Dimeziócsökkető eljárások Szegedi Tudomáyegyetem
Dimeziócsökketés szerepe Az adatpotok reprezetálására haszált dimeziók számáak csökketésével spórolhatuk Tödimeziós adatpotok vizualizálása (pl. 2 vagy 3D-e) Zajcsökketés, jellemzőszelekció Ötlet: próáljuk meg alacsoya dimezióa árázoli a potjaikat Az alacsoya dimeziós reprezetáció kapcsá mie mérjük az elégedettségüket?,, SVD,...
Főkompoes aalízis (ricipal Compoet Aalysis) Traszformáljuk úgy alacsoya dimezióa a tö/sokdimeziós adatukat, hogy a ee rejlő variacia miél kise részét veszítsük csak el Feltevés: az eredeti m-dimeziós adatpotok egy izoyos m0 -dimeziós altére (vagy legaláis aak közelée) helyezkedek el az adatpotokat az altér tegelyeire traszformálva jól reprezetálható az eredeti adat Mi lehet ez a m0 -dimeziós altér? 0 2 k(xi xi )k rekostrukciós hiát szereték miimálisak láti, ahol xi0 az eredeti xi pot egy közelítése
Kovariacia Emlékeztető Y és Z véletle változók együttmozgását számszerűsíti cov (Y, Z ) = E[(Y µy )(Z µz )] Ahol µy = 1 yi és µz = 1 zi Az X adatmátrixuk i, j oszlopaira (X:,i, X:,j ) tekithetük véletle változókét
Szóródási,- és kovariaciamátrixok Szóródási mátrix: S = (xi µ)(xi µ) Torzított (torzítatla) kovariaciamátrix: Σ = 1 S (Σ = 1 1 S) cov (X:,1, X:,1 ) cov (X:,1, X:,2 )... cov (X:,1, X:,m ) cov (X:,2, X:,1 ) cov (X:,2, X:,2 )... cov (X:,2, X:,m ) Σ=........ cov (X, X ). :,i :,j cov (X:,m, X:,1 )...... cov (X:,m, X:,m ) Σi,j tehát az i. és j. jellemzők kovariaciája (cov (X:,i, X:,j )) Milye elemek állak a főátlóa?
Szóródási,- és kovariaciamátrixok tulajdoságai Állítás: S és Σ mátrixok szimmetrikusak és pozitív defiitek Bizoyítás. S= (xi µ)(xi =! (xi µ)(xi µ) = S a Sa = µ) (a (xi µ))((xi µ) a) = (a (xi µ))2 0 Következméy: S és Σ sajátértékeire λ1 λ2... λm 0 Az adat variaciáját legjoa megőrző m0 -dimeziós projekciót úgy kapjuk, ha az adatpotokat S (vagy Σ) m0 legagyo sajátértékéhez tartozó sajátvektoráól képzett mátrixszal szorozzuk (lásd: tála)
Lagrage szorzók Korlátozott/feltételes (emlieáris) optimalizációs feladat f (x) mi/max f.h. gi (x) = 0 i {1,..., } Lagrage függvéy: L(x, λ) = f(x) + X λi gi (x) Karush-Kuh-Tucker (KKT) feltételek: az optimalitás szükséges feltételei L(x, λ) = 0 (1) λi gi (x) = 0 i {1,..., } (2) λi 0 (3)
Gyakorlati megfotolások Az adatpotokat érdemes egységes skálára hozi: ormalizáció mi-max ormalizáció: xi,j = stadardizálás: xi,j = xi,j mi(x,j ) max(x,j ) mi(x,j ) xi,j µj σj A redukált dimeziószámot (m0 ) miek válasszuk? m m si2 λi = Hit : k λi m = arg mi t küszöérték m 1 k m λi 0 m 1 X λi > λj 1 i m m m0 = arg max j=1 m0 = arg max (λi λi+1 ) 1 i m 1
összegzés Cetralizáljuk és ormalizáljuk az X adatmátrixot Számoljuk ki a (cetralizált és ormalizált) X adatmátrixot jellemző kovariacia/szóródási-mátrixot Számoljuk ki a mátrix sajátértékeit Az m0 legagyo sajátértékhez tartozó sajátvektoról képezzük projekciós mátrixot X 0 = X adja meg a traszformált adatmátrixot X 0 alaka kaphatjuk vissza az eredeti adatpotok egy közelítését tutorial
Sziguláris érték felotás X = U x Sigma x V t rag (X ) σi ui vi s s rag m (X ) 2 xij2 = σi kx kf = X = UΣV = j=1 X alacsoy(a) ragú közelítése: X = U Σ V X előállítása sorá csupá Σ első m0 < m sziguláris értékére hagyatkozzuk Ha a közelítés eltérését Froeius-ormáa mérjük, akkor X megadható legpotosa m0 -dimeziós ecslése X
SVD és a sajátérték dekompozíció viszoya Emlékeztető Egy szimmetrikus A mátrix felotható A = X ΛX 1 alaka, ahol X = [x1 x2... xm ] az A (ortogoális) sajátvekroraiól képzett mátrix, Λ = diag ([λ1 λ2... λm ]) pedig az egyes sajátvektorokhoz tartozó sajátértékeől álló diagoális mátrix. Miért is? Tetszőleges m-es X mátrix előáll UΣV szorzatkét, ahol U = [u1 u2... u ] XX ortoormált sajátvektoraiól álló mátrix Σ m = diag ( λ1, λ2,..., λm ) Vm m = [v1 v2... vm ] X X ortoormált sajátvektoraiól álló mátrix. Miért? Ortogoális mátrix: M M = I (szemléletese: olya forgatás, ami a vektorok hosszát em változtatja meg) Miért?
SVD és a Froeius-orma viszoya Tfh. M = Q R, azaz mij = k 58 M = 32 28 87 6 48 = 2 42 3 1 4 2 1 2 0 2 3 4 2 pik qkl rlj l 3 m32 = 3 4 3 + 2 1 3 + 0 2 pik qkl rlj Ekkor kmk2f = (mij )2 = i j i j k l 2 Továá pik qkl rlj = pik qkl rlj pi qm rmj k l k l m Ahoa kmk2f = pik qkl rlj pi qm rmj i j k l m Ameyie, Q, R mátrixok az SVD felotásól jöek, kmk2f = pik qkk rkj pi q rj = qkk rkj qkk rkj = (qkk )2. i,j,k, j,k k Miért? X mátrix X = U Σ V mátrixszal törtéő közelítéséek hiája: kx X k2f = ku(σ Σ )V k2f = (σkk σ kk )2 k
CUR SVD hátráya, hogy egy jellemzőe ritka mátrixot sűrű mátrixokat (U és V ) is tartalmazó szorzatkét állítja elő Egy alteratíva az eredeti mátrix CUR formáa törtéő előállítása Csak az U mátrix adódik sűrűek, és az SVD felotás egy közelítését adja C és R mátrixok az eredeti X mátrix soraiól, illetve oszlopaiól származak, így azok megőrzik X ritkaságát Míg az SVD egyedi felotást eredméyez, addig a CUR em
Lieáris Diszkrimiacia Aalízis (Liear Discrimiat Aalysis) Traszformáljuk úgy alacsoya dimezióa a tö/sokdimeziós címkézett adatukat, hogy az új tére az eltérő osztályú potok miél kevésé keveredjeek Mi legye w vetítés iráya? µ ~i = w µi µ~1 µ~2 = w (µ1 µ2 ) s i = X (w x ~ µi ) 2 x i címkéjű w = arg max J(w) = arg max w w ~ µ1 ~ µ2 2 2 s 1 + s 22 (1)
Belső,- és külső szóródási mátrixok i osztályú traszformált potok első szóródási mátrixa: X Si = (x µi )(x µi ) x i címkéjű Aggregált első szóródási mátrix: SW = S1 + S2 i osztályú traszformált potok szóródása: X X s i 2 = (w x w µi )2 = w (x µi )(x µi ) w = w Si w x i címkéjű Eltérő osztályú traszformált potok közötti szóródási mátrix: SB = (µ1 µ2 )(µ1 µ2 ) Eltérő osztályú traszformált potok közötti szóródás: (µ 1 µ 2 )2 = (w µ1 w µ2 )2 = w SB w
Azaz az eredeti (1)-e foglalt céluk átfogalmazható w = arg maxw J(w) = arg maxw ww SSWB ww alakra w SB w w SW w az ú. általáosított Rayleigh-háyados J(w) maximális ww SSWB ww = 0 SB w = λsw w 1 1 SW SB w = λw w = SW (µ1 µ2 ) (Lásd tála) Emlékeztetőül 0 f (x) = g (x) f 0 (x)g (x) f (x)g 0 (x) g 2 (x) x x Ax = 2Ax, ameyie A = A xx y = xi yi x (vagyis egy x iráyáa mutató vektor)
vs. 4 3 4 3 2 2 1 0 1 0 1 2 3 4 0 0 1 2 3 4
Multidimeziós skálázás (Multi-Dimesioal Scalig) Cél: adott potpárokéti költségeket/távolságokat tartalmazó mátrixhoz keressük meg az adatpotok azo pozícióit a tére, melyre kxi xj k δij Tö/sokdimeziós adatpotok traszformációja alacsoya dimezióa úgy, hogy a potok közötti távolságok miél iká megőrződjeek
Lokális lieáris eágyazás (Locally Liear Emeddig) A, SVD és mid lieáris függést feltételeztek Nemlieáris dimeziócsökkető eljárás Trükk: Mide pothoz határozzuk meg a legközelei szomszédait, és írjuk fel őket azok lieáris komiációikét J(W ) = kxi Wij xj k2, úgy, hogy Wij = 1, és j=1 j=1 wij > 0 xj eighors(xi )
Kaoikus korreláció aalízis A potjaik koordiátái két kordiátaredszer szerit ismertek Feladat: a két koordiátaredszer potjaiak egy (csökketett dimeziójú) koordiátaredszere való összegyúrása, hogy a traszformált jellemzők korrelációja maximális legye E [xy ] = E [x 2 ] E [y 2 ] wx Cxy w y wx Cxx wx wy Cyy wy ρ= E[wx xy wy ] E[wx xx wx ] E [wy yy wy ] = arg max ρ-t em efolyásolja wx vagy wy hossza arg max ρ = arg max wx Cxy wy " # " # Σxx Σxy x x Σ= =E y y Σyx Σyy
Alteratív vizualizációs eljárások Ha em (feltétle) kérük a dimeziócsökketésől Cheroff arcok: egy arc egy adatpotak feleltethető meg, az arc karakterisztikája pedig az az adatpotot leíró jellemzők által felvett értékekkel hozható összefüggése