A Lorentz transzformáció néhány következménye

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Lorentz transzformáció néhány következménye"

Átírás

1 A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre a köekező ranszformáció írja le: ( z = ( ( z A feni képle eseén a ké rendszer úgy álaszouk meg, hogy koordináa engelyeik párhuzamosak legyenek és a K rendszer a z-engellyel párhozamosan mozogjon sebességgel a K rendszerhez képes. A képleben c-el jelölük a kiünee sebessége. A alóságban a fény erjedési sebessége az a sebesség, amely minden inercia rendszerben állandó nagyságú, hozzáeőleg c = m/s. Az előző képleből egyszerűen leolashajuk, hogy ké inercia rendszer közöi sebesség nem haladhaja meg a fénysebessége, hiszen akkor képzees mennyiségeke kapnánk a ranszformál koordináákra, ami fizikailag nem érelmezheő. (. Lorenz konrakció Hendrik Anoon Lorenz Vegyünk egy l hosszúságú ruda, amelynek az egyik égé helyezzük a K és K rendszer közös origójába. Mérjük meg a hosszá a K rendszerben, agyis adjuk meg a égpon z = l koordináájá = 0-ban. Persze a K rendszerben más időben leszünk és i a rúd másik ége a z = l ponban lesz, agyis a sebességgel mozgó rendszerben más hossza fogunk mérni, min a rúdhoz képes álló rendszerben: ( ( ( 0 l = c l (, Az előzőekből a köekező ké egyenlee kapjuk: = l (3 l = l (, (4

2 ehá l = l (5 A mozgó rendszerben ehá a ruda röidebbnek mérjük! Ez a jelensége híjuk Lorenz konrakciónak. Persze nyugodabbak lennénk, ha egy rúd hosszá egyérelműen meg udnánk mondani, ezér a rúd hosszá célszerű a rúddal együ mozgó inercia rendszerben mérni.. Idő dilaáció Egy egyenlees sebességgel mozgó részecske sajá rendszerében az idő máskén elik min az a laboraóriumi rendszerben mérjük. A részecskéel együ mozgó rendszer álaszhajuk úgy, hogy a részecske mindig az origóban helyezkedik el. A Lorenz ranszformáció ekkor a köekező alakú lesz: ( 0 = ( ( z. Soronkén kiíra a köekező egyenleeke kapjuk: z =, ( =, amelyből köekezik, hogy = c, agyis a laboraóriumi rendszerben hosszabb idő mérünk, min a ömegponal együ mozgó rendszerben. A speciális relaiiás elméle eme jelenségé híjuk idő dilaációnak. Ennek a jelenségnek sokkal könnyebb kísérleileg a nyomára akadni, min a Lorenz konrakciónak. Az egyik legismerebb példa bizonyos könnyű részecskék, a müonok bomlásához kapcsolódik. A müonok a leponok családjába aroznak, így az elekronok rokonai. Legöbbször a kozmikus részecskék és a légkör részecskéinek üközéskor kelekeznek nagyjából 0 km-re a föld felszínéől. Az élearamuk τ =. 0 6 s, így ha még fénysebességgel is repülnek, legfeljebb 660 méer ehenek meg, ennek ellenére a föld felszínén is udjuk deekálni őke. Ennek oka, hogy a sajá órájuk lassabban jár, min a mi földfelszínhez köö óránk. Természeesen azoka a fizikai folyamaoka, amelyek a részecske bomlásá okozzák a részecskéel együ mozgó rendszerben kell leírnunk és számára az idő is a sajá rendszeréhez köö óra szerin múlik. A Lorenz ranszformációnak megfelelően τ idő ala, ameddig el nem bomlik a részecske, z = τ/ áolságo esz meg. Tegyük fel, hogy a müonunk a fénysebesség 99%-al halad, ekkor elbomlásáig a mi rendszerünkben 3.4 km- esz meg a 0.66 km-rel szemben. A részecskéel együ mozgó rendszer nem felélenül inercia rendszer, de egy infiniezimálisan röid ideig ekinsük úgy, minha egyenlees, egyenesonalú mozgás égezne egy inercia rendszerben, majd a köekező pillanaban egy

3 új sebességgel mozog egyenleesen és így oább. Ekkor a labor rendszerben elel időből a köekező inegrállal számíhajuk ki a részecskéel együ mozgó rendszerben elel idő: τ = ( d (6 c Ez a mennyiség, amelye sajáidőnek híunk, minden inercia rendszerben ugyanaz marad, agyis inariáns a Lorenz ranszformációal szemben. 3. Sebességek összeadása Vizsgáljuk mos a köekező problémá: mekkora sebességgel mozog egy részecske a K redszerben, amely a K rendszerben sebességgel mozog? A K rendszer mozogjon V sbességgel K-hoz képes. Tegyük fel, hogy kezdeben a részecske a ké rendszer közös origójában ol. idő mula K-ban a z = helyen lesz, a K redszerben pedig a, z = ponban. A ké éridő pono a Lorenz ranszformáció köi össze: ( ( ( V = c (7 V V Vagyis V = V (8 A ké egyenleből egyszerűen kifejezheő: V = V + (9 = V V (0 Ha helyére a fénysebessége, c- helyeesíjük be, akkor a K rendszer beli sebességre, elárásainknak megfelelően, ugyancsak a fénysebessége kapjuk. 4. Inariáns íelem Az számú képle a K rendszer beli idő és helye ranszformálja á a K beli időé és hellyé. Azonban egy kicsi slampos dolog az, hogy ha egy ekornak ekinjük a (, z mennyisége, akkor a komponenseknek különböző mérékegysége an. Ez a problémá egyszerűen orosolhajuk, ha az időszerű koordináá megszorozzuk a fénysebességgel, amely állandó minden inercia rendszerben. Ebben az eseben a köekező alakba írhajuk a ranszformáció: ( ( ( c z = c c ( c z 3

4 Muassuk meg, hogy a (c z mennyiség inariáns a Lorenz ranszformációal szemben: (c, z ( ( 0 c = (c, z ( ( 0 c 0 z 0 z = ( ( ( ( (c, z c 0 c c c 0 = c z (c, z ( ( 0 c. ( 0 z Az (c, z ( ( 0 c mennyiség inariáns a Lorenz ranszformációal szemben, ezér definiáljuk a kédimenziós éridőnkben a skalár szorza- 0 z o ezzel a műeleel: u µ µ = (c, z ( ( 0 c (3 0 z ( 0 ahol u = c, u = z és a merikus enzor. Természeesen egyszerűen erjeszhejük ki a skalárszorzao háromdimenziós érre is, csak a merikus 0 enzor lesz 4x4-es márix: g = , ( a négyes helyekor pedig (c, r négyes lesz. A sebesség a helyekor idő szerini deriálja. Ha azonban az éppen akuális inercia rendszer ideje szerin deriálunk, akkor az eredmény nem fog megfelelni a Lorenz ranszformációnak, agyis az eredmény nem egy négyes ekor lesz. A négyes sebessége ezér a négyes helyekor sajáidő szerini deriáljakén definiáljuk: 5. Fénykúp µ = du µ dτ = du µ d d dτ, (5 ( c = (. (6 Ábrázoljuk a éridőnke egy + dimenziós koordináa rendszerben. (Csak ké érszerű koordináánk an az egyszerűbb ábrázolás ége, persze aki álája a négydimenziós ere, az árajzolhaja +3 dimenzióba is. A = 0 pillanaban az origóban agyunk, az ábrán láhaó kúpok csúcsában. Ha elindíunk egy 4

5 fénysugara, az a felső kúp palásján fog mozogni, egy korábban felénk indío fénysugár pedig az alsón. Az ábrán az u, u,, ekorok egy-egy esemény helyé és idejé adják. Figyelembe ée, hogy a kölcsönhaásoknak éges a erjedési sebességük, az egyes eseményeke a köekezőképpen oszályozhajuk: u egy esemény a jöőben, amelyre haással leheünk (uu > 0 u egy esemény a múlban, amely haással lehe ránk (uu > 0 egy esemény a jöőben, amelyre nem leheünk haással ( < 0 egy esemény a múlban, amely nem lehe haással ( < 0 A fénykúp w ponjában léő esemény eseén, ermészeesen, a (ww skalárszorza nulla lesz. 5

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V

mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V LINEÁRIS LEKÉPEZÉSEK ÉS TRANSZFORMÁCIÓK A leképezés lineáris leképezésnek neezzük, h ármely elesül, hogy ; ekorokr és R számr Minden lineáris leképezés lhogy így néz ki: Kerφ Imφ meking.hu H kkor lineáris

Részletesebben

É Ü É ÉÉ Ú ű ű É Á Á Á Á Á Á ű Á Á Á É Ú Ö ű ű É ű É ű Ú ű ű ű ű É Á ű ű Á ű ű ű Ü Ü Ú Ü ű ű ű Ú Ö Ó Ú ű ű ű ű ű ű ű ű ű Ú Ú Ö Á ű ű ű ű Ü ű Ü ű ű Ü ű ű Ü Ú Ú Ö ű Á Á ű ű ű Ú Ü Ü ű ű ű ű Ú Ú Ú ű Ü ű ű

Részletesebben

Ú Í Í í í ú Ő ü Ú É í í Ü ű ü ű í í í ű ü ú ü í ű ü ú ü ú ü ü ü ű ü Ú É í ú ü ü ü ú ü ü ú í ü ü ú ü í í ú ű í ú ű ü í í ü í Í í í ü í ú Ü Ú É í í í ü ü ü ú ú ü ü ú ü ü ú ú í í ű ü ü ü ű Á ü ú ű í í ü ü

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár

Részletesebben

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást. . Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

5. Szerkezetek méretezése

5. Szerkezetek méretezése . Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

Ö Ü Ü É Ü ű Ü Ü Ú Ú ű ű ű ű Ó Ú Ú ű ű Ü Ő ű ű Ü Ú Ü ű ű ű Ő Ő É ű Ú ű Ü ű Á Á Ú ű Ú ű Ü Ü Á É É Ú É Ú É ű Ü Ü ű Ü Ú Ü Ő ű Ú ű ű ű Ű ű ű Ő É ű ű ű ű ű Ő Ú Ú Ő Á ű ű ű ű ű Ü ű ű ű Ú Ü ű ű Ú Ü Ú ű Á Ü ű Ü

Részletesebben

a. Egyenes vonalú mozgás esetén az elmozdulás mindig megegyezik a megtett úttal.

a. Egyenes vonalú mozgás esetén az elmozdulás mindig megegyezik a megtett úttal. A ponszerű es mozgása (Kinemaika). Ellenőrző kérdések, feladaok... Mozgásani alapfogalmak. Dönsd el a köekező állíások mindegyikéről, hogy igaz agy hamis. Írj az állíás mellei kis négyzebe I agy H beű!

Részletesebben

Egyenes vonalú mozgások - tesztek

Egyenes vonalú mozgások - tesztek Egyenes onalú mozgások - eszek 1. Melyik mérékegységcsoporban alálhaók csak SI mérékegységek? a) kg, s, o C, m, V b) g, s, K, m, A c) kg, A, m, K, s d) g, s, cm, A, o C 2. Melyik állíás igaz? a) A mege

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Á Á ő É ö ö ő É ő ö ö ő ö É É Á ő É ő ö ö ö ő ő ő ő ő ő Ó É ő ő ő ő ü ő ő ü ü ö ö ő ő ú ű ű ö ő ö ú ő ü ő Ü ö ö ő ö ü ő ö ö ö ö ö ő ő ö ö ő ő ö ú ü ű ü ú ő É Á ő ő ö ő ő Ü ö ő ö ö ü ő ő ú ű ü ő Í ö ü ú

Részletesebben

É É Í ü ü ü ű ü ü ü ü ü ü ú Í ű ú ü ű Á ú Ú ű űü Ú Ú É É ű Ú ü ú ű ú ű ü ű Í Í Ú É Ú Ú Ú Í ú ú Ú Ú É ü űü ü ü ü Ú ű ú ü ú ü ú ű ű ü ú ü ú ü Ú ü ú ü ü ú úü ú ú ü ú ü ú Ú ű ú ü ú Ú ű ü Ú ú ü ú ú ü ü ú ú

Részletesebben

ő ő Á ő ő ő ü ő ü ő ő ő ű ő ő ő ü ő ő ő ő ő ő ő ő ü ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ű ő ő ü ü ű ő ő ő Á ő ü Ó ő ő ő ő ő ü ő ü ő ő ő ő ü ő ő ü ő ő ü ő ü ő ü ő ő ő ő ő ü ő ü ü ő ő ő ű ő ű ü ü ő ő

Részletesebben

Í ü ú ü ü ü ü ú ű ű Á ü ü ű ü ű ű ü ü ü ü ü ü ü ű ű ű ű ű ü ű ü ű ü ü ű Ö ű ű ű ü Ö Í ü ű ü ű ű ű ű Í ü ű ű ü ű ű ü ű ü ű ü ű ű ü ű ű ű ű ű ü ü ü ű ü ű ü Í ű ü ű ű ű ü ű ü ü ű ü ű ü ű ü ű ű ű ű ü ü ü ü

Részletesebben

Ü Ö Á Á Á Á É É Ü ű ű ű ű Á Ú Ü Ü ű Á Ú Ü Á Ü Ü Ü ű É Ü É Á ÜÜ Ü Á Ü Ü Ü Ü Ü Ü ű Ú ű ű ű Ü Ú Ü Ü ű Ü ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű ű ű Ü Ü Ü Ú Ü Ü ű Ü Ü ű Ú Ú Ü ű ű Ü Ü Ü ű ű Ú ű Ő Ü Ü Ü Ü Ü Ö Ú ű Ú ű ű

Részletesebben

ö Ö ü ö ü ö Ö í ü ö ü ű ö ö í ö ö ö ö í ü í ö í ö ö ü ú ö í ö ö ö í ö ú ü ö ö ö ű ö ü í í ö í í ö ö ö ü Í í Ú ú ü ű ö í ű ö ö ö ü ú ö ö í ö í ú ö ö ö ö Ö ü Ö ű ö Ö ü ö ö ö ö ü ű ö í ú í Á ü í í ö ü ö Ö

Részletesebben

ő ú É É ő ő ő ő ő ű ő ő ő ő ő ő ő ú ű ő ú ü ü ő ő ü ő ú ú ü ő ő ő Ó É ő ő ő ő ő ő ő ő ő ü ő ő ő Í ü ű ő ő Í ü ő úú ú ű ü É Ő Í ü ő ő ő ő ü ő ű ő ü ő ü Ű ü ü ú ü ü ü ü ú ő ő ő ő ű ő ő ú ü ő ü ő ő ű ü ő

Részletesebben

É É ő ő ő ő Ü ú ú ő ú ú ú ú Ú ő ű ú ű ú ő ú ú ú É É ú Ú ő ő ú ú Ó Ó ú ú ú ő É É Ü Ó É ő ű ú ő ő É ú ú ú ő ő ő ő ő ú ő ő ú ú ú ű ő ő ő ű ő ő ú ő ú ú Ó ő ú ú ú ú ú ő ú ő Ó ő ő ő ú ú ő ő ő ú ű ú ű ű ű ú ő

Részletesebben

Í ú Í Ú É Á É Á Ü Ü Ü É Ü Á É Á Á Í Á Á Á Á É É Á Á Ú É ú Í Ú Í Í ú ú ú Í ú ú ú ú Í ú Ú ú ú ú ú ú ú ú Í Í Í Í Ú Í ú Ú Ú Ö Í ú ú Ú É Ú É ú ű ú ú ú ú ú ú ű ű ú Í ú ú Ú É ú ú ű ú ú ú ú Ú ű Ú ú Ú ú Ú É ű ű

Részletesebben

Ö Ú É ő ú Ü Ú É É ö ú ő ú ú ú ú ö ö ú ő ú ú ö ú Ő ö ő Ö Ú Ó ö ü ú Ü ö ú ü ü ú Ü Ú Ö Ú É ü Ú Ó ú Ú É É ő ú ő ő Ö ö Ö ü Ó Ú ú É ú ú ö úú ú ö Ü Ú É ö ő ő Ó É Ú Ú Ú Ó É É Ü É Ú Ú É ú ö ú ö ő Ú É ö ü ö ő ü

Részletesebben

ű ő Ü ő Ü ő ő ő ő ő ő ő Ó Ú Ú Ü Ú ű Ú Ö ő ő Ó ő Ú ő ő Ú Ú ű ő ő ő ő ő Ú ő ő ő ű ő Ú Ú ő ő ő ő ő Ü ő Ú ő ő ő ű ő Ú Ú ő Ú ő Ú ő Ü ő ő Ö ő ő Ú ő Ú Ú Ü ű Ö ű Ö Ó ő Ó Ú ő ő ő ű ő Ó Ú ő Ü Ú Ü ő ű ő ő ű ő ő ő

Részletesebben

ű ű ű ö ö ö ö ú ö ö ö ú ö ö ö ö ú ö ö ö ö ú ú ú ö ö ö ú ú ú ú ö ö ö ú ű ű ű ú ú ö ö ö ö ú ú ö ű ö ö ö ö ö ö ű ú ö ú ö ö ö ö ö ö ö ö ö ö ű ú ú ö ö ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ú ö ö ú ú ú ö ú ú ú ű ú

Részletesebben

Ó Á Á ű Ü Á Á ű ű ű ű ű Á ű ű Ö ű Á Á Á Ú Ú Á Á Ú Ü Á Ö Ú Ó Ó Ő ű ű Ő ű ű ű ű ű ű ű ű ű ű Ú Ő ű ű ű Á ű ű ű Ü Ü Ü Ú Ó Ü Ü Ö ű Ü Ú Ó Ó Ó ű Ü Ü Ü Ü Á Á Á Ö Ú ű ű ű ű Ö Á ű Ö Ö Ö ű Ú Ó Ö Ö Ö ű ű ű Ú Ú Ö

Részletesebben

ő ö ú ö ű ü ő Ö ő ő ő ő ö ö ö ö Ü Ö Ö Ö Ö ő ő Ö Ú Ő ő Ü ö ő ő ő ő ö ú ö ö ö ő ö ú ö ú ő ű ú ö ú ü ű ö Ú ü ü ö ő ő Ó ÜÜ ő ő ö ö ű ö ö Ü Ó ö ö ú ö ú ű ö ú ö ú ö ö ö ű ő ö ő ö ő ö ú ő ő ő ő ő ú ő ő ő ö ú

Részletesebben

Í Í Ü Á ú Ú É ú Ú Í ű ú ú ú ú ú Í ú ú Ú ú ú ú Ú É ú ű ú ú ű ú ú Í ű ú ú ú Ú É ú ú ú ű ú Ú ű ú Í ű ú ú ú Á ú Ú É É ú ú ú ú ú Á Í ú ú Í Ú É ú ú ú Í Ü ű ú Í ú ú ű ú ú Í Í ú Í Ú É ú ű ú ú ú Í ű ú ú ú ű ű ű

Részletesebben

ü ű Ü ü Ü ü Ü ü ü Ó ü ü ü ü ü ü ü ü ű ű ü ü ü ü ü ű ű ü ü Ú ű ü Ú ű ü ü ü ü ü ü ű Ú Ú ű ü ü ü ü ü ü ü ü ü ü ü ü ü ű ű ü Ú ű ü ü ü ü ü ű ü Ó Ó Ö Ó Ó ü Ö Ó Ü Ó Ó Ó Ó Ó Ö Ó Ó Ö Ó Ó Ó Ó Ü Ü Ú Ó Ó Ö Ó Ó Ó ű

Részletesebben

Ü ő Á ü ú ü Ó ú ő ú ú ő ü ü Á ú ü Í Ó ú ü ú ü ü Á Á ú ő ú ü ü ő Ö ő Í ő ü ő ü ű ü ú ú ü ü ú ő ű ú ú Á Á Á ő ő ú Ó Ö Á Ö ü ő Á ü ü ü ü ő ű üü ü ő ü ő ü ü Ú ú ü Í ú ü ü ü ő ő ő Á ő ő Ó Ó Á ő ü ü Ó ő ú ő

Részletesebben

Ü Í ú Í É Ú É É Ú Ó ú ü ü ü ú ú Ő ú ú Í ú ú ú ú ű ú ú Á ú ú ú ú ú ú ü ú ü ű É ú ú ű ü ü ú ú ú ú ü ú ü Ú ü ú ú ü ű ú ü ü ü Í ü ú ú ü ú ü ü Ú ü ü ú Ú Á ü ű ü ű ú ú ü ü Ú ü ü ü ü ü ű ű ü ú ú Í ü ú ű ú Ú ü

Részletesebben

ü ő ő Á Á Á Á ú ú ő Í Á Ö Á ü Á ü ő ű ú ü ő ö ü ü ü ú ú ő ö ö ú Á Á Á ü ő ő ű ö ü ö ő ö ű ú ű ú ő ö ú ő ö ü ő ü ü ö ö ő ü ü ű ő ü ö ü ö ő ő ő ö ü ő ü ő ü ö ú ú ü ö ö ü ö ü ő ö ű ű ü ö ü ő ő ú ő ú ő ő ö

Részletesebben

ö Ö Á ö ö ü ö É ű ö ö ú ö ö ö ö Á ö ö ö ö ö ö ü ö ö ü Ö ö ö ú ú ú ö ú ö ü ö ü ö ö ö ö ö ö ö ű ö ö ö ö ö ö ü ö ö ú ö ú ö ö Á ö ö ü ú ü ö ú ű ö ö ö ö ö ö ö É É Í ö É ü É ö ö ű ö ö ö ö ö ü ú üü ö ö ü ö ö

Részletesebben

Ö Á Ö Á ú ú ú ú ú ú ú ú ú ú Ú ú ú ű É ú ú Ó Á ú ú ú ú ú ú Ú ú ú ű ű ű ű Á ú ú ú ú É Ó ú ű ű Á ú ú ú ú Á ú ú ú ú ú ű ú ű ú ű ű ű ű ú Ú ú ű Ú ú ú ú ú Ö É Á Á Á Á ú Á Ú Ü ű Á Á Á Ö É Ú Á É Ü Ü ú Ú ú ú Ú Ú

Részletesebben

Í Á Ó É ö ő Ö ö ő ü ő ü ő ü ö ö ő Ö ú ő ő ú ü ő ő ü ő ő ő ú ö ö ő ű ö ö ü ű ő ö ú ö ú ü ü ű É É É ö ö ú ű ő ú ő ú ő ű ö ö ü ö ű ö ú ö ú ü ú ő ő ö ü ö ű É É ö ö ú ő ö ő Ö ű ú ö ő ö ö ü ő ő ő ö ű ö ő ő ö

Részletesebben

É Ö É É Ö É É Í Ü Ü É Ó ö ú í Á ö í ö Ü ú í ú ö í ö ö í ü ö í ü ü ö ö ö í ü ü ö ú í ö ö ö í ü ü ú í ú í ú ú ú ö ü ö ú í ö ú ü ú ö ö ú ö Á í ö Ü Í Ü ö ö Ü Ó ö ü É í ö í ü ö í ö í í ú í í ü ö ö í ü ö ö í

Részletesebben

É ű ű ú ű ú ű ű ű ű ú ű ú ű Ü Ú Ú ú ű ú ú ú Ú Ú ú Ü ú Ó ú ú É Ő É ú ű ú Ü Ö ú Ö Ö ú ú Ü ú ú ú Ó ú Ö Ó ú ú Ü ű ú ú Ö Ü É Ú Ú Ú Ú É ű Ú Ö ú ú ű ú ú Ú ű ú ű Ú Ü ú Ó ú Ó ú Ü Ó É Ö É ú ú ú ú É ú Ü Ü ú ú ú ú

Részletesebben

ű Ú Ü Ü Ü Ú Ű ű ű Ú Ú ű Ü Ú ű ű ű Ú Ü Ú ű Ú ű Ú Ú Ű Ú Ú Ű ű Ú Ú ű Ú Ú Ú ű Ú Ú ű Ú ű Ú Ú Ú Ú ű Ú Ú ű Ú ű ű ű Ú ű ű Ú Ó Ü Ü Ú Ú Ú ű ű ÜÜ Ú Ü Ú Ü ű Ú Ü Ü ű Ú Ú Ü Ú ű Ú Ú Ö Ü Ü Ú Ú Ú Ú Ü Ú Ö Ü Ú Ö Ü Ü ű Ú

Részletesebben

Á Á Á Á Á Á Á Ú Ő Ő Ő Á Á Ú Á Á Á Ő Ú Ú Á Ú Ú Ú Ú Ú Ú Ő Ű Ú Ő Ú Ú Ú Ú Á Á Ú Ő Ő Ő Ő Ú Á Ő Ő Ű Ő Ú Á Ú Ő Ő Á Ú Ő Ő Ú Ú Ú Ú Á Á Ű Á Á Ő Á Á Ú Á Á Á Ú Ú Ú Ő Ú Ú Ú Ú Ő Ú Ő Ő Ő Ú Ő Ő Ő Ú Ű Ő Ú Ő Á Ú Ő Ú Á Á

Részletesebben

ú Á É ű ű Á ú ú ú Ú ű ú ű Ö ű ú ű É ú ú Ü Ú ú ú ú ú Ó Ú ú Ú Ú ú ú ú ú Ú Ú Ő É ú Á ú ú ú Á ú ú Á Á ú ú ű ú É ű ú ű ú ú ú ú ű ú É ű ú ű Ö Ü ú Ú ú ú Ú ú Ú ű ű ú ú ű É Ú ű Á ú ú ú ú Á ú ú ű ű ú ú ú ú ú ú Á

Részletesebben

ö ü ó ö ü ü ó ó í ó í ó ú ó ö ö ö ü ü í ü ü ó ü ü ü ö ö ö ö í ü ü ö í ü ú ö í Í ö ö ó ö í ú ö ú ó ó ó í ú ö ú ó ó ó í ö ú ö ú ó í ó ü ö ö ó ú ó ó ó Ö ö ü ö í í ó í ü É ü ú ö í í ü í ó ó Í ö ü í ó í ö ö

Részletesebben

Á ü Á Ü Í Ü ü ü ú Ú Ó ü ő ü ö ő ö Ö ú ö ú ö ü ü ő ú ü ü ő ű ő Ö ü ü ő Ú ö ő ü ő ő ö ö ö ö ö ő Í ő ő ő Ü ő ű ő ö ü ü ő ü ő ü ű ú ő ú ö ű ő ű ú ő ú ő Ű ü ő ő ú ő Ú Ö Ö Ö Ö ü Ó ő ö ö ö ö ú ö ü ü ő ő ő ő ű

Részletesebben

ü Ö Ö É Ű ü ű É É É ő Ő É ű É ő ő ő ő ü ü ü ő ő ő Ü ő ő ő ő ü ő ü Í ő ű ü ő ő Ö Ö ő ü Ö Ö ő ő ő Ö ő ü ő ü ü ő Ö ü ü ő ő Ö ő ő ű ő ő ő ő ű ő ő ű ő ő ő ő ő Ö ő ü ő Ö Ö ő ű ű ő ő ő ő É ő ő ő Ö ő É ő ü ü ő

Részletesebben

Í Ö Ű ő í Ú Ó Á ú ó É ű ú ő ó ó ő ó ü Á ó ű Ű ő í Ó Á ű í Ó ó Ó Á ó ó í ó í ó Ö í ú Á É Í Í Ú í í űü í ő í É Ó í í Ú Ü ű Ú ő ő Ű ő ű ő Ú ő ő ő Ü ő ő ű ő í É í í Í Ő ő ó í í ő ő ú ő ő ó ó ő ő ú ő ő Ö ő

Részletesebben

ű Á Ü É Ü Ü Í ö ö ű ö ö ö ü ű ü ü ü ü Í ű Í ű ü ű ö ü ö ű ü ö Í ö ö Ö Á Á É Á Í Ő Ő Ő É Ü É ü É ö Ü ö Ü Ü ö ö ö ö ü ü ű ö ü ü ü É Á É ü ö Í ö ö É ö Á É É Á Á Ü ö ű Ü Á Á É É Á Á Á Á Ö Ü ű Ü ö ü Ü ü Ü Ö

Részletesebben

ö ü ö ü í ü ü ü ö Á Á í ö ö ö ü ü í ü ü ü ö ű ö í í í í ö Ö ú ű ö Í ű ö ö í ö Ó Í ü ö ö í ö ú ű ö ö ö ű ö ö ü ü í í ö Ö ü ú ű ö Í ü ü ü ű ü ü ü ü ú ü í ö ü ü ö Ó ü ú ű ö ű í ö Á ö Á ö í ö ö ü ö ö ü ű í

Részletesebben

Ú Í ü ü Ö É ű ű ű ű Í Ú Í ű ű Ú Á ű Á Á Ú Á Ö Ó ű ű Í Ú ű Ú Ú Á Á Á Í Ű Í Á Ú Ú Ú ű Í ű Í ü É É Ú Ú Ú ű Ú Ú Ú Ú Á É Ú Ú Ú Ú Ú Ú Ú Í Í Ú ű Ú ű Ú Ú Í Í É ű Ó Ú ú Ú Ú Ú Ú Ú Ú Í É ű Í Á Á ű Í ű ű Ú Ú ű Ú

Részletesebben

ö ü ö Ö ü ü ü ü Í Í Í Í ű ö ö ű ú ö ö ö ü ú ü ü ü ü ü ü ü ü ö ü ú ü ü ú ü ö ü ü ü ü ú ú ö ö ü ú Ö Ő Ü É Ó Ö Ó Ó ö ö ö ö É ü ö Í ö Ó Ó ű Ó Ó ű ü Ó Ó Í ü Ó Ü ü ü Ö ü ü Í ö ü ü ú ú ü ü ü ö ö ö ö ü ü ö ü ü

Részletesebben

ü Í Í Í Í Í Í Ö Í Í ú ő ü Ú ő Í Í Í ü ü ő ő ő ú Í ú ő Ó Í ő ü ű ű Í ő Í ű ű Í ú Í ú ü ú ő ő ü Ü Í Í ú Ó ű ő Í ő ő ü ő ő ő Í Í ü ü ú Ú ü ü ü ő ű ü ő ő ú ő ü ő ú ő ő ő ű ő ő ü ü ű ü ő ü ő ú ő ő ü ő ő ő ü

Részletesebben

Ü É É ü ü ú ú Á ü ú ü ú ú ú ü ű É ü ü Ü É Á Á Á ú ü Ö Á ű ű ú ű É ú Ű ű ü ü ú ű ü ú ü ű ü ú ú ü Ú ú Ó ú ü ű ü Í ü ú ü ü ü ü ú ü ú ú ü ú ü ú ű ű ü Ü Ű ú ü ű ú ű ú ú ü Ü ü ü Ü ü Ü ü ü Ó Ö ü Ú ú ü ú ű ü ú

Részletesebben

Í Ú ü Á Á ü ű ü ü Ö É Ő ű ű ú ú ű É ű Í Ü É ü ü Ü úü ü ü Í ú ü Ő ű Í ű Í Ú Í Ú ü ú ű ű Ú ű É ú ú Í ü ü Ú Ú Ú Ú Á ű ü ü Í Ú Á Á ű ü ü Ú Á ű ü ú Ú ü ü Ú Ö É Ö ü ú ú ú ü ü ú Ö Ü ü Ü ú üü Á ú É Í É Í Í ű Á

Részletesebben

É Ü ú ü Ü Ü ú Ü Ü ü ü Ü ú ú ú ű ü É Ü É Í Ó É ü ű Ü É ü ü É Ü Í Ó Ó Ó Ü Ó Í Ó Ó Ó Í Ü ü Ó Ö Ü ü ü Ü Ü ű Ü Ö Ü É Ü É Ü É É É É É ű Ó É Ö Ö ü ü ú ú ú Ü Ü Ü ú ú Ü ú ú ú ú ú ú Ü ú ú É Ú ü Ú Ú Í Í Ú É Ü Ü Í

Részletesebben

É É Ő ö ő ő ő ö ő ö É ő ő ő Ü ö Ó Ü ő ő ő Ü ö ö Ó ü ö ő ö ű ö ű ö ő ö Ö ö ö Ö ú ö Ü ü ő ő ő ö ő ü ő Ú ú Ü ő ö ő É ő ő ű Í ő ő ö É ö ő Ö ő É Í ő ö ő Ü ő Í ú Ó ü Ő ú ö ú ű ú ú Í Í Í Í Í ő ö ö ö ő ő Ö ö ü

Részletesebben

Í í ú ú ű í í í í í í Í í í í í í í í í í í í í Á í í í í í Ó ÜÜ Ü ü ü í Á Á Á Ö í Á Á í í ü í í í í í í Í í í í í í ü í í ü í í í í í í í í í í í í ü í í í í í í í í í í í í í í í í í í í í í ű ü í í

Részletesebben

Ú ő ő ü ü É É É ú ü ú ü ö ő ö ö ő üú ü ü ö ö ü ö ö ü É ü ő ü ö ö ö ü ü ö ö ü ú ú ő É ü ü É ú É ú ü ü ő ű ö ő ö ő ő ü ő ő ö ö É É É ő ú ü Ű É ú ö Í ö ü ö ö ö ö ö ö ö ő ű ö Ü ü ű ü ü ü ö ú ű ú ü ü ő ö ú

Részletesebben

Á Ö ő ő ö Ö Á Í Á É ÉÉ í ő ö Í í őí í ú ú ö í í ö Í Í Í í ú í ú ő ú í Ö Ö ú ü í ű Ö í ű Í ő Ö í í í ü Ö í í ú í ő ú í í í ő í ő ü í í ű Ö ő í ő í Í ö Ő ü ő í í ö í ő í Á í ö ü ö Ő ü ü ő ü ü Íő Í Í Í í

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA

LUCKY LUKE AZ EMBER, AKI GYORSABBAN LÔ, MINT AZ ÁRNYÉKA KÉN (S) megnevezése a nyelvújíás idején is kevese válozo, ez megelôzôen Zay büdöskônek is neveze 1791 (Zay: Mineralógia), Kovás is így emlíi 1822 (Kovás: Ásványnévár); a nyelvújíás idején kénô 1829 (Schuser:

Részletesebben

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés

Részletesebben

É Ü ú ő ü ő Á ő ő Á ő ő ü ő ü ő ü ő ő ü ú ő ú ü ű ü ő Á ő ő ő ú ű ő ő Ö Á ő ü ő É ü ő ő ő ő ő ő ü ő ő ü ű ü ü ü ő ő ü ű ő ő ő ő ő ő ü ő ü Ü ű ő ő ő ü ő ü ő ü ű ő ú ő ő ő ő ő ü ő ő ő ő ü ű ű ő ő ű Á ő ü

Részletesebben

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN eljes mozgás helye csak a nulladik módussal számolni: még azonos ömegek eseén is öbb min 98% súllyal a nulladik módus gerjed. Nem ez a helyze a b) kezdei feléelnél, amikor már m 0,1M melle is öbb min 3%,

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Ö Ó Ö Í Á Ö Á Ö Í Ö Ö Ö Ó É Í Ö Ö Á Ö Ó Ö Ö Ö Ö É Ö Ö Á Ö Ó Á Á Í Ö Ö Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Ö Ö Ö Ö Ó Ö Ö É Ö Ö Ö Ö Ó Ö Ö Ö Ó Á Ö Á Á Í Í Ú Ó Á Á Á É Á Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Í Á Á Á Á

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

PÉLDA EGY KÖZPONTI PORSZÍVÓRENDSZER TERVEZÉSÉRE 7. Ábra: A központi porszívó tervezése egy három szintes házban A FENTI HÁZ CSŐVEZETÉKÉNEK NYOMVONALA 3 DIMENZIÓS ÁBRÁZOLÁSBAN A telepítéshez részletes rajzot

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

Á É Á Ó É É Á Á ű ő ű ő É Á Ü É ű Ú É ő ő Á ő ő Á É ő Á ű ű ő ő ő ő ő ő ő ű ű ű É Á É ű ű ű ő ű É Ú Á ű ő Á Á É É ő ő ő É Á ő É ő ő Á Ü É Á Á É Ü ÓÚ É Á Ú Ü Ó Ú ű ő ő ő ű ű ő É Á ű ű ű Á ő Á ő ő Á É Ü

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

ALKALMAZOTT MÛSZAKI HÕTAN

ALKALMAZOTT MÛSZAKI HÕTAN Prof. Dr. Szabó Gábor - Péer Szabó Isán: ALKALMAZO MÛSZAKI HÕAN Szeged, 00. A jegyze és a kacsolódó Poweroin rezenációk bármilyen megálozaásához, áalakíásához, egyes részeinek agy a eljes anyagnak más

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

É É É Á Ő É Ű ÖÉ í ö ű ü ö í ö í ö ü ö ö Á Á Í É Ű ö É Á ö í ű ö ü ö ü ű ö ű ö ű ö í ö í ö í í Á Á ö ú ö ö ö ö ü ö ö ű í í ü ö ü í ö í í í ö ö ú ű í í í í Á Á ö ö ö ú ü í í í üü ö í í ü í ö í í í ö ö í

Részletesebben

F1301 Bevezetés az elektronikába Műveleti erősítők

F1301 Bevezetés az elektronikába Műveleti erősítők F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás

Részletesebben

Á ű Ü Á Ö É Á É É Á É Á ű Á Á ű Ö Ó ű Ó Ó ű Á ű ű ű ű ű ű ű ű É Ü ű ű É É É Ö Ü Ü ű Ü ű Ü É Ó Á Á Ü Ö ű Ü ű Ü Ó ű Ú Ü ű Ü Ü Ú Ü Ü ű Ö Ü Ü Ú Ö Ü ű Ü ű É ű Á ű É É Ú Á ű Á É Ü ű Ú Ó ű ű Ü É Ő ű ű ű Ú Ö

Részletesebben

FOLYADÉKOK ÉS GÁZOK SZTATIKÁJA F Ideális folyadék

FOLYADÉKOK ÉS GÁZOK SZTATIKÁJA F Ideális folyadék 1. Ideális olyadék FOLYDÉKOK ÉS ÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június

GAZDASÁGPOLITIKA. Készítette: Pete Péter. Szakmai felelős: Pete Péter. 2011. június GAZDASÁGPOLITIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi

Részletesebben

Ü Á Ü Ó Ö Á ő ö ü ü ő ö Ö ő ő ő ö ő Á ö ö ő ö ő ö ö ü Ö ö Á ű ö ö ő

Ü Á Ü Ó Ö Á ő ö ü ü ő ö Ö ő ő ő ö ő Á ö ö ő ö ő ö ö ü Ö ö Á ű ö ö ő Ü Á Ü Ó Ö Á ő ö ü ü ő ö Ö ő ő ő ö ő Á ö ö ő ö ő ö ö ü Ö ö Á ű ö ö ő Ú Ú Ú Ü ö ö Ü Ü Ö Ó Á ü ü ö ő Ü Á Á Á ö ö ö ü ü Á ö Á Ü Ó Á Ó Á Ü ü ü Ó Á Ü Á ü ü ö ö Ó Ú ü ü ő ü ő ü ő ű ü ü ü ű ű ű ű ő ü ő Ü ö ű

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü

ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü Á Á ü ő ú ő ő ő Ö ú ő ő ő ő ü ő ő ő ő ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü ő ő ő ő ő ü ü ő ü ő ü ü ü ő ő ő ú ű ő ő ő ú ú ő ő ü ű ú ő

Részletesebben