NEM RUGALMAS SZILÁRD TESTEK INSTABILITÁSI VIZSGÁLATÁNAK LEHETSÉGES MODELLEZÉSE

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NEM RUGALMAS SZILÁRD TESTEK INSTABILITÁSI VIZSGÁLATÁNAK LEHETSÉGES MODELLEZÉSE"

Átírás

1 NEM RUGALMAS SZILÁRD TESTE INSTABILITÁSI VIZSGÁLATÁNA LEHETSÉGES MODELLEZÉSE utatási Jelentés (OTA 6 ). Célitőzés: A utatás az instabilitás lefolyásána nemlineáris vizsgálatát alapul véve a modellezés érdésére oncentrált. Ugyan a vizsgálatot általában a véges elem módszerrel numeriusan végzi enne során azonban gyaran felmerül az a probléma hogy a számított eredménye függene a felvett eleme méreteitıl. A probléma oát abban találtu meg hogy a ontinuumot leíró egyenletrendszere szinguláris tuladonságoat mutatna. Abban az esetben viszont hogyha a ontinuumot nemlineáris dinamiai rendszerne teintve a loalizáció elensége statius bifurációna értelmezzü lehetıség van a bifurációelmélet módszereit felhasználó vizsgálatára. Ez a megözelítés elınyös mert az analitius módszer lehetıvé teszi a szinguláris viseledés oána megtalálását illetve a elenségrıl alotott modell pontosítását. A utatás fontosabb eredményei ét témában elentezte: Portevin-Le Chatelier hatás értelmezése gradiens(-függı) anyagmodelle vizsgálata. A Portevin-Le Chatelier hatás ú értelmezése A Portevin-Le Chatelier (PLC) hatás ú a dinamiai rendszere elméleténe felhasználásával történı értelmezését adtu meg. Ezt az eredményt nemzetözi onferencián (AEPA Nagoya) elıadtu. Nemzetözi folyóiratban publiáltu illetve publiációa folyamatban van. Az alábbiaban összefoglalu a területen végzett vizsgálatain lényegét. F. ábra: Tipius szaítógörbe PLC hatás esetén l

2 Az 9-as éveben publiált dolgozataiban [PORTEVIN & LE CHATELIER 93] a szerzı leírtá hogy bizonyos alumíniumötvözete szaítóvizsgálatánál egyes eseteben öngeresztett rezgés lépett fel egyenletes húzás mellett a szaítódiagramént az. ábrához hasonló nem sima függvény adódott. Azt is megfigyelté hogy az említett oszcillációs elenség aor lépett fel amior a v εɺ alaváltozási sebesség növeedése a feszültség csöenését eredményezte (az A és B ponto özött a. ábrán). A C B. ábra. A σ σ( εɺ ) görbe a PLC hatás esetén A elenség magyarázatával illetve ísérleti vizsgálatával a szairodalom iteredten foglalozi [UBIN & ESTRIN 985] [RIZZI & HÄHNER ]. Egyristály esetén a mirostrutúrára alapozott magyarázatot ad a diszloáció mozgására épülı dynamic strain ageing elmélet [MCCORMIC 988] [FRESSENGEAS ET AL. 5]. PORTEVIN-LE CHATELIER hatást (PLC) dinamius anyagi instabilitásént fogu értelmezni. Az anyagi instabilitás definícióában az anyag valamely S állapotána Lapunov értelemben vett stabilitását fogu teinteni. Azt mondu tehát hogy S állapotban az anyag stabil ha anna tetszılegesen is örnyezetében marad elegendıen icsiny perturbáció mellett. Nyilvánvaló tehát hogy a is perturbáció megengedi a vizsgálat leszőítését a is alaváltozás esetére.. Az alapegyenlete Miént a legtöbb ontinuum mechaniai munában az elsı lépés az alapegyenlete felírása. Ezeet a is alaváltozáso elméleténe megfelelıen íru fel: εɺ lm v lm ()

3 inematiai egyenlet a ɺ v () σ Cauchy-féle mozgásegyenlete valamint a σ σ σ lm ε lm + lm εɺ lm (3) onstitutív egyenlet. Az () () (3) egyenleteben a szoásos elöléseet alalmaztu: ε i - alaváltozási tenzor σ i - feszültségtenzor v i - sebességmezı A onstitutív egyenlet állandói a lm v i lm lm - alaváltozási sebesség - az anyagtól függı állandó i l m - indexe értéü 3. ( + ) alaban is felírható. Így a () épleteben szereplı lm ml és ( L + L ) lm a sebességmezın ét differenciáloperátor definiálható eze a Legyen a vizsgált S állapot a lm ˆ v : lm v x x ˆ Lv : Llm vɺ. x x értéeel adott. Tetszıleges is perturbáció alalmazásával m m lm lm ml. () L onstanso felhasználásával l l (5) σ ε v (6) σ ε v σ ε v + σ + ε + v. (7) Az () () (3) és (5) épletebıl a vɺ ˆ v + Lˆ vɺ (8) operátoregyenlet övetezi. Ha a (7)-ne megfelelıen beíru a perturbációat a ( vɺɺ + vɺɺ ) ˆ ( v + v ) + Lˆ ( vɺ + vɺ ) adódi. Mivel (6) ielégíti az () () (3) egyenleteet vɺ triviálisan fennáll. Így a perturbációra a ˆ ˆ v + L vɺ

4 egyenlet adódi. Vezessü be az vɺ ˆ v + Lˆ vɺ. (9) [ y y y y y y ] [ v v v vɺ vɺ ɺ ] v3 ú változóból alotott vetort. Ezzel e (9) egyenlet alaa yɺ yɺ + 3 y + 3 ( ˆ y + Lˆ y ) + 3 () egy dinamiai rendszert definiál a homogén peremfeltételne megfelelı perturbáló sebességmezın. A () araterisztius egyenlete λy λy y ( ˆ y + Lˆ y ) + 3 () Mivel () egy parciális differenciálegyenlet-rendszer amelyet homogén peremfeltétele mellett ell megoldani az analitius vizsgálat általános esetben nem folytatható le. ét alapvetı egyszerősítési lehetıség adódi. Megtehetı speciális perturbáció alalmazásával () algebrai egyenleteé alaítása illetve orlátozható a vizsgálat egytengelyő esetre.. A stabilitási feltétele alaul Az egytengelyő esetben egy l mérető ontinuumot vizsgálun. Eor a () egyenlet így λy λy y y x L + illetve y -et az elsıbıl a másodi egyenletbe helyettesítve λ y y x A () differenciálegyenlethez tartozó homogén peremfeltétel Enne megfelelıen a saátfüggvénye az y L y λ. () x x ( ) y ( ) y ( l ) y ( l ) y. ( x ) C exp( iα x) y (3) alaban ereshetıe. Ha (3)-at a ()-be behelyettesítü aor a

5 egyenletet apu a λ saátértéere. A peremfeltételebıl adódi ebbıl pedig az L λ + λ α + α () A t A t ( ) cos( ) + B( t) sin( ) ( ) cos( αl ) + B( t) sin( αl ) π α (5) l övetezi. Lapunov indiret módszere szerint az S állapot stabilitása a () egyenlet λ megoldásaina valós részétıl függ. A () és a (5) épletebıl λ ifeezhetı ahol az λ bα a ± b α aα (6) L és b (7) egyszerősítı elöléseet alalmaztu. A dinamiai rendszere elméletébıl adódó stabilitási esete a övetezı: az S állapot - stabil ha minden saátértére Reλ < - instabil ha létezi legalább egy olyan λ u saátérté amelyre Reλ u > - a stabilitás határán van ha létezi legalább egy λ c ritius saátérté amelyre Reλ c továbbá minden más ( c) saátértére Reλ <..3 A stabilitásvesztés típusai A stabilitási határ és enne megfelelıen a stabilitásvesztés ét típusa ülöníthetı el. Az egyi esetben (SB statius bifuráció) a stabilitási határon mind a valós mind a épzetes rész nulla: (SB): Re λ Im λ c c. A mási lehetıség (DB dinamius bifuráció) az amior a ritius saátérté épzetes része nem nulla: (DB): Re λ Im. c λ c

6 Vizsgálu meg hogy a tárgyalt egytengelyő esetben melye az egyes stabilitásvesztési típuso feltételei. A (6) egyenletbıl az SB szüséges feltétele vagyis (7) felhasználásával ami a lasszius loalizációs feltétellel azonos. A DB szüséges feltétele pedig az bα ± b α aα (8) L. Vizsgálu most meg a (8) baloldalán álló gyö alatti α aα b (9) ifeezést. Hogyha a (5) és a (7) épleteet behelyettesítü (9)-be a elsı ritius saátértéhez tartozó esetben azaz adódi. π π L l l π l A () görbét a stabil tartományt illetve a stabilitási határoat a 3. ábrán razoltu meg. L () Statius bifuráció L Nincs rezgés Rezgés fellép Stabil Dinamius bifuráció 3. ábra. Stabilitási térép Itt ól látszi hogy öngeresztett rezgés mellett fellépı instabil viseledés az L < esetben várható. Amior L > lehetséges rezgés de ez csillapodó tranziens ellegő. A ét eset özötti átmenet pedig éppen az L dinamius bifurációs feltétel. Ez megegyezi azoal a feltételeel amelyenél a PLC elenség fellép azaz a ét elenség azonosna teinthetı.

7 . Összefoglalás a további utatás iránya A Portevin-Le Chatlier hatás vizsgálatában megismertü a szairodalom ét eltérı megözelítési módát. Az elsı (maroszopius) tárgyalásmód nagyban hasonlít az általun a fentieben leírt a dinamiai rendszere elméletére alapozott vizsgálathoz. Emellett azonban ismert a dynamic strain ageing névvel elzett a diszloáció mozgására épített magyarázat. Eddigi utatásain arra vezette hogy hasznos volna valamiféle egyesítés illetve a ét elmélet összevetése. utatásainat iegészítettü termodinaniai megfontoláso figyelembevételével felvetıdött a másodi fıtétel és a negatív rate-dependence elenség viszonya illetve az az igény hogy a apcsolatot részletesen i ell vizsgálni. 3. Gradiens anyagmodelle vizsgálata A utatás mási része a gradiens(-függı) anyagmodelle vizsgálata. Az ilyen anyagoat alalmaztun az ere egyszerő biomechaniai modellezéseiben egyfata mechaniai megoolását adva a belgyógyászati illetve szemészeti szaorvosi gyaorlatban alapvetı szemfenéi érvizsgálatána. utatásain fontos eredménye a dinamiai rendszere stabilitási ritériumaina a variációs elvehez apcsolható alalmazási lehetıségeine vizsgálata. Ezen a területen a szilárd ontinuumo feltételes variációs elv felhasználásával történı modellezésére adtun példát az anyag stabilitásána feltételezése mellett (pl. Drucer posztulátum). Az anyagmodellezésben egyszerre szerepeltetü a feltételes Lagrange deriváltat és (a dinamiai rendszere örében használt) Lapunov stabilitás feltételét. Az alalmazott módszer lépései hasonlóa a.-.3 részeben leírtahoz természetesen a ontinuum alapegyenleteit meg ellett változtatni továbbá felhasználu a feltételes Lagrange egyenletne a [BÉDA & BÉDA 7] illetve [BÉDA & BÉDA 8] szerinti értelmezését. Az elért eredménye a épléeny eményedés (plastic hardening) és a (Lapunov) stabilitás összefüggésére vonatozta megmutatá hogy miént ell a onstitutív egyenletet egy stabil és a Drucer posztulátumot telesítı anyag esetén felírni azaz milyen alaban ereshetı a gradiens anyagot modellezı egyenlete. Megegyzzü hogy az ebben a témában elért eredménye publiálása még folyi több ülföldön publiációra benyútott ci áll bírálat alatt.. Irodalom A. PORTEVIN F. LE CHATELIER C. R. (93) Acad. Sci. Paris 76 (93) 57. LP. UBIN Y. ESTRIN (985) The PORTEVIN LE CHATELIER effect in deformation with constant stress rate. Acta Metall

8 RIZZI E. HÄHNER P. () On the PORTEVIN LE CHATELIER effect: theoretical modeling and numerical results. Int. J. Plasticity 65. MCCORMIC P.G. (988) Theory of flow localisation due to dynamic strain ageing. Acta Metall C. FRESSENGEAS A.J. BEAUDOIN M. LEBYODIN L.P. UBIN Y. ESTRIN (5) Dynamic strain aging: A coupled dislocation Solute dynamic model Materials Science and Engineering A 6 3 BÉDA P.B. BÉDA GY. (8) Conditional Lagrange derivative in the constitutive equation of plastic bodies Mechanics and Mechanisms of Finite Plastic Deformation CD Proceedings of PLASTICITY 8. (Eds.: Ahtar S. han & Baba Farroh) NEAT PRESS Fulton 8 BÉDA P.B. BÉDA GY. (7) Conditional Lagrange derivative and its application PAMM Vol 7 (7) No: pp 97-98

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel.

25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. 25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. A gerjesztı jelek hálózatba történı be- vagy kikapcsolása után átmeneti (tranziens) jelenség játszódik le. Az állandósult (stacionárius)

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI

SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI Dr. Pásztor Endre SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI A probléma felvetése, bevezetése. Az ideális termius hatáso (η tid ) folytonosan növeszi a ompresszor

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

Mezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA

Mezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA Mezőgazdasági gépesítési tanulmányo Agricultural Engineering Research Kiadó: Dr. Fenyvesi László főigazgató FVM Mezőgazdasági Gépesítési Intézet özleménye Bulletin of the Hungarian Institute of Agricultural

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához

Zárójelentés a Mikro-kontinuumok képlékeny alakváltozása című OTKA kutatási témához Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához A kutatás eredményeinek ismertetése A kutatások elsősorban a mikropoláris kontinuumok rugalmas-képlékeny alakváltozás

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Ezt kell tudni a 2. ZH-n

Ezt kell tudni a 2. ZH-n Ezt ell tudni a. ZH-n Turányi Tamás ELTE Kémiai Intézet A sebességi együttható nyomásfüggése 1 Sebességi együttható nyomásfüggése 1. unimoleulás bomlás mintareació: H O bomlása H O + M = OH + M uni is

Részletesebben

Furfangos fejtörők fizikából

Furfangos fejtörők fizikából Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

15_sebessegi_egyenlet.pptx

15_sebessegi_egyenlet.pptx A reacióinetia tárgyalásána szintjei: I. FORMÁLIS REAKCIÓKINETIKA maroszópius szint matematiai leírás II. REAKCIÓMECHANIZMUSOK TANA moleuláris értelmező szint (mechanizmuso) III. A REAKCIÓSEBESSÉG ELMÉLETEI

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

FÚRÁS SORÁN FELLÉPŐ NEMLINEÁRIS REZGÉS VIZSGÁLATA

FÚRÁS SORÁN FELLÉPŐ NEMLINEÁRIS REZGÉS VIZSGÁLATA Multidiszciplináris tudományo, 3. ötet. (2013) sz. pp. 297-304 FÚRÁS SORÁN FELLÉPŐ NEMLINEÁRIS REZGÉS VIZSGÁLATA Béres Milós Misolci Egyetem, Fiziai Tanszé, Cím: 3515 Misolc, Misolc-Egyetemváros, e-mail:

Részletesebben

Galjorkin módszerek Spektrális módszer

Galjorkin módszerek Spektrális módszer Galorin módszere Spetrális módszer Előadó: Szépszó Gabriella szepszo.g@met.hu 07. otóber 6. Véges ülönbséges módszer Legyen a vizsgálandó függvény egy egyváltozós függvény: f=f) A 0 L intervallumon vizsgálódun

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve. TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése

Nemlineáris anyagviselkedés peridinamikus modellezése Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Témvezető: Dr. Gonda Viktor Kutatási beszámoló 2018.06.22. Tartalom Bevezetés Motiváció A peridinamikus

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Radioaktív bomlási sor szimulációja

Radioaktív bomlási sor szimulációja Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

VIRTUÁLIS MUNKA ELVE VÉGES ELEM MÓDSZER ALAPJAI

VIRTUÁLIS MUNKA ELVE VÉGES ELEM MÓDSZER ALAPJAI BUDAPSTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI GYTM Műszai Mechaniai Tanszé IRTUÁLIS MUNKA L ÉGS LM MÓDSZR ALAPJAI OKTATÁSI SGÉDLT Összeállította: dr. örös Gábor, egyetemi docens 3. november módosítva: 5. anuár

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes Modellezés Házi Feladat Készítete: Magyar Bálint Dátum: 2008. 01. 01. A feladat kiírása A számítógépes modellezés c. tárgy házi feladataként

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

CSŐHÚZÁSI FOLYAMATOK MODELLEZÉSE AZ ENERGETIKAI MÓDSZER ALAPJÁN MODELLING OF TUBE DRAWING PROCESSES BY UPPER BOUND METHOD

CSŐHÚZÁSI FOLYAMATOK MODELLEZÉSE AZ ENERGETIKAI MÓDSZER ALAPJÁN MODELLING OF TUBE DRAWING PROCESSES BY UPPER BOUND METHOD Anyagmérnöi Tudományo, 38/1. (213), pp. 287 296. CSŐHÚZÁSI FOLYAMATOK MODELLEZÉSE AZ ENERGETIKAI MÓDSZER ALAPJÁN MODELLING OF TUBE DRAWING PROCESSES BY UPPER BOUND METHOD SZOMBATHELYI VIKTOR 1 KRÁLLICS

Részletesebben

A NEM VÁRT RITMUS. Néda Zoltán 1, Káptalan Erna 2. Plenáris előadás. zneda@phys.ubbcluj.ro

A NEM VÁRT RITMUS. Néda Zoltán 1, Káptalan Erna 2. Plenáris előadás. zneda@phys.ubbcluj.ro A EM VÁRT RITMUS éda Zoltán, Káptalan Erna 2 Babeş-Bolyai Tudományegyetem, Elméleti és Számítógépes Fizia Tanszé, zneda@phys.ubblu.ro 2 Báthory István Elméleti Líeum, Fizia Katedra, aptalane@yahoo.om A

Részletesebben

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés

Részletesebben

Permutációegyenletekről

Permutációegyenletekről Permutációegyenleteről Tuzson Zoltán tanár, Széelyudvarhely Az elemi ombinatoriában n elem egy ermutációján az n darab elem egy meghatározott sorrendjét (sorbarendezését) értjü. Legyen az n darab elem

Részletesebben

2. Potenciálos áramlások. Potenciálos áramlások. Alkalmazási példák Dr. Kristóf Gergely Department of Fluid Mechanics, BME 2015.

2. Potenciálos áramlások. Potenciálos áramlások. Alkalmazási példák Dr. Kristóf Gergely Department of Fluid Mechanics, BME 2015. . Potenciálos áramláso Dr. Kristóf Gergel Department of Fluid Mechanics, BME 05. Potenciálos áramláso Nugvó térből eredő áramlás potenciálos mindaddig, amíg a falon eletező örvénesség bele nem everedi.

Részletesebben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben Holtsáv és otyogás ompenzálása mechaniai irányítási rendszereben A mechaniai irányítására alalmazott lineáris vagy folytonos nemlineáris irányítási algoritmusoal megvalósított szabályozási rendszer tulajdonságait

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát!

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenletet differenciál alakban! Milyen mennyiségeket képviselhet

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Elhangzott tananyag óránkénti bontásban

Elhangzott tananyag óránkénti bontásban TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.

Részletesebben

Viszkoelasztikus anyagi viselkedés. ciklikus terhelés esetén

Viszkoelasztikus anyagi viselkedés. ciklikus terhelés esetén Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar, Műszaki Mechanikai Tanszék Viszkoelasztikus anyagi viselkedés modellezése és mérése ciklikus terhelés esetén Tézisfüzet Készítette: Pálfalvi

Részletesebben