egyben persze kihívásá): az, hogy a gyakorlai feladaokban az egyes időponokhoz arozó valószínűségi válozónkra csak egy realizációnk lesz! Nem hogy 1406 miná nem veheünk a valószínűségi válozóból, de keő sem. (Aligha lehe a holnapi OTP-záróárfolyam, min valószínűségi válozóból ké miná venni... ) Szokás ez, nagyon alálóan, a reprodukálhaalanság problémájának is nevezni. Mindezeke példázza az 1.1. ábra 2, mely az OTP 2010 évi záróárai ábrázolja ben összesen 254 kereskedési nap vol a BÉT-en, ez ehá egy T = 254 elemű idősor; január 4- ől (az első kereskedési napól) 1-gyel kezdve, minden kereskedési napon egyesével növekvően indexelhejük. A feniek fényében világos, hogy az OTP záróárfolyamainak alakulásá elvileg egy 254-dimenziós valószínűségi válozó írja le; az ábrán ennek egyelen realizációja láhaó... ami egyúal bizonyosan az egyelen léező realizáció is erre az idősorra Az OTP záróárai (BÉT), Záróár [F] febr. márc. ápr. máj. jún. júl. aug. szep. ok. nov. dec. Dáum 1.1. ábra. Az OTP 2010 évi záróárai a BÉT-en Ennek megfelelően ehá soha ne felejsük el, hogy az empirikus idősor, hiába is áll 254 számból, valójában egyelen realizáció csak épp egy 254-dimenziós valószínűségi válozóból. (Ahogy például a kínálai ár, alaperüle, szobaszám együes eloszlásából ve egyelen realizáció is három számból áll.) A feni ábrázolás az juaja kifejezésre, hogy az idősoros adaok specialiása (szemben a lakásos példával), hogy a valószínűségi válozó komponensei közö (és így persze a realizál komponensei közö is) sorrendezés van: az ábrázolásnak csak úgy van érelme, ha erre 2 Az ábrázolás elvileg nem eljesen korrek, hiszen ez az idősor ugyebár diszkré, ezér az egyes ponoka nem köhenénk össze, ám i olyan sok időponunk van, hogy ez lényeges hibá nem jelen (amúgyis szabad szemmel szine megkülönbözeheelenül közel lennének a ponok).

5 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI 4 ekineel vagyunk; nyilván az ábra is e sorbarendezés figyelembevéelével készül. A feniek mind ún. egyválozós idősorok volak, hiszen skalárérékű valószínűségi válozóka, ill. realizáljaika vizsgáluk. Természeesen semmi akadálya annak, hogy ehelye vekorérékű valószínűségi válozókra érjünk á (pl. OTP árfolyam és HUF/EUR árfolyam együes vizsgálaa), ilyen öbbválozós idősorról szokás beszélni. Ez egy még izgalmasabb, és persze bonyolulabb maemaikai formalizmusú erüle, hiszen ilyenkor nem csak a különböző időponok közöi, hanem a különböző válozók közöi kapcsola kérdésé is kezelni kell. Mi mos egyválozós idősorokkal fogunk foglalkozni Deerminiszikus és szochaszikus idősorelemzési megközelíések Az idősorok elemzésének ké alapveő megközelíése, módszerana alakul ki: a deermiszikus ( alpon) és a szochaszikus ( alpon) idősorelemzés. Megjegyezzük, hogy valójában mindkeő az ún. időarományon örénő elemzés kaegóriájába esik (mivel azon alapulnak, hogy az idősor külöböző időponokhoz arozó érékei közö eremenek kapcsolao). Tágabban szemlélve, az idősorelemzés másik nagy kaegóriája a frekvenciaarományon örénő elemzés, ezzel azonban nem fogunk részleeiben foglalkozni. A frekvenciaarományon örénő elemzés lényege (némiképp leegyszerűsíve), hogy az idősor Fourierranszformációval szinuszhullámok összegére bonja. Beláhaó, hogy idősorok egy széles csoporja ekvivalensen reprezenálhaó úgy, hogy megadjuk, hogy az egyes frekvenciájú szinuszhullámoka milyen súllyal kell kombinálni, hogy megkapjuk az idősor. (Az ekvivalens reprezenáció ala az érjük, hogy oda-vissza á lehe érni a ké leírás közö.) Ez uóbbira szokák az mondani, hogy időaromány helye frekvenciaarományon íruk fel az idősor; ebből is sok hasznos és érdekes kövekezeés lehe levonni. Ez a módszeran szokák spekrális elemzésnek is nevezni Deerminiszikus idősorelemzés Az ún. deerminiszikus idősorelemzés azon a felevésen nyugszik, hogy az idősor alakíó ényezők, elvileg legalábbis, eljeskörűen számbaveheőek, és ez alapján az idősor alakulása, elvileg legalábbis, ökélees ponossággal felírhaó lenne. A vélelennek csak annyiban ju szerep, hogy valami ákozo pech folyán a gyakorlai eseekben ez a eljeskörű felírás soha nem valósul meg (korláozoak a mérési leheőségek, korláozo a udásunk, hibával udunk csak mérni sb.), emia a valóság mindig elér a modell szerini becslésünkől. (Vegyük észre, hogy ez az elérés eljesen analóg a kereszmeszei regresszió elérésválozójával, amiben szinén a feni okok miai hibá sűríeük.) Azonban, és ez nagyon fonos, ebben a modellezési filozófiában a vélelen szerepe i vége is ér: kialakíja az ado időszakbeli ponos éréke (elérve valamennyivel a becslésünkől), ám ennyi, a későbbi időszakokra ennek már nincs haása! (Természeesen a későbbi időponokban is lesz elérés, ehá o is szerepe kap a vélelen, ám ez már az előző(ek)ől függelenül alakul minha minden időpillanaban pénzfeldobásszerűen dönenénk a ényleges érék becsülől való eléríéséről.) Ez a filozófia a dekompozíciós idősormodellek felé mua, melyek különböző, elérő aralmú komponensekre próbálják bonani az idősor (melyekől az idősor valamilyen függvényszerű módon függ). A legnépszerűbb modellben szokás beszélni pl. rendről (hosszú ávú alapirányza), ciklusról (éven úli ingadozás a rend körül) és szezonaliásról (évszakról-évszakra ingadozó, ehá éven belüli elérés a rend és ciklus szerini érékől). Amennyiben felesszük, hogy ezek addiíve evődnek össze, úgy az idősormodellünk a kövekezőképp néz ki: Y = R + C + S + u,

6 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI 5 ahol R, C és S a rend, a ciklus és a szezonaliás rendre, u pedig a már emlíe elérésválozó. Ezek a komponensek klasszikus saiszikai (jellegében deskripív saiszikai) módszerekkel (pl. analiikus rendszámíás) becsülheőek. A deerminiszikus idősorelemzéssel (mellyel elsősorban hosszúávú előrejelzések adása a cél), a ovábbiakban nem foglalkozunk Szochaszikus idősorelemzés A szochaszikus idősorelemzés alapveő filozófiai elérése, hogy bár ez a modell is adni fog egy becsül éréke az idősor ado időponbeli érékére, és feléelezi, hogy a valós érék eől vélelen módon elér, ám abból indul ki, hogy ennek a vélelen elérésnek később is haása van: az idősor későbbi alakulásá is befolyásolja. Úgy is szokák mondani, hogy az idősor fejlődésében öngeneráló haások érvényesülnek: egy ado időpillanabeli (vélelen) elérés befolyásolja a későbbi érékeke is, ehá a vélelennek folyamaépíő szerepe van. E megközelíés nagy sikerrel alkalmazák különböző közgazdasági (kiemelen: pénzügyi) idősorok modellezésére; elsősorban rövid ávra Egy példa a ké filozófiára: a deerminiszikus és a szochaszikus rend Mos megnézünk egy egyszerű példá, mely közvelenül a ké modellezési iskola felevései szemlélei, ám a későbbiek szemponjából is nagyon jól fog jönni. Vegyük a kövekező ké idősor-specifikáció: Y (D) = α + u, Y (S) = α + Y (S) 1 + u, Y 0 = 0. (Láhaó, hogy mindké idősor a sokaságban 3 specifikáluk.) Az egyszerűség kedvéér feléelezzük, hogy u N ( 0, σ 2), mégpedig különböző -kre függelenül. Első ránézésre öbb hasonlóság is felfedezheő a ké specifikáció közö. Mindké idősor a 0- ból indul (a 0 időpillanaban) és érezheő, hogy mindkeőre igaz, hogy egy időszakkal később várhaóan α-val nagyobb éréke vesznek fel. (Az α ermészeesen lehe negaív is.) Hogy ez az állíás precízebben is megfogalmazzuk, vegyük észre, hogy az Y (S) behelyeesíheünk (hiszen ha Y (S) Y (S) = α + Y (S) 1 + u = α + = α + Y (S) 1 + u, akkor nyilván Y (S) 1 = α + Y (S) ( α + Y (S) 2 + u 1 ) + u = [ ( ) ] = α + α + α + Y (S) 3 + u 2 + u 1 + u =... = α + definíciójába rekurzíve 2 + u 1 sb.): u i. Az inuiív észrevéelünke ehá ( úgy fogalmazhajuk meg mos már precízen, hogy EY (D) = E (α + u ) = α és EY (S) = E α + ) i=1 u i = α, ehá várhaóérékben minden időpillanaban ugyanaz a ké idősor éréke. (Kihasználuk, hogy összeg várhaóéréke a várhaóérékek összege, illeve, hogy konsans várhaóéréke sajá maga és Eu i = 0.) 3 Ponosan innen lászik az is, hogy az Y 0 = 0 ermészeesen nem az jeleni, hogy az Y 0 az a 0 (min valós szám), hiszen az Y -k valószínűségi válozók, ez ehá úgy érendő, hogy az Y 0 az az elfajul valószínűségi válozó, mely 1 valószínűséggel a 0 éréke veszi fel. i=1

7 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI 6 Ez egy nagyon komoly megállapíás, ám van különbség is a ké idősor fejlődése közö. Ez rögön világos lesz, ha felírjuk ( a szórásnégyzee egy álalános időponra: D 2 Y (D) = D 2 (α + u ) = σ 2 és D 2 Y (S) = D 2 α + ) i=1 u i = σ 2. (Kihasználuk, hogy konsans minden valószínűségi válozóól függelen (és szórásnégyzee nulla), és hogy függelen valószínűségi válozók összegének szórásnégyzee a szórásnégyzeek összege.) A ké idősor ehá várhaóérékban ugyan azonos, ám Y (S) egyre nagyobb kilengésekkel ingadozik ezen várhaóérék körül, míg Y (D) állandóakkal. Megjegyezzük, hogy mivel nyilván mind Y (D), mind Y (S) normális eloszlású (hiszen a normális eloszláscsalád zár a konvolúcióra és a konsanssal elolásra), így a feni ké megállapíással eljesen le is íruk az idősoroka. (Hiszen egy normális eloszlás egyérelműen meghaároz várhaóéréke és varianciája.) A fenieke számíógépes szimulációval szemlélehejük: vélelenszámgeneráorral előállíunk u N ( 0, σ 2) számoka, majd így lejászhajuk egy leheséges lefuásá az idősornak. (Mind Y (D) -, mind Y (S) - szimulálhajuk ilyen módon.) E megközelíés előnye, hogy míg valós sziuációban nem ismerjük a sokasági eloszlás (épp ennek meghaározása lesz a felada), csak egy realizála (ső, idősorelemzésnél bizosan legfeljebb egy realizáljá láhajuk az ismerelen sokasági eloszlásnak), addig ebben az eseben ismerjük, ső, mi haározzuk meg (a vélelenszámgeneráor beállíásával) a sokasági eloszlás. Ennek megfelelően ermészeesen ebben az eseben veheünk akárhány realizála a sokasági eloszlából (egyszerűen újra lefuajuk a szimuláció). Ez szemlélei az 1.2. ábra, melyen 9-9 realizála ábrázolunk a Y (D) (kékkel) és Y (S) (pirossal) idősorokból α = 1, σ 2 = 9 paraméerek melle. (A jobb áekinheőség vége csak 3-3 realizála ábrázolunk egy grafikonon.) Megjegyezzük, hogy ezeke a lefuásoka szokás rajekóriának is nevezni. Az ábra anulságosan igazolja vissza mindaz, ami eddig elmélei úon levezeünk. Egyrész jól lászik, hogy várhaóérékben ényleg egyezik a ké idősor (már ennyi ábrából is érezheő, hogy az y = x egyenes körül ingadoznak); és az is ökéleesen lászik, hogy míg Y (D) állandó szórással ingadozik ezen egyenes körül, addig Y (S) egyre nagyobb szórással ( legyezőszerűen kiágul ezen egyenes körül). Mos már elárulhajuk, hogy Y (D) - szokás deerminiszikus rendnek, Y (S) -e pedig szochaszikus rendnek nevezni. (A rend elnevezés jogosságá épp a várhaóérékek alakulásáról e megállapíásunk indokolja.) Már a specifikációkból is láhaó, hogy a deerminiszikus rend alakulása a deerminiszikus idősorelemzési iskola premisszái eljesíi, a szochaszikus rend a szochaszikus idősorelemzésié. És ebből egy újabb fonos, aralmi kövekezeés vonhaunk le az idősorok fejlődésének jellegzeességeire vonakozóan. A deerminiszikus rend alakulásá úgy lehe elképzelni, hogy a -edik időponban fellépünk az α ponba, majd egy N ( 0, σ 2) vélelenszám szerin perurbáljuk a pozíciónka. A szochaszikus rend eseén az előző pozícióból fellépünk α- és uána éríjük el a pozíciónka egy N ( 0, σ 2) vélelenszám szerin. (Mindezek a mos ismer sokasági specifikációból világosak.) Hogy mi a különbség? Ha a vélelengeneráor pon egy nagyon nagy, vagy nagyon kicsi éréke dob ki, az ugyan kiugró pozíció fog eredményezni, ám ennek deerminiszikus rendnél semmilyen jelenősége nincs a későbbiek szemponjából (eől függelenül α-be lépünk és generálunk újra vélelenszámo a kövekező időponban), addig szochaszikus rend eseén nagyon is van: az egész folyama a kiugró pozícióól folyaódik ovább! Ez legjobban alán a legalsó részábra legfelső rajekóriáján lászik: miuán a 25. időpillanaban egy nagy poziív vélelenszámo kapunk, a nagy kiugrás nem egyszeri vol (ahogy deerminiszikus rend eseén le volna), hanem lényegében elolódo az idősor, és onnan folyaódo az épülése. Mindez a specifikációból kövekezik, ermészeesen. Az is mondhanánk, hogy a szochaszikus rend eseén az idősorba beépülnek a sokkok, míg a deerminiszikus rendbe nem.

8 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI ábra. Y (D) (kék) és Y (S) (piros) szimulál lefuása 100 időegységre Ez a példa jól szemlélei, hogy mi kell az ala éreni, hogy egy idősorban a vélelennek folyamaépíő szerepe van, hogy öngeneráló haások érvényesülnek. Megjegyezzük, hogy az Y = Y 1 +u specifikáció szokás vélelen bolyongásnak (RW, random walk) is nevezni, hiszen Y felfoghaó úgy is, min egy objekum ( a bolyongó ) érbeli helyzee. Azaz: a bolyongó kezdeben az origóban áll, minden időpillanaban előveszi a vélelenszámgeneráorá, és annyi lép felfelé, amennyi a vélelenszám-generáor mua. (Ez ermészeesen

9 1. FEJEZET. AZ IDŐSORELEMZÉS FOGALMA, MEGKÖZELÍTÉSEI 8 negaív is lehe.) Ez ehá egy ún. egydimenziós bolyongás. Az Y = α + Y 1 + u ípusú folyama neve elolásos vélelen bolyongás (RWD, random walk wih drif), hiszen ilyenkor a bolyongó először deerminiszikusan felfelé lép α- (elolás, sodródás ) és uána nézi meg a vélelenszámgeneráorá. RWD-folyamaokra a feniekben már láunk példáka, az 1.3. ábrán pedig 5 szimulál RW-folyama rajekóriájá láhajuk. Érdemes ellenőrizni a megbeszél ulajdonságok eljesülésé! Ezen folyamaoknak a valószínűségszámíásban van nagy jelenőségük ábra. Vélelen bolyongás (RW) szimulál rajekóriái

10 2. fejeze Sacionariás A sacionariás az idősorelemzés egyik alapveő fogalma; lényegében egy megköés jelen az idősor valószínűségi srukúrájára nézve. E megköés azér szükséges, hogy az idősor saiszikai eszközökkel kézbenarhaó legyen. (És mer épp emia a későbbi ismereendő módszeran is sacionárius idősoroka fog igényelni.) A 2.1. ponban megindokoljuk, hogy miér szükséges ez a fogalom, mi a bevezeésének a logikája. Ez köveően, a 2.2. ponban precízen is bevezejük a ké, gyakran használ sacionariás fogalma, majd a 2.3. ponban megmuajuk pár nevezees jellemzőjé a sacionárius idősoroknak. Ez már csak azér is fonos, mer a későbbiek szine kizárólag ilyen idősorokkal fogunk dolgozni. A 2.4. ponban megmuajuk, hogy az idősorok sacionariásá hogyan udjuk megvizsgálni. Ez azér különösen fonos, mer a későbbiekben, amin már ualunk is rá, sacioner idősorokra lesz szükségünk a modellépíéshez. Emia i árgyaljuk az a másik nagyon fonos kérdés is, hogy mi a eendő nem-sacioner idősorok eseén, hogyan udjuk őke sacioner idősorrá ranszformálni ( sacionarizálás ) A sacionariás fogalmának szükségessége Hasonlóan a kereszmeszei adaelemzéshez, idősoros eseben is az lehe a célunk, hogy a mina alapján rekonsruáljuk az ismerelen háéreloszlás, amiből a mina származik. Az idősor eljes leírásá az adja, ha megadjuk a komponenseinek, ehá az egyes időponhoz arozó valószínűségi válozóknak az együes eloszlásá. Jegyezzük meg, hogy az egyes időponok önmagában ve eloszlása nyilván kevés, hiszen ezekből semmi nem udunk az időponok közöi kapcsolaokról. Gondoljunk akár csak a legegyszerűbb esere: T = 2 és az idősor eloszlása kédimenziós normális. A 2.1. ábra ké ilyen esee szemléle, a kédimenziós sűrűségfüggvény szinvonalakkal megjeleníve. A ké ese jellegzeessége, hogy mindké veülei eloszlásuk (ehá: mindké időponban az ado időponra önmagában ve eloszlás) ponosan ugyanaz (ez szemléleendő az ábrán szinén felüneük ezeke a veülei eloszlásoka, mégpedig pon úgy, ahogy a kédimenziós eloszlás le kéne veíeni ), mégis a ké idősor aralma drámaian elérő: nagyon nem mindegy, hogy ha a részvény ado napi árfolyama az álagánál magasabb, akkor a kövekező napi várhaóan álagánál alacsonyabb, vagy pon hogy magasabb lesz... Kicsi precízebb valószínűségszámíási erminológiával megfogalmazva: a ké eloszlás várhaérék-vekora és szórásnégyzeei eljesen azonosak, ami elér, az a kovariancia (és így persze a korreláció is). Az is világos mellesleg valószínűségszámíásból, hogy kizárólag akkor mondhajuk, hogy a veülei eloszlások elégségesek, ha az egyes időponok füg- 9

11 2. FEJEZET. STACIONARITÁS 10 gelenek (hiszen ekkor az együes sűrűségfüggvény 1 előállíhaó a veülei sűrűségfüggvényekből, egyszerű szorzással). Ez nyilván irreális felevés a legöbb gyakorlai eseben. Minden információ álalánosságban csak az együes eloszlás hordoz y y x 2 y x y x x 2.1. ábra. Ké kédimenziós normális eloszlás sűrűségfüggvénye (szinvonalakkal) és veülei eloszlásaik (szemléleesen o, ahová ényleg veíeni lehene a kédimenziós felülee); úgy, hogy az eloszlások mindké veülei eloszlása ponosan egyezik, mégis drámaian elérőek aralmilag Az 1. fejezeben mondoak szerin azonban az együes eloszlás meghaározására szemben a kereszmeszei eseel semmilyen reményünk nincs: míg 1406 mina alapján a 7 válozónk együes eloszlása jól rekonsruálhaó, addig i, egyelen mina lévén, lényegében semmi nem udunk mondani az együes eloszlásról. Ső, nem csak az együes eloszlásról nem udunk érdemben nyilakozni, de még a veülei eloszlásokról (i: az idősornak az egyes időponokban önmagában ve eloszlásairól) sem: egyelen realizációból érelmesen még várhaóéréke sem udunk mondani, nemhogy eloszlás rekonsruálni. Ebből ehá világos, hogy az idősorelemzéssel csak úgy udunk érdemben ovábbhaladni, ha az együes eloszlásra bizonyos megköéseke eszünk. Ez fog elvezeni minke a sacionariás fogalmához. Először egy rávezeő problémával kezdünk. Tegyük fel, hogy valaki megkér minke, hogy adjuk meg a január 4.-i OTP záróárfolyam várhaóéréké. (Ez az Y 1 az 1.1. ábra példáján.) Ahogy már monduk, ovábbi megköés nélkül ez a felada reményelen, hiszen arra a valószínűségi válozóra egyelen minánk van (y 1 = 5492), amiből, érelmesen legalábbis, nem lehe várhaóéréke becsülni. (Min ahogy semmi más sem.) Tegyük fel azonban, hogy valaki megsúgja, hogy az együes eloszlás olyan, hogy minden veülei eloszlásnak (ehá minden nap záróárának) ugyanaz a várhaóéréke. Ekkor már draszikusan más a helyze! Ha ugyanis ez a felevés igaz, akkor ermészeesen a második (vagy bármelyik más) időponbeli realizáció is ugyanúgy használhaó a várhaóérék becslésére, min az első napi; azaz: a különböző naphoz arozó érékeke összeönhejük a várhaóérék becslé- 1 Mi mos csak olyan idősorokkal foglalkozunk, melyeknél a valószínűségi válozó eloszlása folyonos, és így léezik sűrűségfüggvény.

12 2. FEJEZET. STACIONARITÁS 11 séhez. Márpedig 254 érékből nagyon is lehe várhaóéréke becsülni! E felevés híján azonban a külöböző időponbeli érékeke nem használhauk volna fel együ. Ez a példa rámua arra, hogy ha bizonyos megszoríásoka eszünk (a példában: hogy minden veülei eloszlás várhaóéréke ugyanaz), akkor a kezdeben reményelen feladao kezelheővé esszük (legalábbis bizonyos szemponok szerin). E kiköések eljesülésé persze valahogy ellenőrizni kell, de erre majd később, a 2.4. ponban érünk vissza Erős és gyenge sacionariás Mos bevezejük, a feniek álal moiválva, idősorok sacionariásának fogalmá. (Jobban mondva fogalmai, mer öbb sacionariási fogalma is definiálni fogunk.) Előe még emlékezeünk arra, hogy egy öbbdimenziós eloszlás veüleének néhány kiválaszo komponensének együes eloszlásá nevezzük. Például az X, Y, Z, V valószínűségi válozókból (min komponensekből) álló öbbdimenziós (négydimenziós) valószínűségi válozónak 4 darab egydimenziós veülei eloszlása van (az X, az Y, a Z és a V válozók (önmagában ve) eloszlása), 6 darab kédimenziós veülei eloszlása van (az X, Y, X, Z, X, V, Y, Z, Y, V és Z, V párok együes eloszlása) és így ovább. (Természeesen, min az ez a példa is muaja, a veülei eloszlás is lehe öbbdimenziós, azaz egy együes eloszlás veülei eloszlása is jelenhe együes eloszlás.) Erős sacionariás Kezdjük egy nagyon erős megköéssel. Egy idősor erős érelemben sacionáriusnak (vagy: erős érelemben sacionernek) nevezünk, ha minden véges dimenziós veüleének együes eloszlása (ehá: akárhány elemű veüleről van szó, és ezeke az elemeke akárhogy válaszjuk ki az idősor komponensei (azaz időponjai) közül) elolásinvariáns, minden érelmes elolásra. Például mondjuk az, hogy háromdimenziós veüleek együes eloszlására vagyunk kíváncsiak; egy ilyen leheséges veüle például az Y 1, Y 3 és Y 7 együes eloszlása. Ha az erős sacionariás fennáll, akkor e három együes eloszlásának ugyanannak kell lennie, min Y 2, Y 4 és Y 8 együes eloszlásának, vagy épp Y 12, Y 14 és Y 18 együes eloszlásának, vagy épp Y 212, Y 214 és Y 218 együes eloszlásának, és egyálalán: minden más, elolással kijelöl időpon együes eloszlásának. (Elolással kijelölés i olyan, minha egy ablako mereven végigolnánk az idősoron, ehá az egyes időponok közi különbségeknek ugyanannyinak kell lenniük.) És ennek ermészeesen nem csak a háromdimenziós veüleekre kell eljesülnie, hanem az egydimenziósokra, a kédimenziósokra,... és az n 1 dimenziósokra is. (Azér kelle úgy fogalmaznunk, hogy minden érelmes elolásra, mer nem véges idősoroknál ez az ablako nyilván nem olhajuk ki az idősoron úlra.) Precízen megfogalmazva: k 1 eseén 1, 2,..., k -ra Y 1, Y 2,..., Y k együes eloszlása megegyezik Y 1+h, Y 2+h,..., Y k +h együes eloszlásával, h-ra (ha az i szereplő komponensek mind az idősor részei). Ez a feléel (már a kvanorok számából is érezheően... ) rendkívül soka köveel meg. Vegyük észre például, hogy ennek része az előző pon végének példa-megköése: a definíció k = 1-gyel alkalmazva az kapjuk, hogy erős sacionariás eseén minden egyes időponban ponosan ugyanannak kell lennie az idősor ado időponbeli (veülei) eloszlásának. (Így nyilván a várhaóérékének, és egyálalán, minden momenumának is ugyanannak kell lennie, minden időponban.) Ennek megfelelően, ha egy idősor erősen sacioner, az rendkívüli módon megkönnyíi az elemzésé. Nem csak a várhaóérékének becsléséhez használhaó fel együ az összes időponbeli érék (ehá y 1, y 2,..., y T ), de a szórásnégyzeének, ferdeségének sb., ehá álalában, bármilyen momenumának becsléséhez, ső: a definíció k = 2-re alkalmazásából lászik, hogy az egymás köveő időponok kédimenziós eloszlása is ugyanaz, ehá minden időpon és a rákövekező időpon közi

13 2. FEJEZET. STACIONARITÁS 12 korreláció is ugyanaz kell legyen (függelenül aól, hogy melyik ez a ké időpon, csak az számí, hogy egymás uániak legyenek), és ennek becsléséhez felhasználhajuk az (y 1, y 2 ), (y 2, y 3 ),..., (y T 1, y T ) érékeke. Ső, a keő különbségű időponok eloszlása is azonos, függelenül aól, hogy melyek a konkré időponok (csak az számí, hogy időkülönbségük keő legyen), így korrelációjuk is azonos, és emia e korreláció (szokák úgy is hívni: a keő késleleéshez arozó korreláció) becsléséhez felhasználhaóak az (y 1, y 3 ), (y 2, y 4 ),...,(y T 2, y T ) párok érékei, és így ovább. (Tehá például minden háromdimenziós (sb.) veülei eloszlás is azonos lesz, elolásól függelenül, csak ezek nem bírnak olyan nagy gyakorlai jelenőséggel, nincs is olyan közismer leírójuk, min kédimenziósoknál a korreláció.) Gyenge sacionariás Az láhaó, hogy a felvázol problémá az erős sacionariás elfogadása megoldja, csak épp ezzel bizonyos érelemben áesünk a ló úloldalára : az erős sacionariás olyan komplex köveelményrendszer, hogy ellenőrzése lényegében reményelen minából. Éppen emia, a gyakorlai alkalmazásokban ehelye inkább egy gyengíe válozaá szokás használni. A gyengíés moivációja, hogy csak azoka a köveelményeke hagyjuk meg az erős sacionariásból, amelyek kézzelfoghaó saiszikai jellemzőkhöz kapcsolódnak: például a kédimenziós eloszlásoknak van gyakorlai jelenőségük (fonos leírójuk kovariancia/korreláció), ám a három (és öbb) dimenziós eloszlásoknak nincs ilyen jellemzőjük, ezér keőnél nagyobb dimenziójú veüleekre egyálalán nem eszünk kiköés. Ső, az egy- és kédimenziós eloszlásoknál is enyhíünk a feléeleken: nem az eloszlások eljes egyezőségé köveeljük meg, csak az első és második momenumban örénő egyezés. (Kédimenziós eseben az első momenumnak nincs érelme, a második momenum pedig a kovariancia lesz.) Mindezeke összefoglalva, és precízzé éve: egy idősor gyenge érelemben sacionáriusnak (vagy gyenge érelemben sacionernek) nevezünk, ha a kövekező három feléel eljesül rá: 1. Minden időponban ugyanaz az idősor várhaóéréke, ehá léezik a közös m EY i várhaóérék. 2. Minden időponban ugyanaz az idősor szórásnégyzee, ehá léezik a közös σ 2 D 2 Y i szórásnégyze. 3. Ké időpon közi kovariancia kizárólag a ké időpon külöbségéől (a késleleésől) függ, ehá cov (Y i, Y i+k ) = E [(Y i EY i ) (Y i+k EY i+k )] γ k, minden i-re. Azonnal láhaó, hogy egy-az-egyben az erős sacionariás köveelményei isméelük meg, csak épp mindössze egy- és kédimenziós veüleekre, és mindössze első ké momenumban örénő egyezésre. (Szokás a gyenge sacionariás kovariancia-sacionariásnak is nevezni.) Észreveheő mellesleg, hogy ez a gyengíés ponosan összhangban van azzal, ami akkor ennénk, ha udnánk, hogy az idősor öbbdimenziós normális eloszlású (és így persze minden veülei eloszlása is (öbbdimenziós) normális). Ekkor ugyanis egyrész az első ké momenum eljesen meghaározza az eloszlás, másrész pl. négy időpon együes eloszlása eljesen deerminál, ha ismerjük a belőlük kiválaszhaó összes pár eloszlásá. (Hiszen az egyes időponok várhaóérékén úl csak a kovarianciamárixra van szükségünk (e keő eljeskörűen leír egy öbbdimenziós normális eloszlás), márpedig az páronkén számolhaó.) Magyarán: öbbdimenziós normális eloszlásnál semmilyen plusz nem jelen a keőnél öbb elemű veüleek, illeve a keőnél nagyobb momenumok ismeree. A feniekből ehá világos, hogy az erős sacionariás fogalma valóban erősebb: az erősebb sacionariás implikálja a gyengé. A fordío irány álalában nem áll fenn (ehá a ké fogalom

14 2. FEJEZET. STACIONARITÁS 13 nem ekvivalens), de az előző bekezdés fényében világos, hogy speciálisan öbbdimenziós normális eloszlású idősorra (ún. Gauss-folyama) igen, o ehá e ké fogalom egybeesik. A ovábbiakban, ha nem mondunk más, sacionariás ala gyenge sacionariás fogunk éreni. A 2.2. ábra példá mua egy sacioner idősorra: ado, bizosan sacioner sokasági specifikációból 2 szimulációval generálunk három rajekóriá. Érdemes megfigyelni a sacionariási köveelmények ránézésre örénő eljesülésé: nem úgy űnik, minha a rajekóriáknak lenne rendjük és szinén nem űnik úgy, minha a szórás válozna. (Az auokorrelációk időfüggésé nyilván kevésbé lehe szabad szemmel megíélni.) ábra. Példa sacionárius idősorra: három szimulál rajekória az Y = 0,5+0,7 Y 1 +u, u N (0, 3), beláhaóan sacionárius specifikációból 2.3. Sacionárius idősorok nevezees jellemzői Gyenge sacionariás fennállása eseén az egyes megköések logikusan dikálnak bizonyos jellemzőke az idősorra vonakozóan. A kövekezőkben ezeke fogjuk sorra venni. Ha egy idősor sacioner, úgy az előzőek alapján beszélheünk az egyes komponenseinek közös m EY i várhaóérékéről. Ennek becslése mina alapján nyilván: m = 1 T T y i. i=1 2 Ez a specifikáció egy ún. AR(1) folyama, melye később fogunk árgyalni, i mos csak annyi fonos, hogy bizonyosan sacioner. Konkré specifikációja: Y = 0,5 + 0,7 Y 1 + u, u N (0, 3).

15 2. FEJEZET. STACIONARITÁS 14 Ha egy idősor sacioner, úgy az előzőek alapján beszélheünk az egyes komponenseinek közös σ 2 D 2 Y i szórásnégyzeéről. Ennek becslése mina alapján nyilván: σ 2 = 1 T T (y i m). i=1 (I már kihasználuk, hogy a gyenge sacionariás mia léezik közös várhaóérék.) Sokkal izgalmasabb a korreláció kérdése. Először is jegyezzük meg, hogy a különböző időponok (min az idősor egyes komponens valószínűségi válozói) közöi korreláció auokorrelációnak szokás nevezni (az auo ual arra, hogy az idősor szinjén önmagával ve korrelációról van szó). A gyenge sacionariás ehá az köi ki, hogy az Y és Y k közöi auokorreláció kizárólag a k különbségől (a késleleésől) függ, -ől nem. Kézenfekvő akkor, hogy erre a késleleésől függő mennyiségre külön elnevezés vezessünk be. Egy idősor auokovariancia-függvényének nevezzük a γ k = cov (Y 1, Y 1+k ) kifejezés, mely láhaóan k függvénye. Megisméeljük, hogy ez a definíció gyenge sacionariás eseén jogos, hiszen cov (Y 1, Y 1+k ) = cov (Y 2, Y 2+k ) =... = cov (Y T k, Y T ), azaz álalában cov (Y 1, Y 1+k ) = cov (Y 1+h, Y 1+h+k ) minden érelmes h elolásra. Az auokovariancia függvény becslése minából: γ k = 1 T k (y i m) (y i+k m). T k i=1 (A gyenge sacionariás feléelezése mia ermészeesen ámaszkodhaunk arra, hogy léezik közös várhaóérék.) Az auokovarianciának ugyanaz a baja, min kereszmeszei esenél a kovarianciának: a száméréke önmagában kevese mond. Emia, szinén a kereszmeszei esehez hasonlóan, be szokás vezeni az auokorreláció fogalmá, ami gyenge sacionariás eseén nyilván r k = γ k σ, minából 2 becsül éréke előállíhaó az eddigiek felhasználásával: r k = γ k σ 2. Ez szokás auokorreláció-függvénynek (ACF, auocorrelaion funcion) nevezni. (Emia néha r k helye az AC k megnevezés is használják.) Az ACF kézenfekvően ábrázolhaó grafikusan, ha a vízszines engelyen k leheséges érékei, a függőleges engelyen pedig az e késleleésekhez arozó auokorreláció ábrázoljuk. (r 0 = 1 nyilván, ezér ez nem szokás külön felüneni.) Ez az ábrá, mely ermészeesen diszkré függvény lesz, és így oszlopdiagrammal vagy hasonló módon jeleníheő meg, korrelogramnak szokás nevezni. A 2.3. ábra a 2.2. ábra kék színnel jelöl idősorának korrelogramjá muaja. Szinén szokak beszélni egy idősor parciális auokorrelációs függvényéről (PACF, parial auocorrelaion funcion). Emlékezheünk rá, hogy a parciális auokorreláció nem ké válozó, hanem ké válozó és válozók egy halmaza közö érelmezzük; aralma: a ké válozó közi kapcsola erőssége és iránya ha a közük a megado válozókon kereszül erjedő haásoka kiszűrjük. (Ezúal sem fonos, hogy ez ponosan hogyan valósíhajuk meg, mindenesere megvalósíhajuk. I ermészeesen csak lineáris haásokról beszélünk.) A PACF-függvény is ké időpon közö számoljuk, a kérdés már csak az, hogy mik a kiszűr válozók. A válasz kézenfekvő: a ké időpon közöi időponok (min valószínűségi válozók). Ennek megfelelően a 0 késleleéshez arozó PACF szükségképp 0, az 1 késleleéshez arozó PACF pedig r 1 (hiszen ilyenkor nincs mi kiszűrni). A PACF az ACF-hez hasonlóan becsülheő minából, ezzel mos nem foglalkozunk.

16 2. FEJEZET. STACIONARITÁS 15 ACF for Y_ = 0,5 + 0,7 * Y_{-1} + u_ 0,4 +- 1,96/T^0,5 0,2 0-0,2-0,4 ACF for Y_ = 0,5 + 0,7 * Y_{-1} + u_ ,4 lag +- 1,96/T^0,5 0,2 0 PACF for Y_ = 0,5 + 0,7 * Y_{-1} + u_ 2.3. ábra. A 2.2. ábra kék színű idősorának korrelogramja (ACF-függvénye) -0,2 0,4 +- 1,96/T^0,5-0,4 0,2 A 2.4. ábra mua egy parciális auokorrelációs (PACF) függvény, ezúal is a 2.2. ábra kék idősorának példáján. (Tehá ez, és az előző korrelogram összeveheő, olyan érelemben, hogy ugyanahhoz az idősorhoz aroznak.) Érdemes ellenőrizni előbbi megjegyzésünke arról, hogy az lag 1 késleleéshez -0,2 arozó ACF és PACF megegyezik. -0,4 PACF for Y_ = 0,5 + 0,7 * Y_{-1} + u_ ,4 lag +- 1,96/T^0,5 0,2 0-0,2-0, lag 2.4. ábra. A 2.2. ábra kék színű idősorának parciális auokorrelációs (PACF) függvénye 2.4. A sacionariás ellenőrzése, sacionarizálás, rend- és differenciasacionárius idősorok A kövekező felada

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

Síkalapok vizsgálata - az EC-7 bevezetése

Síkalapok vizsgálata - az EC-7 bevezetése Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A sztochasztikus idősorelemzés alapjai Ferenci Tamás BCE, Statisztika Tanszék tamas.ferenci@medstat.hu 2013. november 29. 2 Tartalomjegyzék 1. Az idősorelemzés fogalma, megközelítései 5 1.1. Az idősor

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezhetetlensége

Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezhetetlensége Az árfolyamsávok empirikus modelljei 507 Közgazdasági Szemle, XLVI. évf., 1999. június (507 59. o.) DARVAS ZSOLT Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli elõrejelezheelensége

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 13 Wiener folyama és az Iô lemma Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1 Markov folyamaok Memória nélküli szochaszikus folyamaok, a kövekező lépés csak a pillananyi helyzeől

Részletesebben

Statisztika II. előadás és gyakorlat 1. rész

Statisztika II. előadás és gyakorlat 1. rész Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika

Részletesebben

STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN. Doktori (PhD) értekezés

STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN. Doktori (PhD) értekezés NYUGAT-MAGYARORSZÁGI EGYETEM Széchenyi Isván Gazdálkodás- és Szervezésudományok Dokori Iskola STATISZTIKAI IDŐSORELEMZÉS A TŐZSDÉN Dokori (PhD) érekezés Készíee: Hoschek Mónika A kiadvány a TÁMOP 4.. B-/--8

Részletesebben

Dinamikus optimalizálás és a Leontief-modell

Dinamikus optimalizálás és a Leontief-modell MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

Radnai Márton. Határidős indexpiacok érési folyamata

Radnai Márton. Határidős indexpiacok érési folyamata Radnai Máron Haáridős indexpiacok érési folyamaa Budapesi Közgazdaságudományi és Államigazgaási Egyeem Pénzügy anszék émavezeő: Dr. Száz János Minden jog fennarva Budapesi Közgazdaságudományi és Államigazgaási

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

Az összekapcsolt gáz-gőz körfolyamatok termodinamikai alapjai

Az összekapcsolt gáz-gőz körfolyamatok termodinamikai alapjai Az összekapcsol áz-őz körfolyamaok ermodinamikai alapjai A manapsá használaos ázurbinák kipufoóázai nay hőpoenciállal rendelkeznek (kb. 400-600 C). Kézenfekvő ez az eneriá kiaknázni. Ez mevalósíhajuk,

Részletesebben

A közgazdasági Nobel-díjat a svéd jegybank támogatásával 1969 óta ítélik oda. 1 Az

A közgazdasági Nobel-díjat a svéd jegybank támogatásával 1969 óta ítélik oda. 1 Az ROBERT F. ENGLE ÉS CLIVE W. J. GRANGER, A 003. ÉVI KÖZGAZDASÁGI NOBEL-DÍJASOK DARVAS ZSOLT A Svéd Tudományos Akadémia a 003. évi Nobel-díjak odaíélésé ké fő alkoással indokola: Rober F. Engle eseén az

Részletesebben

MNB-tanulmányok 50. A magyar államadósság dinamikája: elemzés és szimulációk CZETI TAMÁS HOFFMANN MIHÁLY

MNB-tanulmányok 50. A magyar államadósság dinamikája: elemzés és szimulációk CZETI TAMÁS HOFFMANN MIHÁLY MNB-anulmányok 5. 26 CZETI TAMÁS HOFFMANN MIHÁLY A magyar államadósság dinamikája: elemzés és szimulációk Czei Tamás Hoffmann Mihály A magyar államadósság dinamikája: elemzés és szimulációk 26. január

Részletesebben

A BIZOTTSÁG MUNKADOKUMENTUMA

A BIZOTTSÁG MUNKADOKUMENTUMA AZ EURÓPAI UNIÓ TANÁCSA Brüsszel, 2007. május 23. (25.05) (OR. en) Inézményközi dokumenum: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 FELJEGYZÉS AZ I/A NAPIRENDI PONTHOZ 2. KIEGÉSZÍTÉS Küldi:

Részletesebben

DIPLOMADOLGOZAT Varga Zoltán 2012

DIPLOMADOLGOZAT Varga Zoltán 2012 DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

A tudás szerepe a gazdasági növekedésben az alapmodellek bemutatása*

A tudás szerepe a gazdasági növekedésben az alapmodellek bemutatása* A udás szerepe a gazdasági növekedésben az alapmodellek bemuaása* Jankó Balázs, az ECOSTAT közgazdásza E-mail: Balazs.Janko@ecosa.hu A anulmányban azoka a nemzeközi közgazdasági irodalomban fellelheő legfonosabb

Részletesebben

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba Adabányásza: Rendellenesség keresés 10. fejeze Tan, Seinbach, Kumar Bevezeés az adabányászaba előadás-fóliák fordíoa Ispány Máron Logók és ámogaás A ananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kele-magyarországi

Részletesebben

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek

Részletesebben

Módszertani megjegyzések a hitelintézetek összevont mérlegének alakulásáról szóló közleményhez

Módszertani megjegyzések a hitelintézetek összevont mérlegének alakulásáról szóló közleményhez Módszerani megjegyzések a hielinézeek összevon mérlegének alakulásáról szóló közleményhez 1. A forinosíás és az elszámolás kezelése a moneáris saiszikákban Az egyes fogyaszói kölcsönszerződések devizanemének

Részletesebben

Időbeli előrejelzések

Időbeli előrejelzések POLGÁRNÉ HOCHEK MÓNIKA Időbeli előrejelzések A saiszikában az idősor elemzés különböző módszereke alkalmaz az elmúl időszak endenciáinak, összefüggéseinek a felárására és egben ámpono núj a jövő várhaó

Részletesebben

DOI 10.14267/phd.2015011 MORVAY ENDRE A MUNKAERŐPIAC SZTOCHASZTIKUS DINAMIKAI VIZSGÁLATA ELMÉLET ÉS GYAKORLAT

DOI 10.14267/phd.2015011 MORVAY ENDRE A MUNKAERŐPIAC SZTOCHASZTIKUS DINAMIKAI VIZSGÁLATA ELMÉLET ÉS GYAKORLAT MORVAY ENDRE A MUNKAERŐPIAC SZTOCHASZTIKUS DINAMIKAI VIZSGÁLATA ELMÉLET ÉS GYAKORLAT Maemaikai Közgazdaságan és Gazdaságelemzés Tanszék Témavezeő: Móczár József egyeemi anár, az MTA-dokora Morvay Endre

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja:

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja: A hőérzeről A szubjekív érzés kialakulásá dönően a kövekező ha paraméer befolyásolja: a levegő hőmérséklee, annak érbeli, időbeli eloszlása, válozása, a környező felüleek közepes sugárzási hőmérséklee,

Részletesebben

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................

Részletesebben

fényében a piac többé-kevésbé figyelmen kívül hagyta, hogy a tengerentúli palaolaj kitermelők aktivitása sorozatban alumínium LME 3hó (USD/t) 1589

fényében a piac többé-kevésbé figyelmen kívül hagyta, hogy a tengerentúli palaolaj kitermelők aktivitása sorozatban alumínium LME 3hó (USD/t) 1589 www.kh.hu WTI (USD/hordó) 46 46 diesel ARA spo () 456 472 kerozin ARA spo () 215.9.25 Nyersanyagpiaci hírlevél piaci áekinés nyersanyag megnevezés akuális 2 héel ezelői kőolaj B az elmúl ké hében a Bren

Részletesebben

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA KÉN (S) megnevezése a nyelvújíás idején is kevese válozo, ez megelôzôen Zay büdöskônek is neveze 1791 (Zay: Mineralógia), Kovás is így emlíi 1822 (Kovás: Ásványnévár); a nyelvújíás idején kénô 1829 (Schuser:

Részletesebben

A T LED-ek "fehér könyve" Alapvetõ ismeretek a LED-ekrõl

A T LED-ek fehér könyve Alapvetõ ismeretek a LED-ekrõl A T LED-ek "fehér könyve" Alapveõ ismereek a LED-ekrõl Bevezeés Fényemiáló dióda A LED félvezeõ alapú fényforrás. Jelenõs mérékben különbözik a hagyományos fényforrásokól, amelyeknél a fény izzószál vagy

Részletesebben

A Lorentz transzformáció néhány következménye

A Lorentz transzformáció néhány következménye A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre

Részletesebben

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK 2011.8.23. Az Európai Unió Hivaalos Lapja L 217/1 II (Nem jogalkoási akusok) IRÁNYMUTATÁSOK AZ EURÓPAI KÖZPONTI BANK IRÁNYMUTATÁSA (2011. június 30.) az euróra vonakozó adagyűjésről és a 2. Készpénzinformációs

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

II. Egyenáramú generátorokkal kapcsolatos egyéb tudnivalók:

II. Egyenáramú generátorokkal kapcsolatos egyéb tudnivalók: Bolizsár Zolán Aila Enika -. Eyenáramú eneráorok (NEM ÉGLEGES EZÓ, TT HÁNYOS, HBÁT TATALMAZHAT!!!). Eyenáramú eneráorokkal kapcsolaos eyé univalók: a. alós eneráorok: Természeesen ieális eneráorok nem

Részletesebben

Megtelt-e a konfliktuskonténer?

Megtelt-e a konfliktuskonténer? Közpoliikai kihívások az új évizedben Vigvári András Megel-e a konflikuskonéner? Néhány pénzügyi szempon a helyzeérékeléshez és a rendszer áalakíásához KKözhelynek és öbb oldalról bizonyíonak 1 számí az

Részletesebben

2.2.45. SZUPERKRITIKUS FLUID KROMATOGRÁFIA 2.2.46. KROMATOGRÁFIÁS ELVÁLASZTÁSI TECHNIKÁK

2.2.45. SZUPERKRITIKUS FLUID KROMATOGRÁFIA 2.2.46. KROMATOGRÁFIÁS ELVÁLASZTÁSI TECHNIKÁK 2.2.45. Szuperkriikus fluid kromaográfia Ph. Hg. VIII. Ph. Eur. 4, 4.1 és 4.2 2.2.45. SZUPEKITIKUS FLUID KOATOGÁFIA A szuperkriikus fluid kromaográfia (SFC) olyan kromaográfiás elválaszási módszer, melyben

Részletesebben

Összegezés az ajánlatok elbírálásáról

Összegezés az ajánlatok elbírálásáról Összegezés az ajánlaok elbírálásáról 9. mellékle a 92/211. (XII. 3.) NFM rendelehez 1. Az ajánlakérő neve és címe: Budesi Távhőszolgálaó Zárkörűen Működő Részvényársaság (FŐTÁV Zr.) 1116 Budes Kaloaszeg

Részletesebben

Folyamatszemléleti lehetőségek az agro-ökoszisztémák modellezésében

Folyamatszemléleti lehetőségek az agro-ökoszisztémák modellezésében Folyamaszemlélei leheőségek az agro-ökosziszémák modellezésében Dokori (D) érekezés Ladányi Mára Témavezeő: Dr. Harnos Zsol, MHAS, egyeemi anár BCE, Kerészeudományi Kar, Maemaika és Informaika Tanszék

Részletesebben

Szempontok a járműkarbantartási rendszerek felülvizsgálatához

Szempontok a járműkarbantartási rendszerek felülvizsgálatához A VMMSzK evékenységének bemuaása 2013. február 7. Szemponok a járműkarbanarási rendszerek felülvizsgálaához Malainszky Sándor MÁV Zr. Vasúi Mérnöki és Mérésügyi Szolgálaó Közpon Magyar Államvasuak ZR.

Részletesebben

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN eljes mozgás helye csak a nulladik módussal számolni: még azonos ömegek eseén is öbb min 98% súllyal a nulladik módus gerjed. Nem ez a helyze a b) kezdei feléelnél, amikor már m 0,1M melle is öbb min 3%,

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

A Ptk. 201. (2) bekezdése védelmében.

A Ptk. 201. (2) bekezdése védelmében. -- 1998. 8. szám FÓRUM 403 J...,. ~ Dr. Kovács Kázmér ÜGYVÉD. A BUDAPEST ÜGYVÉD KAMARA ALELNÖKE A Pk. 201. (2) bekezdése védelmében. (Feluno arányalanság és az auópálya-használai szerzodések) Vékás Lajos

Részletesebben

A MAGYAR KÖZTÁRSASÁG NEVÉBEN!

A MAGYAR KÖZTÁRSASÁG NEVÉBEN! i 7-5'33/07 A Fovárosi Íéloábla 2.Kf.27.561/2006/8.szám "\"?,', " R ".,--.ic-" i" lvöj.bul.lape" evlcz,,-.'{i-.)., Erkze:.. 2007 JúN 1 :szám:......,;.?:j.or; lvi\:dekleek:,""" : Ekiira ik szam ' m.:...,.

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

Erőmű-beruházások értékelése a liberalizált piacon

Erőmű-beruházások értékelése a liberalizált piacon AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.3 2.5 Erőmű-beruházások érékelése a liberalizál piacon Tárgyszavak: erőmű-beruházás; piaci ár; kockáza; üzelőanyagár; belső kama. Az elmúl évek kaliforniai apaszalaai az

Részletesebben

KELET-KÖZÉP EURÓPAI DEVIZAÁRFOLYAMOK ELİREJELZÉSE HATÁRIDİS ÁRFOLYAMOK SEGÍTSÉGÉVEL. Darvas Zsolt Schepp Zoltán

KELET-KÖZÉP EURÓPAI DEVIZAÁRFOLYAMOK ELİREJELZÉSE HATÁRIDİS ÁRFOLYAMOK SEGÍTSÉGÉVEL. Darvas Zsolt Schepp Zoltán Közgazdasági- és Regionális Tudományok Inézee Pécsi Tudományegyeem, Közgazdaságudományi Kar KELET-KÖZÉP EURÓPAI DEVIZAÁRFOLYAMOK ELİREJELZÉSE HATÁRIDİS ÁRFOLYAMOK SEGÍTSÉGÉVEL Darvas Zsol Schepp Zolán

Részletesebben

A személyi jövedelemadó reformjának hatása a társadalombiztosítási nyugdíjakra

A személyi jövedelemadó reformjának hatása a társadalombiztosítási nyugdíjakra Közgazdasági Szemle, LVIII. évf., 20. december (029 044. o.) Cseres-Gergely Zsombor Simonovis András A személyi jövedelemadó reformjának haása a ársadalombizosíási nyugdíjakra 2009 és 203 közö a magyar

Részletesebben

Rövid távú elôrejelzésre használt makorökonometriai modell*

Rövid távú elôrejelzésre használt makorökonometriai modell* Tanulmányok Rövid ávú elôrejelzésre használ makorökonomeriai modell* Balaoni András, a Századvég Gazdaságkuaó Zr. kuaási igazgaója E-mail: balaoni@szazadveg-eco.hu Mellár Tamás, az MTA dokora, a Pécsi

Részletesebben

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek 5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérsékle, hőmérők A hőmérsékle a esek egyik állapohaározója. A hőmérsékle a es olyan sajáossága, ami meghaározza, hogy a es ermikus egyensúlyban van-e más esekkel. Ezen alapszik

Részletesebben

GYAKORLÓ FELADATOK 5. Beruházások

GYAKORLÓ FELADATOK 5. Beruházások 1. felada Egymás kölcsööse kizáró beruházások közöi válaszás. Ké külöböző ípusú gépe szerezheük be egyazo művele elvégzésére. A ké egymás kölcsööse kizáró projek pézáramlásai ($) a kövekező ábláza muaja:

Részletesebben

Kína 2015.08.01 3:00 Feldolgozóipari index július 50.1 USA 2015.08.03 16:00 Feldolgozóipari index július 53.5

Kína 2015.08.01 3:00 Feldolgozóipari index július 50.1 USA 2015.08.03 16:00 Feldolgozóipari index július 53.5 www.kh.hu 215.7.31 Nyersanyagpiaci hírlevél piaci áekinés nyersanyag megnevezés akuális 2 héel ezelői kőolaj réz LME 3hó () 5298 5565 A Bren kőolaj a folyaa a mélyrepülés az elmúl ké hében, és 9%-al kerül

Részletesebben

Kamat átgyűrűzés Magyarországon

Kamat átgyűrűzés Magyarországon Kama ágyűrűzés Magyarországon Horváh Csilla, Krekó Judi, Naszódi Anna 4. február Összefoglaló Elemzésünkben hiba-korrekciós modellek segíségével vizsgáljuk a piaci hozamok és a banki forin hiel- és beéi

Részletesebben

STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN

STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN Nyuga-magyarországi Egyeem Közgazdaságudományi Kar Széchenyi Isván Gazdálkodás- és Szervezésudományok Dokori Iskola STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN Dokori (PhD) érekezés ézisei Polgárné Hoschek Mónika

Részletesebben

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása Fluoreszkáló fesék fénykibocsáásának vizsgálaa, a kibocsáo fény időfüggésének megállapíása A) A méréshez használ eszközök: 1. A fekee színű doboz aralmaz egy fluoreszkáló fesékkel elláo felülee, LED-eke

Részletesebben

A monetáris aggregátumok szerepe a monetáris politikában

A monetáris aggregátumok szerepe a monetáris politikában MNB-anulmányok 71. 2008 KOMÁROMI ANDRÁS A moneáris aggregáumok szerepe a moneáris poliikában A moneáris aggregáumok szerepe a moneáris poliikában 2008. január Az MNB-anulmányok sorozaban megjelenõ írások

Részletesebben

Gyûjtemények árazásának empirikus vizsgálata A Baedeker-útikönyvek esete*

Gyûjtemények árazásának empirikus vizsgálata A Baedeker-útikönyvek esete* Gyûjemények árazásának empirikus vizsgálaa A Baedeker-úikönyvek esee* Erdôs Péer, a Budapesi Műszaki és Gazdaságudományi Egyeem Phd-hallgaója E-mail: erdos@finance.bme.hu Ormos Mihály, a Budapesi Műszaki

Részletesebben

Instrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell

Instrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell Insrumenális válozók módszerének alkalmazásai Mikroökonomeria, 3. hé Bíró Anikó Keresle becslése: folyonos válaszás modell Folyonos vs. diszkré válaszás: elérő modellek Felevés: homogén jószág Közelíés:

Részletesebben

Fenntartható makrogazdaság és államadósság-kezelés

Fenntartható makrogazdaság és államadósság-kezelés és államadósság-kezelés Balaoni András Tóh G. Csaba (Századvég Gazdaságkuaó Zr.) Budapes, 2011. május Taralom 1. Bevezeés...4 2. A fennarhaó gazdasági növekedés...10 2.1. A neoklasszikus növekedési modell...

Részletesebben

Kollégáimmal arra az elhatározásra jutottunk, hogy kicsit átfabrikáljuk, napra késszé tesszük cégünk magazinjának első számát.

Kollégáimmal arra az elhatározásra jutottunk, hogy kicsit átfabrikáljuk, napra késszé tesszük cégünk magazinjának első számát. Üdvözlöm! Kollégáimmal arra az elhaározásra juounk, hogy kicsi áfabrikáljuk, napra késszé esszük cégünk magazinjának első számá A magazin célja ugyanaz, min a miénk, azaz levenni azoka a erheke az Ön válláról,

Részletesebben

A kereslet hatása az árak, a minõség és a fejlesztési döntések dinamikájára

A kereslet hatása az árak, a minõség és a fejlesztési döntések dinamikájára VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szemle, LV. évf., 2008. december (1094 1115. o.) VÖRÖS JÓZSEF A keresle haása az árak, a minõség és a fejleszési dönések dinamikájára A anulmány egy nagyon álalános

Részletesebben

3D papíron és képernyőn: Három dimenziós alakzatok képi megjelenítése

3D papíron és képernyőn: Három dimenziós alakzatok képi megjelenítése Teaching Mahemaics and Saisics in Sciences, Modeling and Compuer-Aided Approach IPA HU SRB/0901/221/088 3D papíron és képernyőn: Három dimenziós alakzaok képi megjeleníése (Az axonomerikus és a perspekív

Részletesebben

Komáromi András * Orova Lászlóné ** MATEMATIKAI MODELLEK AZ INNOVÁCIÓ TERJEDÉSÉBEN

Komáromi András * Orova Lászlóné ** MATEMATIKAI MODELLEK AZ INNOVÁCIÓ TERJEDÉSÉBEN Koároi András * Orova Lászlóné ** MATEMATIKAI MODELLEK AZ INNOVÁCIÓ TERJEDÉSÉBEN BEVEZETÉS Az új erék, echnológia elerjedésének iseree nélkülözheelen a erel cégek száára, ezér külföldi és hazai kuaók ár

Részletesebben

GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június

GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június GAZDASÁGPOLITIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi

Részletesebben

Kiadja a Barankovics István Alapítvány Felelős kiadó: a Kuratórium Elnöke Nyomda: Onix Nyomda, Debrecen

Kiadja a Barankovics István Alapítvány Felelős kiadó: a Kuratórium Elnöke Nyomda: Onix Nyomda, Debrecen Van megoldás ISBN 978-963-85524-4-0 Kiadja a Barankovics Isván Alapívány Felelős kiadó: a Kuraórium Elnöke Nyomda: Onix Nyomda, Debrecen Van megoldás Nyugdíjreform A családi ípusú adórendszer bemuaásakor

Részletesebben

ÁLLAPOTELLENÕRZÉS. Abstract. Bevezetés. A tönkremeneteli nyomások becslése a valós hibamodell alapján

ÁLLAPOTELLENÕRZÉS. Abstract. Bevezetés. A tönkremeneteli nyomások becslése a valós hibamodell alapján Végeselemes módszer alkalmazása csõvezeékekben lévõ korróziós hibák veszélyességének érékelésére enkeyné dr. Biró Gyöngyvér 1 Balogh Zsol 1 r. Tóh ászló 1 Harmai Isván ÁAPOTEENÕRZÉS Absrac anger analysis

Részletesebben

OTDK-dolgozat. Váry Miklós BA

OTDK-dolgozat. Váry Miklós BA OTDK-dolgoza Váry iklós BA 203 EDOGÉ KORRUPCIÓ EGY EOKLASSZIKUS ODELLBE EDOGEOUS CORRUPTIO I A EOCLASSICAL ODEL Kézira lezárása: 202. április 6. TARTALOJEGYZÉK. BEVEZETÉS... 2. A KORRUPCIÓ BEVEZETÉSE EGY

Részletesebben

Demográfiai átmenet, gazdasági növekedés és a nyugdíjrendszer fenntarthatósága

Demográfiai átmenet, gazdasági növekedés és a nyugdíjrendszer fenntarthatósága Közgazdasági Szemle LXI évf 204 november (279 38 o) Varga Gergely Demográfiai ámene gazdasági növekedés és a nyugdírendszer fennarhaósága Magyarországon a ársadalombizosíási nyugdírendszer finanszírozása

Részletesebben

KAMATPOLITIKA HATÁRAI

KAMATPOLITIKA HATÁRAI Pécsi Tudományegyeem Közgazdaságudományi Kar Gazdálkodásani Dokori Iskola Koppány Kriszián JEGYBANKI HITELESSÉG ÉS A KAMATPOLITIKA HATÁRAI Likvidiási csapda és deflációs spirál: elméle és realiás Dokori

Részletesebben

Parametrikus nyugdíjreformok és életciklus-munkakínálat

Parametrikus nyugdíjreformok és életciklus-munkakínálat Közgazdasági Szemle, LX. évf., 213. november (1169 127. o.) Paramerikus nyugdíjreformok és éleciklus-munkakínála A ársadalombizosíási nyugdíjrendszer finanszírozása puszán a demográfiai folyamaok kövekezében

Részletesebben

A likviditási mutatószámok struktúrája

A likviditási mutatószámok struktúrája 2010. KILENCEDIK ÉVFOLYAM 6. SZÁM 581 DÖMÖTÖR BARBARAMAROSSY ZITA A likvidiási muaószámok srukúrája A likvidiás mérésére öbbféle muaó erjed el, amelyek a likvidiás jelenségé különböző szemponok alapján

Részletesebben

Jelzáloghitel-törlesztés forintban és devizában egyszerű modellek

Jelzáloghitel-törlesztés forintban és devizában egyszerű modellek Közgazdasági Szemle, LXii. évf., 215. január (1 26. o.) Király Júlia Simonovis András Jelzáloghiel-örleszés forinban és devizában egyszerű modellek A devizaalapú jelzáloghielek néhány éves népszerűség

Részletesebben

Elméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia

Elméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia Elmélei közgazdaságan I. Alafogalmak és Mikroökonómia A korláozo iacok elmélee (folyaás) Az oligoólisa iaci szerkeze formái Homogén ermék ökélees összejászás Az oligool vállalaok vagy megegyeznek az árban

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

ipari fémek USA 2015.07.22 16:30 Készletjelentés m hordó július USA 2015.07.27 14:30 Tartós cikkek rendelésállománya % június 0.5

ipari fémek USA 2015.07.22 16:30 Készletjelentés m hordó július USA 2015.07.27 14:30 Tartós cikkek rendelésállománya % június 0.5 www.kh.hu 215.7.16 Nyersanyagpiaci hírlevél piaci áekinés nyersanyag megnevezés akuális 2 héel ezelői kőolaj réz LME 3hó () 5565 5765 cink LME 3hó () 254 2 nikkel LME 3hó () 1162 1198 alumínium LME 3hó

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

Portfóliókezelési keretszerződés

Portfóliókezelési keretszerződés Porfóliókezelési kereszerződés Válaszo befekeési poliika Jelen szerződés lérejö alulíro helyen és napon a Random Capial Broker Zárkörűen Működő Részvényársaság (székhely: H-1053 Budapes, Szép u.2., nyilvánarja

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés

Részletesebben

BEVEZETŐ. De, beszélhetünk e, városi szintű fenntarthatóságról?

BEVEZETŐ. De, beszélhetünk e, városi szintű fenntarthatóságról? BEVEZETŐ Dokori érekezésem émaválaszásá a közel 15 éves elepüléservezői, illeve 7 éves okaói munkám apaszalaai, eredményei valamin egy mára már igen kiemel fonosságú szempon a FENNTARTHATÓSÁG haároza meg.

Részletesebben

! Védelmek és automatikák!

! Védelmek és automatikák! ! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

A tôkemérés néhány alapproblémája

A tôkemérés néhány alapproblémája A ôkemérés néhány alapproblémája Hül Anónia, a KOPINT-TÁRKI Konjunkúrakuaó Inéze Zr. udományos anácsadója E-mail: anonia.hul@kopinarki.hu A reálőke és ezen belül a őkeszolgála mérése a nemzei számlák módszerani

Részletesebben

Gépészeti automatika

Gépészeti automatika Gépészei auomaika evezeés. oole-algebra alapelemei, aiómarendszere, alapfüggvényei Irányíás: az anyag-és energiaáalakíó ermelési folyamaokba való beavakozás azok elindíása, leállíása, vagy bizonyos jellemzoiknek

Részletesebben

Közgazdasági idősorok elemzése X-11/12 ARIMA eljárással

Közgazdasági idősorok elemzése X-11/12 ARIMA eljárással Közgazdasági idősorok elemzése X-11/12 ARIMA eljárással 1. Az idősor-elemzés menee Az idősor-elemzés célja, hogy a közgazdasági aralmú idősor hosszú ávú és rövid ávú viselkedésé egyérelmű módon széválassza,

Részletesebben

PÉNZÜGYMINISZTÉRIUM MUNKAANYAG A KÖLTSÉGVETÉSI RENDSZER MEGÚJÍTÁSÁNAK EGYES KÉRDÉSEIRŐL SZÓLÓ KONCEPCIÓ RÉSZLETES BEMUTATÁSA

PÉNZÜGYMINISZTÉRIUM MUNKAANYAG A KÖLTSÉGVETÉSI RENDSZER MEGÚJÍTÁSÁNAK EGYES KÉRDÉSEIRŐL SZÓLÓ KONCEPCIÓ RÉSZLETES BEMUTATÁSA PÉNZÜGYMINISZTÉRIUM MUNKAANYAG A KÖLTSÉGVETÉSI RENDSZER MEGÚJÍTÁSÁNAK EGYES KÉRDÉSEIRŐL SZÓLÓ KONCEPCIÓ RÉSZLETES BEMUTATÁSA Függelék 2007. június Taralomjegyzék FÜGGELÉK. számú függelék: Az Országgyűlés

Részletesebben

1997. évi LXXXI. törvény. a társadalombiztosítási nyugellátásról, egységes szerkezetben a végrehajtásáról szóló 168/1997. (X. 6.) Korm.

1997. évi LXXXI. törvény. a társadalombiztosítási nyugellátásról, egységes szerkezetben a végrehajtásáról szóló 168/1997. (X. 6.) Korm. 1997. évi LXXXI. örvény a ársadalombizosíási nyugelláásról, egységes szerkezeben a végrehajásáról szóló 168/1997. (X. 6.) Korm. rendeleel [A vasag beűs szöveg az 1997. évi LXXXI. örvény (a ovábbiakban:

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN

STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN DOKTORI (PhD) ÉRTEKEZÉS Polgárné Hoschek Mónika Nyuga-magyarországi Egyeem Sopron. STATISZTIKAI IDİSORELEMZÉS A TİZSDÉN Érekezés dokori (PhD) fokoza elnyerése érdekében

Részletesebben

1. feladat Összesen 25 pont

1. feladat Összesen 25 pont É 047-06//E. felada Összesen 5 pon Bepárló készülékben cukoroldao öményíünk. A bepárló páraerében 0,6 bar abszolú nyomás uralkodik. A hidroszaikus nyomás okoza forrponemelkedés nem hanyagolhaó el. A függőleges

Részletesebben