PCA LDA MDS, LLE, CCA. Adatbányászat. Dimenziócsökkentő eljárások. Szegedi Tudományegyetem. Adatbányászat
|
|
- Natália Vörösné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Dimeziócsökkető eljárások Szegedi Tudomáyegyetem
2 Dimeziócsökketés szerepe Az adatpotok reprezetálására haszált dimeziók számáak csökketésével spórolhatuk Tödimeziós adatpotok vizualizálása (pl. 2 vagy 3D-e) Zajcsökketés, jellemzőszelekció Ötlet: próáljuk meg alacsoya dimezióa árázoli a potjaikat Az alacsoya dimeziós reprezetáció kapcsá mie mérjük az elégedettségüket?,, SVD,...
3 Főkompoes aalízis (ricipal Compoet Aalysis) Traszformáljuk úgy alacsoya dimezióa a tö/sokdimeziós adatukat, hogy a ee rejlő variacia miél kise részét veszítsük csak el Feltevés: az eredeti m-dimeziós adatpotok egy izoyos m0 -dimeziós altére (vagy legaláis aak közelée) helyezkedek el az adatpotokat az altér tegelyeire traszformálva jól reprezetálható az eredeti adat Mi lehet ez a m0 -dimeziós altér? 0 2 k(xi xi )k rekostrukciós hiát szereték miimálisak láti, ahol xi0 az eredeti xi pot egy közelítése
4 Kovariacia Emlékeztető Y és Z véletle változók együttmozgását számszerűsíti cov (Y, Z ) = E[(Y µy )(Z µz )] Ahol µy = 1 yi és µz = 1 zi Az X adatmátrixuk i, j oszlopaira (X:,i, X:,j ) tekithetük véletle változókét
5 Szóródási,- és kovariaciamátrixok Szóródási mátrix: S = (xi µ)(xi µ) Torzított (torzítatla) kovariaciamátrix: Σ = 1 S (Σ = 1 1 S) cov (X:,1, X:,1 ) cov (X:,1, X:,2 )... cov (X:,1, X:,m ) cov (X:,2, X:,1 ) cov (X:,2, X:,2 )... cov (X:,2, X:,m ) Σ= cov (X, X ). :,i :,j cov (X:,m, X:,1 ) cov (X:,m, X:,m ) Σi,j tehát az i. és j. jellemzők kovariaciája (cov (X:,i, X:,j )) Milye elemek állak a főátlóa?
6 Szóródási,- és kovariaciamátrixok tulajdoságai Állítás: S és Σ mátrixok szimmetrikusak és pozitív defiitek Bizoyítás. S= (xi µ)(xi =! (xi µ)(xi µ) = S a Sa = µ) (a (xi µ))((xi µ) a) = (a (xi µ))2 0 Következméy: S és Σ sajátértékeire λ1 λ2... λm 0 Az adat variaciáját legjoa megőrző m0 -dimeziós projekciót úgy kapjuk, ha az adatpotokat S (vagy Σ) m0 legagyo sajátértékéhez tartozó sajátvektoráól képzett mátrixszal szorozzuk (lásd: tála)
7 Lagrage szorzók Korlátozott/feltételes (emlieáris) optimalizációs feladat f (x) mi/max f.h. gi (x) = 0 i {1,..., } Lagrage függvéy: L(x, λ) = f(x) + X λi gi (x) Karush-Kuh-Tucker (KKT) feltételek: az optimalitás szükséges feltételei L(x, λ) = 0 (1) λi gi (x) = 0 i {1,..., } (2) λi 0 (3)
8 Gyakorlati megfotolások Az adatpotokat érdemes egységes skálára hozi: ormalizáció mi-max ormalizáció: xi,j = stadardizálás: xi,j = xi,j mi(x,j ) max(x,j ) mi(x,j ) xi,j µj σj A redukált dimeziószámot (m0 ) miek válasszuk? m m si2 λi = Hit : k λi m = arg mi t küszöérték m 1 k m λi 0 m 1 X λi > λj 1 i m m m0 = arg max j=1 m0 = arg max (λi λi+1 ) 1 i m 1
9 összegzés Cetralizáljuk és ormalizáljuk az X adatmátrixot Számoljuk ki a (cetralizált és ormalizált) X adatmátrixot jellemző kovariacia/szóródási-mátrixot Számoljuk ki a mátrix sajátértékeit Az m0 legagyo sajátértékhez tartozó sajátvektoról képezzük projekciós mátrixot X 0 = X adja meg a traszformált adatmátrixot X 0 alaka kaphatjuk vissza az eredeti adatpotok egy közelítését tutorial
10 Sziguláris érték felotás X = U x Sigma x V t rag (X ) σi ui vi s s rag m (X ) 2 xij2 = σi kx kf = X = UΣV = j=1 X alacsoy(a) ragú közelítése: X = U Σ V X előállítása sorá csupá Σ első m0 < m sziguláris értékére hagyatkozzuk Ha a közelítés eltérését Froeius-ormáa mérjük, akkor X megadható legpotosa m0 -dimeziós ecslése X
11 SVD és a sajátérték dekompozíció viszoya Emlékeztető Egy szimmetrikus A mátrix felotható A = X ΛX 1 alaka, ahol X = [x1 x2... xm ] az A (ortogoális) sajátvekroraiól képzett mátrix, Λ = diag ([λ1 λ2... λm ]) pedig az egyes sajátvektorokhoz tartozó sajátértékeől álló diagoális mátrix. Miért is? Tetszőleges m-es X mátrix előáll UΣV szorzatkét, ahol U = [u1 u2... u ] XX ortoormált sajátvektoraiól álló mátrix Σ m = diag ( λ1, λ2,..., λm ) Vm m = [v1 v2... vm ] X X ortoormált sajátvektoraiól álló mátrix. Miért? Ortogoális mátrix: M M = I (szemléletese: olya forgatás, ami a vektorok hosszát em változtatja meg) Miért?
12 SVD és a Froeius-orma viszoya Tfh. M = Q R, azaz mij = k 58 M = = pik qkl rlj l 3 m32 = pik qkl rlj Ekkor kmk2f = (mij )2 = i j i j k l 2 Továá pik qkl rlj = pik qkl rlj pi qm rmj k l k l m Ahoa kmk2f = pik qkl rlj pi qm rmj i j k l m Ameyie, Q, R mátrixok az SVD felotásól jöek, kmk2f = pik qkk rkj pi q rj = qkk rkj qkk rkj = (qkk )2. i,j,k, j,k k Miért? X mátrix X = U Σ V mátrixszal törtéő közelítéséek hiája: kx X k2f = ku(σ Σ )V k2f = (σkk σ kk )2 k
13 CUR SVD hátráya, hogy egy jellemzőe ritka mátrixot sűrű mátrixokat (U és V ) is tartalmazó szorzatkét állítja elő Egy alteratíva az eredeti mátrix CUR formáa törtéő előállítása Csak az U mátrix adódik sűrűek, és az SVD felotás egy közelítését adja C és R mátrixok az eredeti X mátrix soraiól, illetve oszlopaiól származak, így azok megőrzik X ritkaságát Míg az SVD egyedi felotást eredméyez, addig a CUR em
14 Lieáris Diszkrimiacia Aalízis (Liear Discrimiat Aalysis) Traszformáljuk úgy alacsoya dimezióa a tö/sokdimeziós címkézett adatukat, hogy az új tére az eltérő osztályú potok miél kevésé keveredjeek Mi legye w vetítés iráya? µ ~i = w µi µ~1 µ~2 = w (µ1 µ2 ) s i = X (w x ~ µi ) 2 x i címkéjű w = arg max J(w) = arg max w w ~ µ1 ~ µ2 2 2 s 1 + s 22 (1)
15 Belső,- és külső szóródási mátrixok i osztályú traszformált potok első szóródási mátrixa: X Si = (x µi )(x µi ) x i címkéjű Aggregált első szóródási mátrix: SW = S1 + S2 i osztályú traszformált potok szóródása: X X s i 2 = (w x w µi )2 = w (x µi )(x µi ) w = w Si w x i címkéjű Eltérő osztályú traszformált potok közötti szóródási mátrix: SB = (µ1 µ2 )(µ1 µ2 ) Eltérő osztályú traszformált potok közötti szóródás: (µ 1 µ 2 )2 = (w µ1 w µ2 )2 = w SB w
16 Azaz az eredeti (1)-e foglalt céluk átfogalmazható w = arg maxw J(w) = arg maxw ww SSWB ww alakra w SB w w SW w az ú. általáosított Rayleigh-háyados J(w) maximális ww SSWB ww = 0 SB w = λsw w 1 1 SW SB w = λw w = SW (µ1 µ2 ) (Lásd tála) Emlékeztetőül 0 f (x) = g (x) f 0 (x)g (x) f (x)g 0 (x) g 2 (x) x x Ax = 2Ax, ameyie A = A xx y = xi yi x (vagyis egy x iráyáa mutató vektor)
17 vs
18 Multidimeziós skálázás (Multi-Dimesioal Scalig) Cél: adott potpárokéti költségeket/távolságokat tartalmazó mátrixhoz keressük meg az adatpotok azo pozícióit a tére, melyre kxi xj k δij Tö/sokdimeziós adatpotok traszformációja alacsoya dimezióa úgy, hogy a potok közötti távolságok miél iká megőrződjeek
19 Lokális lieáris eágyazás (Locally Liear Emeddig) A, SVD és mid lieáris függést feltételeztek Nemlieáris dimeziócsökkető eljárás Trükk: Mide pothoz határozzuk meg a legközelei szomszédait, és írjuk fel őket azok lieáris komiációikét J(W ) = kxi Wij xj k2, úgy, hogy Wij = 1, és j=1 j=1 wij > 0 xj eighors(xi )
20 Kaoikus korreláció aalízis A potjaik koordiátái két kordiátaredszer szerit ismertek Feladat: a két koordiátaredszer potjaiak egy (csökketett dimeziójú) koordiátaredszere való összegyúrása, hogy a traszformált jellemzők korrelációja maximális legye E [xy ] = E [x 2 ] E [y 2 ] wx Cxy w y wx Cxx wx wy Cyy wy ρ= E[wx xy wy ] E[wx xx wx ] E [wy yy wy ] = arg max ρ-t em efolyásolja wx vagy wy hossza arg max ρ = arg max wx Cxy wy " # " # Σxx Σxy x x Σ= =E y y Σyx Σyy
21 Alteratív vizualizációs eljárások Ha em (feltétle) kérük a dimeziócsökketésől Cheroff arcok: egy arc egy adatpotak feleltethető meg, az arc karakterisztikája pedig az az adatpotot leíró jellemzők által felvett értékekkel hozható összefüggése
PCA LDA MDS, LLE, CCA. Adatbányászat. Dimenziócsökkentő eljárások. Szegedi Tudományegyetem. Adatbányászat
Dimeziócsökkető eljárások Szegedi Tudomáyegyetem Dimeziócsökketés szerepe Az adatpotok reprezetálására haszált dimeziók számáak csökketésével spórolhatuk Tödimeziós adatpotok vizualizálása (pl. 2 vagy
1. Sajátérték és sajátvektor
1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b
8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
2. függelék. Mátrixszámítási praktikum-ii. Lineáris algebrai eljárások
függelék /9 oldal Eötvös Lórád udomáyegyetem ermészettudomáyi Kar Budapest Kemometria tafolyam, Szepesváry Pál függelék Mátrixszámítási praktikum-ii Lieáris algerai eljárások függelék /9 oldal Bevezető
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Vektorok által generált altér, lineáris összefüggőség, függetlenség, generátorrendszer, bázis, dimenzió
Vektorok által geerált altér lieáris összefüggőség függetleség geerátorredszer ázis dimezió Ee a része általáosítjuk a téreli ektorokra már megismert haszos fogalmakat. A legfotosa hogy ármely ektortére
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)
Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
Szociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat
Klaszterezés Szegedi Tudományegyetem Élei lehetnek címkézettek (pl. ellenség, barát), továbbá súlyozottak (pl. telefonbeszélgetés) Megjelenési formái Ismeretségi, társszerzőségi gráf (Erdős-Bacon szám)
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Amx = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x, A R m x m: sorok szám : oszlopok
1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
17. Lineáris algebra
1. oldal 17. Lieáris algebra 17.1 Vektorterek Defiíció: egy K test fölötti V vektortér egy olya struktúra, melybe V kommutatív csoport és az ú. skalárral szorzás, KVV, disztributív a K-beli összeadásra
Alkalmazott algebra - SVD
Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés
10 Norma. Vektornorma. = x T x, ha x R n, (10.1)
0 Norma A mátrixok bizoyos tulajdoságaiak például sorozataik kovergeciájáak vizsgálatába haszosak az olya meyiségek, melyek a köztük lévő külöbségeket a távolságra emlékeztető módo mérik Ehhez az abszolút
i=1 λ iv i = 0 előállítása, melynél valamelyik λ i
Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21
Integrálás sokaságokon
Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,
I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
IV. OPERTOROK HILBERT-TEREKBEN
. 0 A fukcioálaalízis alaptételei 1 IV. OPERTOROK HILBERT-TEREKBEN Ebbe a fejezetbe H adott Hilbert-teret jelöl, és operátoro H H lieáris leképezést értük. 15. A fukcioálaaĺızis alaptételei A tételeket
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.
Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és
Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Összeállította: dr. Leitold Adrien egyetemi docens
átrixok Összeállított: dr. Leitold Adrie egyetemi doces 28.9.8. átrix átrix: tégllp lkú számtáblázt 2 2 22 2 Am = O m m2 Jelölés: A, A mx, ( ij ) mx átrix típus (redje): m x m: sorok szám : oszlopok szám
Andai Attila: november 13.
Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Nem puskás tételek 1/28. Permutáció, mint bijektív függvény: f: H H. S X : X-ben az összes permutáció S n : {1,2,, n} összes permutációjának halmaza
Permutáció, mit bijektív függvéy: f: H H Jelölések: S X, S. 1 S X : X-be az összes permutáció S : {1,,, } összes permutációjáak halmaza Ciklusfelbotás, egyértelműség. T: Mide permutáció S -be előáll diszjukt
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf81 2018-11-20
9. HAMILTON-FÉLE MECHANIKA
9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Lin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
OPERÁTOROK HILBERT-TEREKBEN
OPERÁTOROK HILBERT-TEREKBEN A továbbiakba H adott Hilbert-teret jelöl, és operátoro H H lieáris leképezést értük. K a valós vagy komplex számok halmazát jelöli. 1. A fukcioálaalízis alaptételei A tételeket
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Empirikus szórásnégyzet
Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Az átlagtól való égyzetes eltérést kée átlagoli... Empirikus égyzet
Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete:
æ REGRESSZIÓANALÍZIS Az alapprobléma a következő: Az X, Y v.v. együttes eloszlásáak ismeretébe közelítei szereték Y-t X mérhető t fv.-ével legkisebb égyzetes értelembe: E(Y t(x)) 2 mi. t be. Tudjuk, hogy
ú ú Í ú ű Ú Ú ú Ú ú ű ű Ú Í ű Ú Ú É ú ű ú ú Ú Ú Í Ú ú Ú ű ú ú ú ú Ő Ú ű ú ú ú ű ű ű ű ú ű ű Í Ú Í Í ú ú ű ű ú ú ú ű ú Ú É ú ú ű ú ú Ú Í Ú Í Á ú ű ú ú ű Ú Ú Ú ú ú ú ú ú ű ű ű Ú É Ú ú ú Ú ú ú ű ú ű ű ú ú
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Eloszlások jellemzése. Momentumok. Medián és kvantilis. Karakterisztikus függvény
Karakterisztikus függvény Eloszlások jellemzése Momentumok Karakterisztikus függvény Medián és kvantilis Medián Kvantilis Módusz Hogyan lehetne általánosítani a generátorfüggvényt folytonos okra? Karakterisztikus
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
Interpoláció. Korszerű matematikai módszerek 2013.
Iterpoláció Korszerű matematiai módszere 2013. Tartalom Iterpolációs eljáráso Klasszius iterpoláció Általáosított iterpoláció Eltolt lieáris iterpoláció Iterpoláció feladata alappoto: x,, 0, 1,..., ahol
A2 Vektorfüggvények minimumkérdések szóbelire 2015
A2 Vektorfüggvéyek miimumkérdések szóbelire 215 Lieáris algebra I. 1. Csoport, gyűrű, test félcsoport: olya halmaz, melybe a kétváltozós műveletek asszociatívak (pl. természetes számok eseté az összeadás)
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
Hanka László. Fejezetek a matematikából
Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet
LINEÁRIS TRANSZFORMÁCIÓ
16..8. LINEÁRIS TRANSZFORMÁCIÓ (MÁTRIX) SAJÁTÉRTÉKE, SAJÁTVEKTORA BSc. Maemaika II. BGRMAHNND, BGRMAHNNC LINEÁRIS TRANSZFORMÁCIÓ Egy A: R R függvéy lieáris raszformációak evezük, ha eljesülek az alábbi
Diszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
Optimális mérési elrendezés hidraulikus hálózatokon
Optimális mérési elrendezés hidraulikus hálózatokon MaSzeSz Juniuor Szimpózium Wéber Richárd PhD hallgató, III. félév BME, GPK, Hidrodinamikai Rendszerek Tanszék Budapest, 2018, egyetemi docens Tartalom
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u
Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {
1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.
1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan
Lineáris algebra numerikus módszerei
Bevezetés Szükségünk van a komplex elemű mátrixok és vektorok bevezetésére. A komplex elemű n-dimenziós oszlopvektorok halmazát C n -el jelöljük. Hasonlóképpen az m n méretű komplex elemű mátrixok halmazát
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Számítógépi geometria. Kovács Zoltán
Számítógépi geometria Kovács Zoltá Lektorálta: Dr. Verhóczki László (ELTE) A taayagfejlesztés az Európai Uió támogatásával és az Európai Szociális Alap társfiaszírozásával a TÁMOP-4.1.2-08/1/A-2009-0046
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.
. feladatsor () Határozzuk meg a következő területi itegrálokat a megadott téglalapoko: ( (x + y) dx dy, ahol T : x, y 3. ( T T x si y dx dy, ahol T : x, 2 y 3. (2) Határozzuk meg a következő területi
Kevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér