10. TERMOMECHANIKAI FELADATOK VÉGESELEM MEGOLDÁSA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "10. TERMOMECHANIKAI FELADATOK VÉGESELEM MEGOLDÁSA"

Átírás

1 1 ERMOMECHNIKI FELDOK VÉGESELEM MEGOLDÁS V, m dv rr dm dv d n hr trmodnama I főtétlén ntgrál alaa a V térfogatú (m tömgű) és flültű tstr: d dt u dm F dv r dm h d, m V m n d a tst blső a blső rő a hőforráso nrgáa tlsítmény (hő)tlsítmény a tst (ülső) flültén átfolyó hőáramo (hő)tlsítmény ahol u - gységny tömgbn flhalmoott blső nrga, F - a fsültség tnor (a tstbn ébrdő fsültség), - a tst alaváltoás tnorána (alaváltoásána) dő srnt lső drválta, r - gységny dő alatt gységny tömgbn lttt hő (salár mnnység), h - gységny dő alatt gységny flültn átáramlott hő (vtor mnnység), n - a tst flültén flé mutató normáls gységvtora, t - a dő E a mnnység általában a hlyn és a dőn s függvény: u ur, t, F F r, t, r, t, r r r, t, h h r, t, n n r ovábbá: d - a lm flült, dv - a lm térfogat, dm - a lm tömg ( dm dv, ahol - a anyag tömgsűrűség) 133 trmodnama I főtétlén dffrncáls alaa a Gauss-Ostrograds-tétl alalmaásával a ntgrál alaból apható, fltétlv hogy a vsgált tst tömg nm válto mg: u F r h, u - a tst gységny tömgér utó blső nrgáána (hőnrga+alaváltoás nrga) dő srnt mgváltoása, F - a tstbn fllépő blső rő falagos (gységny térfogatra utó) tlsítmény I főtétlből övt, hogy a mchana és a hőtan állapoto nm függtln gymástól (csatolt vagy apcsolt fladat) Ha a mchana és hőnrga váltoáso aonos nagyságrndű, aor a mchana és a hőtan fladatot gyüttsn/gydűlg ll mgoldan, pl: mlgalaítás folyamato Ha vsont a alaváltoás nrga váltoása soal sbb, mnt a hőnrga váltoás, aor a hőtan és mchana fladat sétválastható Ebbn a stbn a mchana fladat mgoldása csa lhanyagolható mértébn bfolyásola a hőtan fladat mgoldását, aonban a hőtan fladat mgoldása hatással van a mchana fladatra Eért a lyn fladat ét lépésbn olható mg: 1 (tstán) hőtan fladat mgoldása, amlyn rdmény a, t hőmérséltmő 2 tst dt hőmérsélt loslásáho épst mgváltoott, t hőmérséltmő hatására a tstbn hőfsültség / hő alaváltoáso lépn fl, amly a mchana fladat hőhatásoal gésíttt gynlt sgítségévl határohatóa mg

2 E a mgoldás nagyon so stbn (a st többségébn) alalmaható övtőbn a 1 lépést, a hőmérséltmő mghatároását vsgálu mg résltsn a) hőtan fladat Dfnícó: Hővtés (onducó): Hőáramlás (onvcó): a vsgált tst anyag réscsé nyugalomban vanna Pl: slárd halmaállapotú tst a vsgált tst anyag réscsé nncsn nyugalomban, a hőátadás anyagáramlással történ Pl: folyadéo, gáo hővtés folyamatonál vsgált slárd halmaállapotú tst sosor folyadéoal vagy gáoal érntn, ért a fladat prmfltétlt ll gésítn gy hőátadás/onvtív taggal Pl: Egy flhvíttt, és lhűlésbn lvő tst mlltt áramló lvgő lsállíta a hőnrgát Hősugárás: a tstből ltromágnss sugárás formáában távoó hő Fourr 1 (furé)-fél hővtés törvény: ahol, t - a hőmérséltmő, grad h, ( ) - a hővtés tényő tnora (Ha a vsgált anyag homogén, aor tnor nm függ a hlytől) x y - Hamlton 2 (hmlton)-fél dffrncál oprátor/nabla oprátor x y Ha a vsgált anyag a hővtés smpontából ortortop, és a hővtés főrányo gybsn a oordnátarndsr x, y és tnglyvl, aor x y, xy ahol x, y és a x, y és rányban a hővtés tényő Ha a anyag a hővtés smpontából otrop, aor x y, vagys E Ebbn a össfüggésbn a hővtés tényő, E pdg a gységtnor étl: a hő mndg a mlgbb hlyről a hdgbb hlyr áraml ( hőtan II főtétlén övtmény) h x x y y x y Hőtan fladat: alaváltoás nrga mgváltoása soal sbb mnt a hőnrga mgváltoása Eor a trmodnama I főtétlébn ltűn a alaváltoás nrgaváltoást tartalmaó tag: u r h gységny térfogat gységny a gységny blső nrga térfogat térfogat flültén váltoása hőforrása átáramló hő b) staconárus hőtan fladat mgoldása: Dfnícó: Egy hővtés fladat staconárus, ha a alauló / mghatároandó hőmérséltmő dőbn állandó 1 Jan Baptst Josph Fourr ( ) franca matmatus és fus 2 Wllam Rowan Hamlton ( ) ír fus és matmatus 134

3 Ha a tst gys pontaban nm válto a hőmérsélt, aor a gységny térfogatban tárolt (falagos) hőnrga s öl állandó marad és a I főtétlbn így már csa ét tag marad mg: Bhlyttsítv a Fourr-fél hővtés törvényt: u h r h x y, x x y y a I főtétlből mgapu a hővtés Fourr-fél dffrncál gynltét staconárus str: Prmfltétl: x y r x x y y - Hőmérsélt: a tst aon flültén, ahol a hőmérsélt smrt,,,, x y x y - lőírt/smrt érté - Hőáramlás: a tst aon h flültén, ahol a h hőáram-vtor (hőfluxus) smrt n h n x nx y ny n x y - a flültr mrőlgs n rányú hőáram/fluxus hn h h hs és h flültr fnnállna a h nalóga a rugalmasságtan fladattal: és h fltétl - a hőmérsélt prmfltétl a mgtámastás (nmata prmfltétl), - a hőáramlás prmfltétl a flült trhlés (dnama prmfltétl) - Hőátadás/onvcós: a tstn aon a h flültén, ahol a hőátadás tényő smrt h, ahol és smrt/lőírt mnnység - örnyt hőmérsélt (hőmérsélt a tsttől lég távol), a rstt hőmérséltmő - Hősugárás: a tstn aon a S h flültén, ahol a hősugárás tényő smrt h, S ahol és smrt/lőírt mnnység ( - a örnyt hőmérsélt) és a rstt hőmérséltmő nalóga a rugalmasságtan fladattal: a hőátadás és hősugárás prmfltétl a rugalmas ágyaás+trhlés gys mnnység mértégység: 135

4 J W - hővtés tényő o o, msc mc J W - hőátadás/onvcós tényő 2 o 2 o, m sc m C J W - hősugárás tényő 2 o 2 o, m sc m C r - térfogat hőforrás-sűrűség h n - flült hőáramsűrűség fladat varácós mgfogalmaása: J 3 W/m 3 ms, J 2 W/m 2 m s vrtuáls hőmérsélt lv (nalóga: vrtuáls muna lv) ahol D D D dv r dv h d d d, n K S V V h S x y, a hőmérséltmő varácóa, smrtln (rstt) a Végslm dsrtácó (flbontás): hőmérséltmő D pdg a hőmérséltmő gradnsén varácóa vsgált tst V térfogatát végs sámú lmr bontu és a mőt lmnént ölítü Ioparamtrus ölítés (lásd 5 ft):,,,,,, soásos lárás után a lű lm végslm gynlt: N G 1 N - a lm csomópontana sáma, G,, - approxmácós függvény, 1 N N1 - a lű lm csomópontában a hőmérsélt gynltrndsrbn smrtln a csomópont hőmérsélt: K f 1 2 N Itt gy csomópontho gy salárs paramétrt, a csomópont hőmérséltt rndlü nalóga a rugalmasságtan fladattal: csomópont lmodulás csomópont hőmérsélt Hővtés mátrx: G G G G G G K x y dv x x y y V nalóga: mrvség mátrx G G d G G d a flült a flült hőátadásból sármaó hősugárásból sármaó hővtés mátrx rés nalóga: rugalmas ágyaás S Csomópont hőáramvtor: 136

5 f Gr dv Ghn d G d G d V h S hőforrásból/hőnylésből smrt flült hőátadás/onvcós hősugárásból sármaó sármaó csomópont hőáramlásból sármaó csomópont hőáram- csomópont hőáramvtor csomópont hőáramvtor vtor hőáramvtor nalóga: trhlés vtor lm (ölítő hőmérséltmő) össllstés ugyanúgy történ, mnt a rugalmasságtan fladatonál: K 11 K 12 K 1 f 1,1 1,2 1, 1 1 K K K 2,1 2,2 2, f 2,1 2,2 2, K 1 2 f K K K,1,2, f,1,2, staconárus hőtan probléma végslm alapgynlt: K f - lnárs algbra gynltrndsr a csomópont hőmérséltr 1 2 M - csomópont hőmérsélt vtor, M - a fladat csomópontana sáma gynltrndsr a hőmérsélt prmfltétl fgylmbvétl után a csomópont hőmérséltr mgoldható c) nstaconárus hőtan fladat mgoldása Dfnícó: Egy hővtés fladat nstaconárus, ha a alauló / mghatároandó hőmérséltmő dőbn válto Ha a hőáramo és l gyütt a hőmérséltmő dőbn válto, aor fgylmb ll vnn, hogy a hő gy rését a anyag tárola (a mgváltoott hőmérsélt révén) Ebből övtőn módosul a hővtés dffrncálgynlt és a prmfltétl dőtől függő lsn hővtés Fourr-fél dffrncál gynlt nstaconárus str: x y r c, x x y y t u 3 ahol - tömgsűrűség g/m, J c - fahő (falagos hőtároló épsség tényő) o gc Prmfltétl: hn h h hs 137

6 - a - a h - a - a S flültn, t, t flültn hn, t flültn h, t flültn h, t Kdt fltétl: - a t t fladat varácós mgfogalmaása: - smrt érté, - hőáram/fluxus (smrt érté), - hőátadás, - hősugárás V V t V S S dőpllanatban, t D D dv c dv rdv - adott/smrt mő össfüggésbn a aláhúott tag lnt a staconárus sttől való ltérést n h S h d d d Végslms ölítés (lmnént):,,, t G,, t,, t Itt a N 1 t csomópont hőmérsélt függn a dőtől 1 N N 1 lű lm végslm gynlt: K C f lm hőtárolás/hőapactás mátrxa: gés rndsr hőtárolás mátrxa: C C cg G dv V C C C C C C C C C ,1 1,2 1, ,1 2,2 2, 1 2,1,2, nstaconárus hőtan probléma végslm alapgynlt: C K f Köönségs lsőrndű dffrncálgynlt-rndsr a dffrncálgynlt-rndsr dőntgrálása: t t t 1 t 1 t Fltétlés: t hőmérsélt a t csomópont hőmérséltr név dő a 1 paramétr függvény: t dőntrvallumban lnársan válto 1 t t t t t t t t t 1 1 t t csomópont hőmérsélt a t dőpllanatban: 1 1 hőáram vtor a t dőpllanatban: f f f f f t f f t 1 csomópont hőmérsélt dő srnt dffrncálhányadosát ölítőlg dffrncahányadossal hlyttsítü: 138

7 dffrncálgynlt-rndsr: C K f d dt 1 t C K f f t 1 Bhlyttsítv a dffrncálgynlt-rndsrb: 1 1 Átrndv rurós össfüggést apun: C t K C t 1 K 1 1 t f f 1 Kˆ fˆ smrt Ebből a lnárs algbra gynltrndsrből a csomópont hőmérsélt mghatároható smrtébn a ntgrálás ndítása (dt fltétl): t t t t rurós össfüggés: K ˆ fˆ : ntgrálás stabltása:,5 - a lárás fltétlsn stabl,,5 1 - a lárás fltétl nélül stabl,,5 - trapé formula, másodrndbn pontos és fltétl nélül stabl, nn llnér oscllácó flléphtn a mgoldásban 139

4. A VÉGESELEM MÓDSZER ELMOZDULÁS MODELLJE

4. A VÉGESELEM MÓDSZER ELMOZDULÁS MODELLJE 4 VÉGESEEM MÓDSZER EMOZDUÁS MODEJE végslm módsr numrus lárás mérnö fa fladato ölítő mgoldására módsr a sámítástchna flődésévl párhuamosan alault Jlnlg unvráls nagon sofél fladat mgoldására alalmas végslm

Részletesebben

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:

Részletesebben

A kötéstávolság éppen R, tehát:

A kötéstávolság éppen R, tehát: Forgás és rzgés spktroszkópa:. Határozzuk mg a kövtkző részcskék rdukált tömgét: H H, H 35 Cl, H 37 Cl, H 35 Cl, H 7 I Egy m és m tömgű atomból álló kétatomos molkula rdukált tömg () dfnícó szrnt: mm vagy

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn (MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára 0. októbr

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jgyzt Dr. Goda Tibor 3. Lináris háromszög lm - A végslms mgoldás olyan approximációs függvénykn alapul, amlyk az gys lmk vislkdését írják l (lmozdulás függvény

Részletesebben

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár. 8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltán g adjunktus; Bojtár Grgl g Ts; Tarnai Gábor mérnöktanár) 8 Fsültségi állapot smlélttés Adott: Ismrt g silárd tst pontjában a fsültségi állapot

Részletesebben

Meghatározás Pontszerű test. Olyan test, melynek jellemző méretei kicsik a pálya méreteihez képest. A helyvektor megváltozása: r1,2 r(t 2) r(t 1)

Meghatározás Pontszerű test. Olyan test, melynek jellemző méretei kicsik a pálya méreteihez képest. A helyvektor megváltozása: r1,2 r(t 2) r(t 1) I. Mchanka Dfnált fogalom Mghatározás Tömgpont Pontszrű tst. Olyan tst, mlynk jllmző mért kcsk a pálya mérthz képst. Elmozdulás hlyvktor mgváltozása: r1, r(t ) r(t 1) Sbsség dr hlyvktor változás gyorsasága

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára. Mit

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvomotor sbsségsabályoása. A gyaorlat célja Egynáramú srvomotor sbsségsabályoásána trvés. A motorsabályoás programváána flépítés. A sbsség rányítás algortms mgvalósítása valós dbn. 2. Elmélt bvt A motor

Részletesebben

PÁRATECHNIKA. Feladatok. Dr. Harmathy Norbert. egyetemi adjunktus

PÁRATECHNIKA. Feladatok. Dr. Harmathy Norbert. egyetemi adjunktus 08. 0. 4. PÁATECHNIKA Fladatok Dr. Harmathy Norbrt gytm adjunktus BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építészmérnök Kar, Épültnrgtka és Épültgépészt Tanszék. Fladat páratchnka alapja A. Számítsuk

Részletesebben

6. SZILÁRDSÁGTANI ÁLLAPOTOK

6. SZILÁRDSÁGTANI ÁLLAPOTOK 6 SZILÁRDSÁGTANI ÁLLAOTOK 6 Alapfogalmak Silárdságta: a trhlés lőtt és utá is tartós ugalomba lvő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés Trhlés: ismrt külső rőrdsr Tartós ugalom:

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvootor sbsségsabályoása. A gyaorlat célja Egynáraú srvootor sbsségsabályoásána trvés. A otorsabályoás prograváána flépítés. A sbsség rányítás algorts gvalósítása valós dőbn. 2. Elélt bvtő A otor sbsségsabályoásána

Részletesebben

A felépítés elvi alapjait az ÁSF és Reissner-Mindlin-féle lemezhajlítási elmélet alkotja. pontjának elmozdulás koordinátái,

A felépítés elvi alapjait az ÁSF és Reissner-Mindlin-féle lemezhajlítási elmélet alkotja. pontjának elmozdulás koordinátái, Lm- és héjlmk modllés éknség: Olassa l a bkdést! Gűjts k/tanulja mg a oparamtrkus lmlm flépítésénk jllmőt! 63 Ioparamtrkus lmlm A flépítés l alapjat a ÁSF és Rssnr-Mndln-fél lmhajlítás lmélt alkotja +

Részletesebben

5. SZILÁRDSÁGTANI ÁLLAPOTOK

5. SZILÁRDSÁGTANI ÁLLAPOTOK 5 SZILÁRDSÁGTANI ÁLLAOTOK 5 Alapfogalmak Silárdságta: a trhlés lőtt és utá is tartós ugalomba lvő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés Trhlés: ismrt külső rőrdsr Tartós ugalom:

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

6. A végeselem közelítés pontosságának javítása Fokszám növelés (p-verziós elemek)

6. A végeselem közelítés pontosságának javítása Fokszám növelés (p-verziós elemek) 6 A végslm közlítés pontosságánk jvítás Fokszám növlés (p-vrzós lmk) A végslm közlítés pontosság jvíthtó: - végslm hálózt sűrűségénk növlésévl több lm, több csomópont, szbdságfok növlés (hvrzó, h-konvrgnc)

Részletesebben

A végeselemes modellezés kontinuummechanikai alapjai

A végeselemes modellezés kontinuummechanikai alapjai Foglalkoztatásoltka és Munkaügy Mnsztérum Humánrőforrás-fjlsztés Oratív Program Dr. Páczlt István Dr. Nándor Frgys - Dr. Sárköz László - Dr. Szabó Tamás - Dr. Baksa Attla - Dluh Kornél A végslms modllzés

Részletesebben

A szilárdságtani rúdelmélethez

A szilárdságtani rúdelmélethez A slárságtan rúlmélth Már mgnt találtn a ntrntn g anagot [ ], ml lnított valamt. Most rről ls só. A történt, hog [ ] - b blolvasva fltűnt a [ 2 ] Sgr Fal - fél, valamnt a [ 3 ] Lana ~ Lfsc - fél tárgalásmóho

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék 3 fbruár 7 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

Végeselem analízis (óravázlat)

Végeselem analízis (óravázlat) Végslm analízis óravázlat Készíttt: Dr Pr Balázs Széchnyi István Egytm Alkalmazott Mchanika Tanszék dcmbr 8 Copyright Dr Pr Balázs Mindn jog fnntartva Ez a dokumntum szabadon másolható és trjsztht Módosítása

Részletesebben

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-gomtria A szürkíttt háttrű fladatrészk nm tartoznak az érinttt témakörhöz, azonban szolgálhatnak fontos információval az érinttt fladatrészk mgoldásához!

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

QUADRO. ProfiScale QUADRO Távolságmérő készülék. www.burg-waechter.de. hu Használati h utasítás. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Távolságmérő készülék. www.burg-waechter.de. hu Használati h utasítás. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Távolságmérő észülé u Használat utasítás www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V

Részletesebben

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai Bojtár Imr Gáspár Zsolt A végslmmódszr matmatka alapja Elktronkusan ltölthtő lőadásvázlat építőmérnök hallgatók számára. http://www.pto.bm.hu/m/htdocs/oktatas/oktatas.php Kadó: BME Tartószrkztk Mchankája

Részletesebben

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a 1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés .5.. _. tés Végslm-mósr Végslm-mósr. A gomtra tartomán (srkt) flostása (égs)lmkr.. okáls koornáta-rnsr flétl kacsolat a lokáls és globáls koornátarnsrk köött.. A bás függénk flétl fnálása lmnként.. A mrség

Részletesebben

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x.

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x. Valós váltoós omplx üggvéy, t x t yt rt cost st r t t, t dt b Ft C, t dt F t FbFa a t x t y t b. x, y görb gylt omplx alaba: x, y. a Komplx váltoós omplx üggvéy u x, y v x, y, ahol x y, Drválás: ( ) lm

Részletesebben

Robotok irányítása. főiskolai jegyzet javított változat. írta: Tukora Balázs

Robotok irányítása. főiskolai jegyzet javított változat. írta: Tukora Balázs Robotok ránítása főskola jgt javított váltoat írta: Tukora Balás Pécs, 4 . Bvtés Jln jgt a Pécs Tudomángtm Pollack Mhál Műsak Főskola Karán foló Műsak Informatka képés Robotránítás rndsrk I-II. tantárgaho

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

DIFFRAKCIÓ - ÓRAI JEGYZET

DIFFRAKCIÓ - ÓRAI JEGYZET FIZIKA BSc III. évolam /. élév Opta tárg DIFFAKCIÓ - ÓAI JEGYZET Er Gábor Ph.D. 8. AJÁNLOTT SZAKIODALOM: ALAPFOGALMAK Kln-Furta Optcs chtr Bvtés a morn optába Born-Wol Prncpls o optcs Gooman Introucton

Részletesebben

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése

Az Integrációs Pedagógiai Rendszer projektelemeinek beépülése Az Intgrációs Pdagógiai Rndszr projtlmin bépülés a Fsttics Kristóf Általános Művlődési Központ Póaszpti 1-8. évfolyamos és a Paodi 1-4. évfolyamos Általános Isola tagintézményin otató-nvlő munájába 2011/2012.

Részletesebben

FIZIKAI KÉMIA III FÉNY. szerda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szemináriumi terem. fehér fénynyaláb

FIZIKAI KÉMIA III FÉNY. szerda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szemináriumi terem. fehér fénynyaláb FIZIKAI KÉMIA III szrda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szmináriumi trm FÉNY fhér fénynyaláb FÉNY fhér fénynyaláb prizma színs fénynyalábok fény = hullám (mint a víz flszínén látható hullámok)

Részletesebben

M7 KÖNYÖKIDOM ÁRAMKÉPÉNEK VIZSGÁLATA ÉS VESZTESÉGTÉNYEZŐJÉNEK MEGHATÁROZÁSA

M7 KÖNYÖKIDOM ÁRAMKÉPÉNEK VIZSGÁLATA ÉS VESZTESÉGTÉNYEZŐJÉNEK MEGHATÁROZÁSA M7 KÖNYÖKIDOM ÁRAMKÉPÉNEK VIZSGÁLATA ÉS VESZTESÉGTÉNYEZŐJÉNEK MEGHATÁROZÁSA. A mérés célja A csőztébn az áramlás rányáltozását önyödomoal, csőíl oldjá mg. Az rányáltozás jlntős áramlás sztségl jár, amlyn

Részletesebben

1. RUGALMASSÁGTANI ALAPFOGALMAK

1. RUGALMASSÁGTANI ALAPFOGALMAK RUGALMASSÁGTANI ALAFOGALMAK Silárdságta: a trhlés lőtt és utá is tartós ugalomba lévő alakváltoásra képs tstk kimatikája diamikája és aagsrkti vislkdés A értlmésb lőforduló kifjésk magaráata: Trhlés: a

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

HŐVÉDELEM Feladatok I. rész

HŐVÉDELEM Feladatok I. rész 07... Fladaok I. rész Dr. Harmahy Norbr adjunkus BDAPESTI MŰSZAKI ÉS GAZDASÁGTDOMÁNYI EGYETEM Épíészmérnök Kar, Épülnrgka és Épülgépész Tanszék. Flada A. Haározd mg gy öbbrégű falszrkz hőábocsáás ényzőjé!

Részletesebben

MIKROMECHANIKAI ÉRZÉKELŐK ELEKTROMOS-,

MIKROMECHANIKAI ÉRZÉKELŐK ELEKTROMOS-, MIKROMECHANIKAI ÉRZÉKELŐK ELEKTROMOS-, MECHANIKAI- ÉS TERMIKUS MODELLEZÉSE Doktor értkzés Vízváry Zsolt oklvls gépészmérnök Tdományos Vztő: Dr. Kovács Ádám Bdapst, 5. áprls BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI

Részletesebben

Feladatok megoldással

Feladatok megoldással Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A

Részletesebben

7. Térbeli feladatok megoldása izoparametrikus elemekkel

7. Térbeli feladatok megoldása izoparametrikus elemekkel 7 ébl fladatok mgoldása zoaamtkus lmkkl ébl fladat: A tst (alkatész) alakjáa (gomtájáa) és thlésé nézv nncs smmln kolátozó fltétlzés 7 Összfoglaló smétlés Elmozdulásmző: u ux v wz Elmozdulás koodnáták:

Részletesebben

Alkalmazott Fizika Laboratórium (MSc I. év): Diffrakció és optikai jelfeldolgozás

Alkalmazott Fizika Laboratórium (MSc I. év): Diffrakció és optikai jelfeldolgozás Alalaott Fa Laboratóru (MSc I. év: ffracó és opta jlflolgoás 5--, BME AFT, Maá Pál, Ujhl Frnc, Er Gábor A ohrns opta jlflolgoásban térbn és őbn ohrns fént (lért hasnálun a opta nalábba bvtt és továbbított

Részletesebben

DUPLEX, DUPLEX-S, DUPLEX-N, DUPLEX-NS

DUPLEX, DUPLEX-S, DUPLEX-N, DUPLEX-NS DUPLEX, DUPLEX-S, DUPLEX-N, DUPLEX-NS tlpítés módok A DUPLEX 000 000 ( hõvsszanyrõvl) és a DUPLEX-S 500 5600 ( hõvsszanyrõvl) többfél kvtlbn készül, mlyk mgkönnyítk az gységk gépházban történõ tlpítését,

Részletesebben

A projekt keretében elkészült tananyagok:

A projekt keretében elkészült tananyagok: VÉGESEEM-MÓDSZER A pojt tébn lésült tananago: Anagtchnológá Matals tchnolog Anagtdomán Áamlástchna gép CAD tanönv CAD Boo CAD/CAM/CAE ltons példatá CAM tanönv Mééstchna Ménö optmalácó Engnng Optmaton Végslm-analís

Részletesebben

A termodinamika alapvető, általános érvényű összefüggéseket szolgáltat a makroszkopikus testek tulajdonságairól.

A termodinamika alapvető, általános érvényű összefüggéseket szolgáltat a makroszkopikus testek tulajdonságairól. SAISZIKUS FIZIKA I A statsztus fza alapja Statsztus fza tárgya. A statsztus lírás szüségsség A trmodnama alapvtő általános érvényű összfüggést szolgáltat a maroszopus tst tulajdonságaról. Azonban a fnomnologus

Részletesebben

KOD: B377137. 0, egyébként

KOD: B377137. 0, egyébként KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISTVÁN EGYETEM AAMAZOTT MECHANIA TANSZÉ 5. MECHANIA-VÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül Vronika g. ts.) V. lőadás. okális aroimáció lv végslm diszkrtizáció gdimnziós fladatra Amint azt

Részletesebben

Fizikai geodézia és gravimetria / 12. VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN.

Fizikai geodézia és gravimetria / 12. VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN. MSc Fzka godéza és gravmtra / 1. BMEEOAFML01 VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN. Godéza vonatkoztatás rndszrnk (Godtc Rfrnc Systm = GRS) a godéza földmodllt matmatkalag

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 13. (XII. 13) Boltzman statisztika, termodinamikai valószínőség

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 13. (XII. 13) Boltzman statisztika, termodinamikai valószínőség d ELTE II. Fzkus, 005/006 I. éév KISÉRLETI FIZIKA Hıtan. (XII. Botzman statsztka, trmodnamka vaószínőség A ázstér p y dp y. dp p N db atom van, s az atomokat a hyükk (r, r + dr és az mpuzusukka (p, p +

Részletesebben

4. Differenciálszámítás

4. Differenciálszámítás . Diffrnciálszámítás.. Írja fl a diffrnciahányadost a mgadott pontban és határozza mg a határértékét!... f...... f..7. f, f,,..9. f... f... f... f...... f..7...9. f...... f... f... f...,..6. f,,,, f,..8.

Részletesebben

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1 Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI. Páczelt István, Nándori Frigyes, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila

MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI. Páczelt István, Nándori Frigyes, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila A VÉGESELEMES MODELLEZÉS KONTINUUMMECHANIKAI ALAPJAI Páczlt István, Nándori Frigys, Sárközi László, Szabó Tamás, Dluhi Kornél, Baksa Attila Miskolci Egytm, Mchanikai Tanszék HEFOP-3.3.-P-004-06-00 ELŐSZÓ

Részletesebben

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A.

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A. omplx lírás: ELTE I.izius 004/005 II.félév + cos ϕ R ϕ KISÉRLETI IZIK Eltrodinamia 3. (IV.9 -V.3.) Intrfrncia II. [ ]; sin ϕ Im [ ] * i cosϕ + i sinϕ ; cosϕ isinϕ * ; cos ϕ R [ ] f cos ( ω t + ϕ) ; f cos

Részletesebben

ÚJ MOD. www.ligier.hu

ÚJ MOD. www.ligier.hu ELL ÚJ MOD! z s é k a Útr wwwligirhu ELL ÚJ MOD a l f z! Fdz Könnyn vzthtő tő Hétköznapokra trvzv Funkcionális és kénylms Az ÚJ MGO a tökélts stílusával, kénylmévl és a praktikus flszrltségivl a mindnnapi

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

Fűtéstechnika. Épületfizika, hőveszteség számítás. Irodalom. Többrétegű szerkezetek hőátbocsátási tényezője MSZ-04-140-2:1991 MSZ-04-140-2:1991

Fűtéstechnika. Épületfizika, hőveszteség számítás. Irodalom. Többrétegű szerkezetek hőátbocsátási tényezője MSZ-04-140-2:1991 MSZ-04-140-2:1991 Fűtéstcnia Épütfizia, ővsztség számítás Irodaom Épütgépészt 000, Aapismrt. Épütgépészt K. 000 Dr. Stojanovits J.: Központi fűtés I. Homonnay Györgyné: Központi fűtés II. Vögys István: Fűtéstcniai adato

Részletesebben

Nem-extenzív effektusok az elemi kvantumstatisztikában?

Nem-extenzív effektusok az elemi kvantumstatisztikában? Nm-xtzív tuso az lm vatumstatsztába? Bró Tamás Sádor MTA Wgr FK RMI 22.3.26.. Boltzma-Gbbs-Plac-Réy-Tsalls 2. Frm & Bos altérb á la Gbbs-Boltzma 3. NBD mt szuprstatszta 4. Kohrs állapot, Posso statszta

Részletesebben

Móri Tamás. Fıkomponens- és faktoranalízis

Móri Tamás. Fıkomponens- és faktoranalízis Mór amás Fıompos- és fatoraalízs Elt Valószíőséglmélt és Statszta aszé 999 Mór amás: Főompos- és fatoraalízs Fıompos- és fatoraalízs öbbdmzós adatsor: so változóra voatozóa vaa mgfgylés. A tárgyaladó többdmzós

Részletesebben

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV

MINŐSÉGIRÁNYÍTÁSI KÉZIKÖNYV Lap: 1/145 AZ INCZÉDY GYÖRGY KÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM MINŐSÉGIRÁNYÍTÁSI E AZ MSZ EN ISO 9001 SZABVÁNY ALAPJÁN, ILLETVE MINŐSÉGIRÁNYÍTÁSI PROGRAMJA A KÖZOK-TATÁSI TÖR- VÉNY (1993. ÉVI LXXIX.)

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás egy. doc., Triesz Péter egy. ts.

5. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás egy. doc., Triesz Péter egy. ts. SZÉCHENYI ISTVÁN EGYETE GÉPSZERKEZETTAN ÉS ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT Kidolgozta: Szabó Tamás g. doc., Trisz Pétr g. ts. Erőrndszr rdő vtorttős, párhuzamos rőrndszr, vonal mntén mgoszló

Részletesebben

3. KISFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE

3. KISFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE Vamos műk KSFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE ksfszütségű áózatok fadata a fogyasztók amos nrgáa aó átása ztékk fontos fadatának átásában fontos szrp an az nrgaszogátatás mnőségét, bztonságát és gazdaságosságát

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 080 ÉRETTSÉGI VIZSGA 008. novmbr. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szrint,

Részletesebben

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) 5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá

Részletesebben

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata Tudományos Diákköri Konrncia Thrhordó üvg ödémszrkzt: T grnda ragasztott öv-grinc kapcsolatának numrikus vizsgálata Készíttt: Gál Tamás F17JCS építőmérnök hallgató Konzulns: Dr. Vigh László Grgly Egytmi

Részletesebben

Ő Ą É Ł ľ ä Ü Ú ú í Ü Ü í í Ü Ü ö ľ ĺ Ü Ú Ü í í ĺ í ö ö ĺ ü í í ú í Ü í Ü ö Ü í í ö í í í ü ö ü ö ö ö ĺ í í ĺ í ö ö ű ĺ ö ö ĺ ĺ ú í í ű ö ö í đ ĺ ö ú ĺ í í í ú í í ú Ü ű ö í ú ú í í ú í í í Ü ű ú ü ö ú

Részletesebben

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni.

- 1 - A következ kben szeretnénk Önöknek a LEGO tanítási kultúráját bemutatni. Játékok a tanításhoz? - 1 - Tanító játékok? A Lgo kockák gészn biztosan fontos szívügyi gy gész sor gyrk és szül gnráció éltébn. Mi köz van a Lgo kockáknak a tanuláshoz? Vagy lht gyáltalán tanítani /órákat

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT (idolgozt: Trisz Pétr, g. ts.; Trni Gábor, mérnötnár) Erőrndszr rdő vtorttős, vonl mntén mgoszló rőrndszr.. Péld Adott: z

Részletesebben

Villamos érintésvédelem

Villamos érintésvédelem Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás

Részletesebben

Járművázak számítógéppel segített tervezése a dinamikus igénybevételek figyelembevételével

Járművázak számítógéppel segített tervezése a dinamikus igénybevételek figyelembevételével Járművázak számítógéppl sgíttt trvzés a dnamkus génybvétlk fgylmbvétlévl PhD ÉRTEKEZÉS Gombor Balázs oklvls gépészmérnök Témavztő: Dr. Varga László Profssor Emrtus, az MTA doktora Budapst 2008 BUDAPESTI

Részletesebben

Operatív döntéstámogatás módszerei

Operatív döntéstámogatás módszerei ..4. MSKOLC YM azaságtuomáyi Kar Üzlti formációgazálkoási és Mószrtai tézt Számvitl tézti aszék Opratív ötéstámogatás mószri Dr. Musiszki Zoltá Opratív ötéstámogatás mószri Statisztikai, matmatikai mószrk

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az

I nyílt intervallum, ( ) egyenletet közönséges (elsõrendû explicit) differenciálegyenletnek nevezzük. Az 8 Közöségs diffriálgltk umrikus mgoldása 8 Dfiíió g Ω IR tartomá IR I ílt itrvallum f : I Ω IR foltoos függvé Az : I IR diffriálató függvékr voatkozó f ( ( I gltt közöségs (lsõrdû pliit diffriálgltk vzzük

Részletesebben

Név:... osztály:... Matematika záróvizsga 2010.

Név:... osztály:... Matematika záróvizsga 2010. Mtmtik záróvizsg 00. Név:... osztály:.... Az lái rjzon gy thrutó rktrénk vázltos rjz láthtó. Az árán olvshtó számtok, rkoásr ténylgsn flhsználhtó térfogtr vontkoznk. Mkkor thrutó hsznos rktrénk térfogt?

Részletesebben

(2) A d(x) = 2x + 2 függvénynek van véges határértéke az x0 = 1 helyen, így a differenciálhányados: lim2x

(2) A d(x) = 2x + 2 függvénynek van véges határértéke az x0 = 1 helyen, így a differenciálhányados: lim2x DIFFERENCIÁLSZÁMÍTÁS MINTAPÉLDÁK.. Példa. Határozzuk mg az f = függvénnk az = hlhz tartozó diffrnciahánados függvénét, majd vizsgáljuk mg, hog f diffrnciálható- az -ban adjuk mg az = hlhz tartozó diffrnciálhánadost.

Részletesebben

Egyenlőtlen cellafelbontáson alapuló többszintű numerikus modellezési eljárások

Egyenlőtlen cellafelbontáson alapuló többszintű numerikus modellezési eljárások Egnlőtln llaflbontáson alapló többszintű nris odllzési láráso Írta: Gáspár Csaba ai az Inforatiai Tdoánágban az MTA dotori í lnrésér pálázi Gőr 7 TARTAOMJEGYZÉK. Egnlőtln flbontású llarndszr QT-háló...

Részletesebben

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI

MUNKAANYAG, A KORMÁNY ÁLLÁSPONTJÁT NEM TÜKRÖZI Az önkormányzati és trültfjlsztési minisztr../2008. (..) ÖTM rndlt a katasztrófavédlmi szrvk és az önkormányzati tűzoltóság hivatásos szolgálati viszonyban álló tagjaival kapcsolatos munkáltatói jogkörök

Részletesebben

5. A SZILÁRDSÁGTAN 2D FELADATAI

5. A SZILÁRDSÁGTAN 2D FELADATAI 5 A SZILÁDSÁGAN D FELADAAI A slárdságta (rugalasságta) kétdós vag kétértű (D) fladata köréb háro fladatcsoportot sokás sorol: - a sík alakváltoás fladatokat (SA) - a általáosított síkfsültség állapot fladatat

Részletesebben

Módosítások: a) 22/2005. (IX. 19.) ör. b) 48/2006. (XII. 22.) ör. c) 7/2007. (II. 23.) ör. /2007.III. 1-

Módosítások: a) 22/2005. (IX. 19.) ör. b) 48/2006. (XII. 22.) ör. c) 7/2007. (II. 23.) ör. /2007.III. 1- 1 Módosítások: Budapst Főváros Trézváros Önkormányzat Képvislő-tstülténk 34/1996. (XII. 16.) rndlt az Önkormányzat tulajdonában álló lakások bérlőink lakbértámogatásáról a) 22/2005. (IX. 19.) ör. b) 48/2006.

Részletesebben

2.2. AZ ANYAGHULLÁMOK A

2.2. AZ ANYAGHULLÁMOK A .. AZ ANYAGHULLÁMOK A fénynél nm udun dönn: maráns hullámjlnség mua más jlnségbn részcsén lász Elron: ddg mndnü részcs (pl. /m ísérl) hullámulajdonságo mua- valahol? [LOUIS DE BROGLIE (89-87), 94-7: részcshullám,

Részletesebben

Kisbodaki Harangláb Kisbodak Község Önkormányzatának lapja 2012. február hó V. évfolyam 1. szám

Kisbodaki Harangláb Kisbodak Község Önkormányzatának lapja 2012. február hó V. évfolyam 1. szám Kibodaki Haangláb Kibodak Közég Önkományzatának lapja 2012. fbuá hó V. évfolyam 1. zám hatályát vzttt a kataztófák llni védkzé iányítááól, zvztéől é a vzély anyagokkal kapcolato úlyo baltk llni védkzéől

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

Kisfeszültség villamosenergia-elosztó rendszer vezetékeinek méretezése (szükséges keresztmetszet meghatározása)

Kisfeszültség villamosenergia-elosztó rendszer vezetékeinek méretezése (szükséges keresztmetszet meghatározása) Kisfszütség viamosrgia-osztó rdszr vztéi mértzés (szüségs rsztmtszt mghatározása) vzté mértzés iiduásaor ismrt ftétzzü: a btápáás fszütségét (), az áti ívát fogyasztó áramfvétét (), a fogyasztóra jmz fázistéyzt

Részletesebben

A művészeti galéria probléma

A művészeti galéria probléma A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai 2007 8: Műészti Galéria Probléma Őrzési / Mgilágítási problémák

Részletesebben

Lambda szonda szimulátor szerelési útmutató

Lambda szonda szimulátor szerelési útmutató Lambda szonda szimulátor szrlési útmutató Műszaki adatok: Működési fszültségtartomány: 616V DC Áramflvétl: 20mA 1. Vágjuk l a káblkt a lambda szonda fj és a csatlakozója között, a gyári szondát hagyjuk

Részletesebben

Atomok mágneses momentuma

Atomok mágneses momentuma Kvantuchanikai pályaontu: A pályaontu gységkbn kvantált. Az abszolút érték kvantuszáai: l! ( n ) 0,,... l l,, Lˆ rˆ pˆ [ Lˆ x,lˆ y] i! Lˆ z, [ Lˆ y,lˆ z ] i! Lˆ x, [ Lˆ z,lˆ x ] i! Lˆ y L l( l +)! L z

Részletesebben

HŐVÉDELEM Feladatok. Dr. Harmathy Norbert. egyetemi adjunktus

HŐVÉDELEM Feladatok. Dr. Harmathy Norbert. egyetemi adjunktus Flaaok Dr. Harmahy Norbr gym ajunkus BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épíészmérnök Kar, Épülnrgka és Épülgépész Tanszék . Flaa A. Haároz mg gy öbbrégű falszrkz hőábocsáás ényzőjé! B. Haároz

Részletesebben

ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ ü ú ü ľ ú đ ź ľ Ĺ ű ľ ľ ó Ĺ ľ ó ľ ö Ł ź ú ö ó ľ ö ö đ ú ö ö ó ľ đ Ĺ ź ó ľ ľ ö ó ľ ó ó ó ź ú ű Ĺ ó ö ú ü ď ó ľ ľ ó ó ľ ľ ó ó

ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ ü ú ü ľ ú đ ź ľ Ĺ ű ľ ľ ó Ĺ ľ ó ľ ö Ł ź ú ö ó ľ ö ö đ ú ö ö ó ľ đ Ĺ ź ó ľ ľ ö ó ľ ó ó ó ź ú ű Ĺ ó ö ú ü ď ó ľ ľ ó ó ľ ľ ó ó ó ľ ź ľ ąź ľ ľů ü ľ Ĺ ľ ó ľ ó ľó ľ ę ü ó ź ó ó ó ź ö ö ó ó Ł ö ę Đ Ĺ ö ü ľ ö ľ ľó ľ óđ ą ö ľ ü ó ľ ľ ó ľ ľ ú ü ľ ó ľ ú ű ľ ľó ľ ó ą ľ ó ö ó ľ ó Ý Đ ľ ú ü ű ö ó ľ đ ó ď ö óđ ą ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ

Részletesebben

108. szám A MAGYAR KÖZTÁRSASÁG HIVATALOS LAPJA. Budapest, 2009. jú li us 30., csütörtök TARTALOMJEGYZÉK. Ára: 1125 Ft. Oldal

108. szám A MAGYAR KÖZTÁRSASÁG HIVATALOS LAPJA. Budapest, 2009. jú li us 30., csütörtök TARTALOMJEGYZÉK. Ára: 1125 Ft. Oldal A MAGYAR KÖZTÁRSASÁG HIVATALOS LAPJA Budapst, 2009. jú l us 30., csütörtök 108. szám Ára: 1125 Ft TARTALOMJEGYZÉK 158/2009. (VII. 30.) Korm. rn d lt A mzõgazdaság trmékk és az éllmszrk, valamnt a szszs

Részletesebben

A mikrorészecskék kettős természete, de Broglie-hipotézis

A mikrorészecskék kettős természete, de Broglie-hipotézis A mkrorészcskék kttős trmészt, d Brogl-hpotézs... Hullámcsomag... Kétréss kísérlt... 4 A Hsnbrg-fél határozatlanság rlácó... 5 A kvantummchanka alapja... 0 A kvantummchanka alaplv (alapaómá)... 0 Az oprátorok

Részletesebben

Hmérsékletprofil követés PI szabályozóval

Hmérsékletprofil követés PI szabályozóval Hmérélprofl övé I abályoóval. A gyaorla célja roflgnrálá mplmnáláa, alalmaá hmérélabályoára. Mnavél I abályoá mgvalóíáa. 2. Elmél bv 2. I abályoó A I abályoó fgylmb v a abályoá hba múlbl alaláá. A múlbl

Részletesebben

1. FELADATLAP TUDNIVALÓ

1. FELADATLAP TUDNIVALÓ 0851 modul: GEOMETRII ISMÉTLÉS z alakzatokról tanultak ismétlés 135 TUDNIVLÓ Egy alakzatot akkor nvzünk tnglysn szimmtrikusnak, ha létzik lgalá gy olyan gyns, amlyr az alakzatot tnglysn tükrözv önmagát

Részletesebben

Szennyvíz beruházás. v n. 2010 uár Febr

Szennyvíz beruházás. v n. 2010 uár Febr á z h i y g k r D Hírk szám. 2 am y l o évf XI.. 2010 uár Fbr t a! n o v i k ha n l j Mg A Drkgyházi Önkormányzat mgbízásából szrkszttt függtln információs kiadvány. Sznnyvíz bruházás Szrintm még nnyir

Részletesebben

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk.

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk. Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. A trvzés, a modllzés során mgadjuk a

Részletesebben

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel:

3.5. Rácsos szerkezet vizsgálata húzott-nyomott rúdelemekkel: SZÉCHENYI ISTÁN EGYETEM AKAMAZOTT MECHANIKA TANSZÉK 7. MECHANIKA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szül ronika, g. ts.) II. lőadás.. Rácsos szrkzt vizsgálata húzott-nomott rúdlmkkl: F x m m. ábra: Rácsos

Részletesebben