6. A végeselem közelítés pontosságának javítása Fokszám növelés (p-verziós elemek)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. A végeselem közelítés pontosságának javítása Fokszám növelés (p-verziós elemek)"

Átírás

1 6 A végslm közlítés pontosságánk jvítás Fokszám növlés (p-vrzós lmk) A végslm közlítés pontosság jvíthtó: - végslm hálózt sűrűségénk növlésévl több lm, több csomópont, szbdságfok növlés (hvrzó, h-konvrgnc) - z lmkn flvtt közlítő polnomok fokszámánk növlésévl z lmn több csomópontot kll flvnn, szbdságfok növkdés (z ddg smrtk szrnt) Célktűzés: közlítő polnomok fokszámát úgy krjuk növln, hogy n klljn újbb csomópontokt flvnn és nnk kövtkztébn n növkdjn z lm (rndszr) szbdságfok 6 Fokszám növlés húzott-nyomott rúdlmnél Adott:,,, L E A f A középvonl pontjnk rúdrányú lmozdulás w dw d A rúdrányú fjlgos nyúlás: w A rúdrányú normálfszültség: A rúdrő: N AE w, hol E w E - z nyg ruglmsság modulus, A rúd krsztmtszténk trült A rúdrő és rúdrányú mgoszló trhlés kpcsolt: 0 H vn N N f d, 0 dn d w f AE AE w d d f rúdrányú vonl mntén mgoszló trhlés, kkor z N ( ) rúdrő lmnként nm állndó Pl: Önsúlyávl trhlt, L hosszúságú rúd Homogén tömgmgoszlás stén z önsúlyból szármzó vonl mntén mgoszló trhlés: f Ag A állndó - z nyg tömgsűrűség, - z nyg fjsúly, A krsztmtszt trült, A rúdrő loszlás hossz mntén: N A L - lnárs függvény 0 N A L AL G V - Az lmozdulásmző szokásos (lnárs) közlítés: w N AE w AE állndó Ez közlítés csk N állndó f 0 stén képs pontos mgoldást lírn - Az lmozdulásmző közlítés fokszámnövléssl: w új mgsbb fokszámú tgok 9

2 A közlítés mátrx lkbn: w 3 4, 3 w p p p pótlólgos j ( j=,, 3, p) állndók szám w Az lm csomópont lmozdulásvktor: q w j Az (=, ) állndók kfjzés csomópont lmozdulásokkl: q w w j L L L L, 3 G G q G G, pp G q G G A szokásos (lnárs) közlítő polnom állndó csomópont lmozdulásokkl és pótlólgos állndókkl fjzhtők k Vsszhlyttsítv közlítő függvényb: w G q G G G q G G q A q A A A p p p - zoknk z állndóknk szám, mlyk nm fjzhtők k csomópont lmozdulásokkl - Fjlgos nyúlás: d A d A dw q B q B d d d p p - Fszültség (rúdrányú normál fszültség): - Az lm potncáls nrgáj: E EB q EB q E - rúd nygánk ruglmsság modulus 9

3 d A w f d L L B q A AE q B B d q f d L B L A p p p p A - rúdlm krsztmtszténk trült - Az lm mrvség mátrx (hly koordnát-rndszrbn): B B B B B AE B B d AE d L L B B B B B Jlölés: qq q q A mrvség mátrx blokkjnk mért:, p p, - Az lm csomópont trhlésvktor (hly R-bn): qq q p q = - szmmtráj mtt A f q f f d L A f - A húzott-nyomott rúdlm potncáls nrgáj: q f qq q q q q q q f A mátrxszorzásokt lvégzv: q q q q f f qq q q q - Az gész rndszr (tst) potncáls nrgáj: Az összgzésnél csomópont lmozdulások összllsztését s l kll végzn q, q, - A potncáls nrg mnmum lv lklmzás: 0, q mn 0 p q Az prmétrk csk z jlű, zz gy-gy lmnél fordulnk lő lőállítás lmnként lvégzhtő: z szrnt szélsőérték 93

4 q q f 0 q q Ebből pótlólgos állndók kfjzhtők: q q q q f q Vsszhlyttsítv z lm potncáls nrgájáb: rd q q q f rd - Az lm hly koordnát-rndszrbn vtt rdukált mrvség mátrx: rd qq q q f f f - Az lm hly koordnát-rndszrbn vtt rdukált trhlés vktor: rd q q A hly R-ből vontkozttás R-b történő trnszformácó ugynzzl z összfüggéssl történk, mnt hgyományos stbn Húzott-nyomott rúdlmnél: 0 Ez kjlölt művltk lvégzésévl gyszrűn gzolhtó - A húzott-nyomott rúdlm potncáls nrgáj: q q q q q f f qq q A húzott-nyomott rúdlmnél z pótlólgos állndók q -től függtlnül htározhtók mg: f f A húzott-nyomott rúdlm rdukált jllmző:, f f rd qq rd q hát q csomópont prmétrkr ugynz lnárs lgbr gynltrndszr dódk, mnt fokszámnövlés nélkül stbn Húzott-nyomott rúdlmnél thát közlítés pontosság lmnként jvíthtó! 6 Fokszám növlés húzott-nyomott, hjlított-nyírt rúdlmnél Adott: - trhlés: f, f, - rúdlm gomtráj: A, I, L - rúdlm nyg: E, A húzás-nyomásr ugynz érvénys, mnt z lőző lmnél Hjlítás: Brnoull lmélt szrnt w - középvonl pontjnk rúdrányú lmozdulás, v - középvonl pontjnk rúdr mrőlgs rányú lmozdulás (lhjlás), dv v - krsztmtszt szöglfordulás tngly körül, d d d v v - középvonl görbült, d d 94

5 M M I E I E v h h - hjlító nyomték, dm h I Ev d - nyírórő d d 0 0 f d f I E v H vn vonl mntén mgoszló trhlés, kkor ( ) nyírórő rúdlmként nm állndó Pl: önsúlyávl trhlt bflzott trtó A trhlés: f A Ag y - fjsúly, g - grvtácós gyorsulás, - tömgsűrűség A nyírórő: y A g L AL g G L A hjlítónyomték: y - lnárs függvény 0, 0 V L M hx Ag - négyzts függvény L L M hx 0 AgL G G L L M hx G, M hx L 0 4 Az lmozdulásmző szokásos (köbös) közlítés: Ez közlítés csk állndó, f 0 y v, IV v 3 3 4, v 3 6 4, v 6 4, IV v 0 stén képs lírn pontos mgoldást w új tgok 3 Az lmozdulásmző közlítés fokszámnövléssl: v 3 4 új tgok A közlítés mátrx lkbn: w v p p 95

6 Az lmozdulásmző közlítés mátrx lkbn tömörn: Csomópont áltlánosított lmozdulásvktor: u q q, q j w q v dv dv A Brnonll lmélt szrnt:, A moshnko lmélt szrnt: d d A gondoltmnt z lőzőknk mgfllőn folyttódk Brnonll-fél rúdlmélt (húzás-nyomás + hjlítás nrg fgylmbvétl): 0 q q moshnko-fél rúdlmélt (húzás-nyomás + hjlítás + nyírás nrg fgylmbvétl): 0 q q 63 A fokszámnövlés áltlánosítás síkbl str ) Áltlánosítás gydmnzós str: vonllm A vlóságos vonllm: Lképzés: A lképztt lm x h x Az lmozdulásmző közlítését (z zoprmtrkus ljárásnk mgfllőn) lképztt lmn írjuk fl: p, u h u h 3, h - hgyományos (külső) lkfüggvényk, 3, p h - blső lkfüggvényk t dt A blső lkfüggvényk lőállítás: P Pn t - Lgndr (lözsn) polnomok (,3, ) Az n-d fokú Lgndr-fél dffrncálgynlt: t x y xy n n y 0, x, n 0,,, Ismrtln: y yx Mgoldás: y yx P x n - n-d fokú Lgndr-fél polnom A polnomok lőállítás Bonnt (boné)-fél rkurzós formulávl s történht: Más lőállítás s lhtségs Pn x n xp x npn x n Az lső néhány Lgndr-fél polnom és blső lkfüggvény: 96

7 P 0 x, P x x,, 3 P x 3x,, P3 x 5x 3 x, 3, P4 x 35x 30x 3, , P5 x 63 x 70 x 5, 8 Az jlű lkfüggvény lőállítás: A Lgndr-fél polnomok tuljdonság:,,3, P P Ortogonltás ( mrőlgsség áltlánosítás): x, h j, P x Pj x dx, h j 0 A blső lkfüggvényk tuljdonság: (A Lgndr-fél polnomok értlmzéséből és ortogonltásából kövtkzk) 0, h,3,4, j j j d d j, h j dx A blső lkfüggvényk drváltj ortonormáltk dx dx 0, h j x Ortonormált: ortogonáls és normáj Függvény normáj (mérték, bszolút érték): ülső lkfüggvényk: f x f x f x dx x Blső lkfüggvényk Elmhtárok: A blső lkfüggvényk z lmhtárokon ltűnnk nm kll llsztn őkt b) Áltlános D str négy csomópontú síkbl lm Függvénytér: függvényk hlmz Bázsfüggvényk: zok függvényk, mlykből függvénytér bármly lm (bármly függvény) lőállíthtó Pl: 3,,,,,,,, 97

8 Hrrchkus flépítésű lkfüggvényk lklmzásávl ngyon jó rdményk érhtők l Hrrchkus flépítésű lkfüggvényk: A p fokszámú lkfüggvényknk trtlmznuk kll z összs p fokszámú lkfüggvényt és lgyn közöttük z lm csomópontjbn és oldln l nm tűnők (nm null értékűk) szám lhtő lgksbb Ennk fltétlnk mgfllő lkfüggvénykt krunk flvnn gy négy csomópontú négyszög lkú síkbl lm stén Lnárs síkbl lm: Csomópontok srokpontok 4 x, h, x Lképzés: 4 y, h, y j - csomópont jlölés, - z oldl jlölés Az lmozdulásmző közlítés: 4 p 4 b u u u, h,,, u hjs h, j s j j j s j 4 p 4 b v js s j j j s j v v, h, v h, h, j p - bázsfüggvénybn lőforduló lgmgsbb fokszám j -, j 0,,,, p A csomópontokhoz trtozó lkfüggvényk: h,,,,3,4 4, - z jlű csomópont hlykoordnátá Az oldlkhoz trtozó lkfüggvényk: 4 p számú függvény írhtó fl: -nél jlnnk mg, h, h, h 3, h 4,,3,4,, p A blső lkfüggvényk: 4 -nél jlnnk mg j j3 b számú függvény írhtó fl: h,, h,, h h h h 3,,,, ,,,, Bázsfüggvényk hrrchkus flépítés stén: 98

9 Mgjgyzésk: p -d fokú közlítés mndg trtlmzz p -d fokú közlítést - A - Az lkfüggvényk drváltjnk ortogonltás csökknt mrvség mátrx sávszélsségét 99

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISTVÁN EGYETEM AAMAZOTT MECHANIA TANSZÉ 5. MECHANIA-VÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül Vronika g. ts.) V. lőadás. okális aroimáció lv végslm diszkrtizáció gdimnziós fladatra Amint azt

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jgyzt Dr. Goda Tibor 3. Lináris háromszög lm - A végslms mgoldás olyan approximációs függvénykn alapul, amlyk az gys lmk vislkdését írják l (lmozdulás függvény

Részletesebben

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel:

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel: SZÉCHENYI ISTÁN EGYETEM AKAMAZOTT MECHANIKA TANSZÉK 7. MECHANIKA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül ronika, g. ts.) II. lőadás.. Rácsos szrkzt vizsgálata húzott-nomott rúdlmkkl: F x m m. ábra: Rácsos

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT (kidolgozta: Trisz Pétr, g. ts.; Tarnai Gábor, mérnöktanár) Síkbli rőrndszr rdő vktorkttős, vonal mntén mgoszló rőrndszrk..

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn (MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára 0. októbr

Részletesebben

A végeselemes modellezés kontinuummechanikai alapjai

A végeselemes modellezés kontinuummechanikai alapjai Foglalkoztatásoltka és Munkaügy Mnsztérum Humánrőforrás-fjlsztés Oratív Program Dr. Páczlt István Dr. Nándor Frgys - Dr. Sárköz László - Dr. Szabó Tamás - Dr. Baksa Attla - Dluh Kornél A végslms modllzés

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 fltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,

Részletesebben

MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI. Páczelt István, Nándori Frigyes, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila

MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI. Páczelt István, Nándori Frigyes, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila A VÉGESELEMES MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI Páczlt István, Nándori Frigys, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila Miskolci Egytm, Mchanikai Tanszék HEFOP-3.3.-P-004-06-00 ELŐSZÓ

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT (idolgozt: Trisz Pétr, g. ts.; Trni Gábor, mérnötnár) Erőrndszr rdő vtorttős, vonl mntén mgoszló rőrndszr.. Péld Adott: z

Részletesebben

7. Határozott integrál

7. Határozott integrál 7. Htározott intgrál 7.. Számolj ki z lái intgrálokt! 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7...

Részletesebben

Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István

Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István Lináris gynltrndszrk Készíttt: Dr. Ábrhám István A lináris gynltrndszrkt kitrjdtn hsználják optimumszámítási fldtokbn. A tém tárgylásához lőkészültt kll tnni. Mátri fktorizáció A fktorizáció mátri szorzttá

Részletesebben

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár. 8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltán g adjunktus; Bojtár Grgl g Ts; Tarnai Gábor mérnöktanár) 8 Fsültségi állapot smlélttés Adott: Ismrt g silárd tst pontjában a fsültségi állapot

Részletesebben

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths. www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára. Mit

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

A kötéstávolság éppen R, tehát:

A kötéstávolság éppen R, tehát: Forgás és rzgés spktroszkópa:. Határozzuk mg a kövtkző részcskék rdukált tömgét: H H, H 35 Cl, H 37 Cl, H 35 Cl, H 7 I Egy m és m tömgű atomból álló kétatomos molkula rdukált tömg () dfnícó szrnt: mm vagy

Részletesebben

3. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter; Tarnai Gábor, mérnök tanár) Három erő egyensúlya

3. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter; Tarnai Gábor, mérnök tanár) Három erő egyensúlya SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK Péld: MEHNIK STTIK GYKORLT (kidolgozt: Tisz Pét; Tni Gábo ménök tná) Háom ő gynsúly dott gy mlőszkzt méti és thlés: m b 5 m c 5 m kn ldt: y c Htáozz mg z

Részletesebben

3. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Három erő egyensúlya

3. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Három erő egyensúlya SZÉHENYI ISTVÁN EGYETEM GÉPSZERKEZETTN ÉS MEHNIK TNSZÉK 3 MEHNIK STTIK GYKORLT Kdolgozt: Tsz Pét gy ts Háom ő gynsúly 3 Péld: dott gy mlőszkzt mét és thlés: m b 5 m c 5 m 0 kn ldt: y c Htáozz mg z és támsztóőkt

Részletesebben

Arculati Kézikönyv. website branding print

Arculati Kézikönyv. website branding print Arculati Kézikönyv wbsit branding print 22 2. A logó 23 A logó gy cég, szrvzt vagy szolgáltatás gydi, jól flismrhtő, azonosításra szolgáló vizuális jl. A logó lsődlgs célja a mgkülönbözttés, az gyértlmű

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

4. A VÉGESELEM MÓDSZER ELMOZDULÁS MODELLJE

4. A VÉGESELEM MÓDSZER ELMOZDULÁS MODELLJE 4 VÉGESEEM MÓDSZER EMOZDUÁS MODEJE végslm módsr numrus lárás mérnö fa fladato ölítő mgoldására módsr a sámítástchna flődésévl párhuamosan alault Jlnlg unvráls nagon sofél fladat mgoldására alalmas végslm

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

N-ed rendű polinomiális illesztés

N-ed rendű polinomiális illesztés ed rendű polinomiális illesztés 1 oldl Tegük fel, hog dottk vlmilen fiziki menniség függvénében mért értékek, zz mérési értékpárok, hlmz ( db mérési pont) A mérés mindig trtlmz vlmekkor bizontlnságot mért

Részletesebben

7. Térbeli feladatok megoldása izoparametrikus elemekkel

7. Térbeli feladatok megoldása izoparametrikus elemekkel 7 ébl fladatok mgoldása zoaamtkus lmkkl ébl fladat: A tst (alkatész) alakjáa (gomtájáa) és thlésé nézv nncs smmln kolátozó fltétlzés 7 Összfoglaló smétlés Elmozdulásmző: u ux v wz Elmozdulás koodnáták:

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék 3 fbruár 7 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete A khrdtés módja: kfüggsztés A khrdtés napja: 2009. dcmbr 21. dr. Xantus Judt jgyző Budapst Főváros VIII. krült Józsfváros Önkormányzat Képvslő-tstülténk 46/2009.(XII.21.) sz. önkormányzat rndlt a Budapst

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-gomtria A szürkíttt háttrű fladatrészk nm tartoznak az érinttt témakörhöz, azonban szolgálhatnak fontos információval az érinttt fladatrészk mgoldásához!

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék dcmbr 8 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás egy. doc., Triesz Péter egy. ts.

5. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás egy. doc., Triesz Péter egy. ts. SZÉCHENYI ISTVÁN EGYETE GÉPSZERKEZETTAN ÉS ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás g. doc., Trisz Pétr g. ts. Erőrndszr rdő vtorttős, párhuzamos rőrndszr, vonal mntén mgoszló

Részletesebben

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/ . Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

1-2.GYAKORLAT. Az ideális keresztmetszet (I. feszültségi állapot)

1-2.GYAKORLAT. Az ideális keresztmetszet (I. feszültségi állapot) Bevezetés: 1-2.GYAKORLAT Az ideális keresztmetszet (I. feszültségi állpot) - vsbeton két egymástól eltérő tuljdonságú nyg, beton és z cél, egyesítése - két nyg együttes felhsználás úgy történik, hogy zok

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

10. TERMOMECHANIKAI FELADATOK VÉGESELEM MEGOLDÁSA

10. TERMOMECHANIKAI FELADATOK VÉGESELEM MEGOLDÁSA 1 ERMOMECHNIKI FELDOK VÉGESELEM MEGOLDÁS V, m dv rr dm dv d n hr trmodnama I főtétlén ntgrál alaa a V térfogatú (m tömgű) és flültű tstr: d dt u dm F dv r dm h d, m V m n d a tst blső a blső rő a hőforráso

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai Bojtár Imr Gáspár Zsolt A végslmmódszr matmatka alapja Elktronkusan ltölthtő lőadásvázlat építőmérnök hallgatók számára. http://www.pto.bm.hu/m/htdocs/oktatas/oktatas.php Kadó: BME Tartószrkztk Mchankája

Részletesebben

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a 1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2

RSA. 1. Véletlenszerűen választunk két nagy prímszámot: p1, p2 RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (

Részletesebben

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak 1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn

Részletesebben

4. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár)

4. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZTT ECHANIKA TANSZÉK 4. ECHANIKA STATIKA GYAKRLAT (kdolgozta: Trsz Pétr, g. ts.; Tarna Gábor, mérnök tanár) Erő, nomaték, rőrndszr rdő, rőrndszrk gnértékűség 4.. Példa: z

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2017. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.

Részletesebben

4. Izoparametrikus elemcsalád

4. Izoparametrikus elemcsalád SZÉCHENYI ISTVÁN EGYETEM AKAMAZOTT MECHANIKA TANSZÉK 8. MECHANIKA-VÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül Vronika, g. ts.) VIII. lőadás 4. Izoparamtriks lmcsalád A krskdlmi szoftvrkbn lggakrabban ún.

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

Tengelyek lehajlásának számítása Oktatási segédlet

Tengelyek lehajlásának számítása Oktatási segédlet Németh Gé djunktus Tengelyek lehjlásánk sámítás Okttási segédlet iskolci Egyetem Gép és termékterveési Intéet iskolc, 4. március. - - Tengelyek lehjlásánk sámítás A tengelyeket kéttámsú trtóként modelleve,

Részletesebben

MATEMATIKA B változat. A tanuló neve, osztálya:...

MATEMATIKA B változat. A tanuló neve, osztálya:... MATEMATIKA B változt A tnuló nv, osztály:... Az lmúlt tnév vé osztályzt mtmtkáól:... Olvs l ylmsn ltokt! A ltokt ttszés szrnt sorrnn olhto m. Törk rr, hoy molások lírás yértlmő lyn, yl rnztt küllkr! Mnn

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

4. Izoparametrikus elemcsalád

4. Izoparametrikus elemcsalád SZÉCHENYI ISTVÁN EGYETEM AKAMAZOTT MECHANIKA TANSZÉK 9. MECHANIKA-VÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül Vronika, g. ts.) VIII. lőadás 4. Izoparamtriks lmcsalád A krskdlmi szoftvrkbn lggakrabban ún.

Részletesebben

Öszvér szerkezetek kialakítása, Építéstechnológia, Számítás hagyományos elven

Öszvér szerkezetek kialakítása, Építéstechnológia, Számítás hagyományos elven Öszvérszerkezetek 1. elődás Öszvér szerkezetek kilkítás, Építéstechnológi, Számítás hgyományos elven készítette: 2012.09.14. Trtlom Bevezetés: előnyök-hátrányok Szerkezeti kilkítás Szerkezeti viselkedés

Részletesebben

MATEMATIKA B változat. A tanuló neve, osztálya:...

MATEMATIKA B változat. A tanuló neve, osztálya:... MATEMATIKA B változt A tnuló nv, osztály:... Az lmúlt tnév vé osztályzt mtmtkáól:... Olvs l ylmsn ltokt! A ltokt ttszés szrnt sorrnn olto m. Törk rr, oy molások lírás yértlmő lyn, yl rnztt küllkr! Mnn

Részletesebben

Improprius integrálás

Improprius integrálás Improprius intgrálás Tnulási cél Htározott intgrál foglmánk kitrjsztés végtln intrvllumr. Dfiníciók lklmzás konkrét fldtok stén. Motivációs péld Eddig htározott intgrált csk végs zárt intrvllumon számoltunk.

Részletesebben

Város Polgármestere ELŐTERJESZTÉS

Város Polgármestere ELŐTERJESZTÉS Város Polgármstr 251 Biatorbágy, Baross Gábor utca 2/a Tlfon: 6 23 31-174/233 mllék Fax: 6 23 31-135 E-mail: bruhazas@biatorbagy.hu www.biatorbagy.hu ELŐTERJESZTÉS Budapst Balaton közötti krékpárút nyomvonalával

Részletesebben

Robotkarok dinamikus modellje

Robotkarok dinamikus modellje Robokrok dnmkus modllj A robook dnmkus modllj robo csuklónk pozícój, sbsség, gyorsulás ll robor hó rők közö dj mg z összfüggés. A modllzés során flélzzük, hogy z gymáshoz csol roboszgmnsk mr skkén modllzhők.

Részletesebben

Utófeszített vasbeton lemezek

Utófeszített vasbeton lemezek Utófszíttt vasbton lmzk Pannon Fryssint Kft. 1117 udapst, udafoki út 111. Tl.: + 36 1 279 03 58 - Fax: + 36 1 209 15 10 www.fryssint.com 2008. dcmbr Utófszíttt vasbton lmzk z utófszíttt szrkztk alkalmazása,

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

Vegyipari készülékek tervezése I.

Vegyipari készülékek tervezése I. Vgyipari készülékk trvzés I. GEVGT0-B Előadó: Dr. Siménfalvi Zoltán gytmi docns Gyakorlatvztő: Ptrik Máté doktorandusz Kövtlményk: Aláírás, fltétl : évközi fladatok tljsítés, db zh tljsítés Ajánlott irodalom.

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés .5.. _. tés Végslm-mósr Végslm-mósr. A gomtra tartomán (srkt) flostása (égs)lmkr.. okáls koornáta-rnsr flétl kacsolat a lokáls és globáls koornátarnsrk köött.. A bás függénk flétl fnálása lmnként.. A mrség

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Bevezetés a fúziós plazmafizikába 7.

Bevezetés a fúziós plazmafizikába 7. Bvztés fúzós plzmfzkáb 7. Részcskék ütközés plzmákbn, trnszport r. Grgő Pokol BME NTI Bvztés fúzós plzmfzkáb 018. októbr 16. Progrm átum Elődó Cím Szptmbr 4Pokol Szptmbr 11Pokol Szptmbr 18Pokol Szptmbr

Részletesebben

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV Lap: 1/145 AZ INCZÉDY GYÖRGY KÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM MINŐSÉGIRÁNYÍTÁSI E AZ MSZ EN ISO 9001 SZABVÁNY ALAPJÁN, ILLETVE MINŐSÉGIRÁNYÍTÁSI PROGRAMJA A KÖZOK-TATÁSI TÖR- VÉNY (1993. ÉVI LXXIX.)

Részletesebben

6. Határozatlan integrál

6. Határozatlan integrál . Határozatlan intgrál.. Alkalmazza a hatványfüggvény intgrálására vonatkozó szabályt! d... d... d... d 8...... d... d... d..8. d..9. d..0. d... d... d 8... d... 8... d...... d..8...9. d..0. d d 8 d d..

Részletesebben

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak ár: Ár Bodó B, Somonné Szó Klár Mtmtik. közgzdászoknk II. modul: Intgrálszámítás. lck: Intgrálási szályok Tnulási cél: Szorztfüggvénykr vontkozó intgrálási tchnikák mgismrés és különöző típusokr vló lklmzás

Részletesebben

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

Vegyipari készülékek tervezése I.

Vegyipari készülékek tervezése I. Vgyipari készülékk trvzés I. GEVGT0-B Előadó: Dr. Siménfalvi Zoltán gytmi docns Gyakorlatvztő: Ptrik Máté doktorandusz Kövtlményk: Aláírás, fltétl : évközi fladatok tljsítés, db zh tljsítés Ajánlott irodalom.

Részletesebben

6. előadás Véges automaták és reguláris nyelvek

6. előadás Véges automaták és reguláris nyelvek Formális nylvk és automaták Széchnyi István Egytm 6. lőadás Végs automaták és rguláris nylvk dr. Kallós Gábor 2017 2018 Formális nylvk és automaták Széchnyi István Egytm Tartalom Zártsági tulajdonságok

Részletesebben

I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az

I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az 8 Közöségs diffriálgltk umrikus mgoldása 8 Dfiíió g Ω IR tartomá IR I ílt itrvallum f : I Ω IR foltoos függvé Az : I IR diffriálató függvékr voatkozó f ( ( I gltt közöségs (lsõrdû pliit diffriálgltk vzzük

Részletesebben

4. Differenciálszámítás

4. Differenciálszámítás . Diffrnciálszámítás.. Írja fl a diffrnciahányadost a mgadott pontban és határozza mg a határértékét!... f...... f..7. f, f,,..9. f... f... f... f...... f..7...9. f...... f... f... f...,..6. f,,,, f,..8.

Részletesebben

ELSZÁMOLÁS szõlõ- és orászti trmékkészltk lkulásáról Bnyújtnó 1 pélányn z illtéks vámhivtlhoz Postár ás átum: A) A vámhivtl tölti ki! Bérkzés átum: Átvvõ kój, láírás: év Ikttás átum: hó év Ikttó szám:

Részletesebben

VENTS KISTELJESÍTMÉNYÛ AXIÁLIS VENTILÁTOROK MÛSZAKI LEÍRÁS

VENTS KISTELJESÍTMÉNYÛ AXIÁLIS VENTILÁTOROK MÛSZAKI LEÍRÁS VENTS KISTELJESÍTMÉNYÛ AXIÁLIS VENTILÁTOROK MÛSZAKI LEÍRÁS 006 A VENTILÁTOR HASZNÁLATA A VENTS típusú vntilátorok lklmsk kis és közps ngyságú hlyiségk szllõzttésér (lkóhlyiség, irod, üzlt, konyh, vizslokk,

Részletesebben

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe

Részletesebben

A HIBAKORLÁTOZÓ KÓDOLÁS

A HIBAKORLÁTOZÓ KÓDOLÁS A 8 A HIBAORÁOZÓ ÓDOÁS csatornakódolás ún kapactástétl azt állíta, ogy a forrásszövg gy osszúságú blokkának a kbővítés osszúságúra, ttszés szrnt ks értékűvé tt a blokk mgbásodásának valószínűségét, fltév,

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 2007. fruár 1. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. fruár 1. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon

Részletesebben

Név:... osztály:... Matematika záróvizsga 2010.

Név:... osztály:... Matematika záróvizsga 2010. Mtmtik záróvizsg 00. Név:... osztály:.... Az lái rjzon gy thrutó rktrénk vázltos rjz láthtó. Az árán olvshtó számtok, rkoásr ténylgsn flhsználhtó térfogtr vontkoznk. Mkkor thrutó hsznos rktrénk térfogt?

Részletesebben

Öszvér szerkezetek kialakítása, Építéstechnológia; Számítás hagyományos elven.

Öszvér szerkezetek kialakítása, Építéstechnológia; Számítás hagyományos elven. Öszvérszerkezetek 1. elődás Öszvér szerkezetek kilkítás, Építéstechnológi; Számítás hgyományos elven. készítette: 2018.09.28. Trtlom Bevezetés: előnyök-hátrányok Szerkezeti kilkítás Szerkezeti viselkedés

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

S x, SZELEPEMEL MECHANIZMUS Témakör: Kinematika, merev test, síkmozgás, relatív

S x, SZELEPEMEL MECHANIZMUS Témakör: Kinematika, merev test, síkmozgás, relatív ZELEPEMEL MECHNIZMU Témkör: Kinmtik, mr tst, síkmozgás, rltí ázolt szlpml mchnizmus sugrú, cntricitású cntrtárcsáj állndó szögsbsséggl forog. 1. jzoljuk mg szlp foronomii görbéit. Vgis z t, t és t függénkt..

Részletesebben

SV-805AL SV-805AL Color. Videokaputelefon 5 vezetékes vandálbiztos. Rock Series. Telepítõi kézikönyv

SV-805AL SV-805AL Color. Videokaputelefon 5 vezetékes vandálbiztos. Rock Series. Telepítõi kézikönyv SV-805AL SV-805AL Color Vidokputlfon 5 vztéks vndáliztos Rock Sris Tlpítõi kézikönyv BEVEZETŐ 1 2 TÁPEGYSÉG TELEPÍTÉSE Köszönjük, hogy GLMAR trmékét válsztott. Az IS-9001 minősítés és lkötlzttségünk vásárlók

Részletesebben

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen 10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,

Részletesebben

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T 6 Állndósult gázármlás állndó krsztmtsztű csőn Egy hosszú csőztékn ármló gáz nyomássését nm csk fli csúszttófszültség szj mg, hnm csőflon átdott hő mnnyiség is Hő flétl szmontól két ltő stt tárgylunk ktkző

Részletesebben

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel Cikória szárítástchnikai tulajdonságainak vizsgálata modllkísérlttl Kacz Károly Stépán Zsolt Kovács Attila Józsf Nményi Miklós Nyugat-Magyarországi Egytm Mzőgazdaság- és Éllmiszrtudományi Kar Agrárműszaki,

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben