Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1"

Átírás

1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége, aor a továbbiaban is ott fog maradni. dimenziós mozgáso esetében az -gal jelölt egyensúlyi ponto definíciója így írható: mẍ 0, () amiből a mozgásegyenlet szerint a övetező feltétel adódi: dv() d = 0. (2) z a éplet más megfogalmazásban azt jelenti, hogy egyensúlyi pontban a potenciálna szélsőértée ell legyen (vagy infleiós pontja). Az. ábrán ét, dinamiai szempontból alapvetően ülönböző egyensúlyi pont látható. Teintsü először az 2 egyensúlyi pontot, és tegyü fel, hogy benne tartózodi a tömegpont. V() 2. ábra. gy V() potenciálfüggvény ét egyensúlyi ponttal. Az egyensúlyi pont stabil, az 2 instabil. Mi történi aor, ha a tömegpontot is mértében elmozdítju? or a potenciál deriváltja, azaz a tömegpontra ható erő nem lesz 0. Ha a tömegpontot balra mozdítottu i, aor F() dv/d < 0, azaz az erő negatív irányban hat, ami a tömegpontot az 2 egyensúlyi ponttól távolítja. Az erő hasonló módon távolít az 2 jobb oldalán is. Az ilyen típusú egyensúlyi pontot instabilna nevezzü. Az instabilitás matematiai feltétele, hogy a potenciálfüggvény másodi deriváltja az egyensúlyi pontban negatív legyen: d 2 < 0. (3) Az ábra egyensúlyi pontja viszont másmilyen: stabil. Stabil egyensúlyi pontot aor apun, ha d 2 > 0. (4)

2 Drótos G.: Fejezete az elméleti mechaniából 4. rész 2 Ilyenor létezi az egyensúlyi pontna olyan örnyezete, amiben a tömegpontra ható erő visszatérítő irányú. z lehetővé teszi, hogy a tömegpont ebben a örnyezetben rezgőmozgást végezzen, amit a 2. ábra szemléltet. V() ẋ 2. ábra. Felső grafion: egy V() potenciálfüggvény stabil egyensúlyi ponttal. A jelölt mechaniai energiával a tömegpont az egyensúlyi pont örül rezeg, ahogyan ez a vonatozó fázistérbeli trajetóriából is leolvasható (alsó grafion) Stabil egyensúlyi pont örüli is rezgése Láttu tehát, hogy stabil egyensúlyi pont valamely örnyezetében oszcilláció (rezgőmozgás) mehet végbe. Ha enne icsi az amplitúdója, vagyis a tömegpont a mozgás során nem távolodi el túlságosan az egyensúlyi ponttól, aor a V() potenciált jól özelíthetjü anna vezető rendig teintett Taylor-sorával: V() V( )+ dv() d = V( )+ 2 d 2 ( )+ 2 d 2 ( ) 2 ( ) 2. (5) Az -ben lineáris tag együtthatója, azaz a potenciál első deriváltja egyensúlyi pontban (2) szerint 0. A onstans V( ) tagna nincs jelentősége, az nem jeleni meg a mozgásegyenletben. Így önnyen észrevehető, hogy az (5) ifejezés éppen egy -ban elhelyezett harmonius oszcillátor potenciálja (lásd Függelé.0, (8) éplet). A rugóállandó megfeleltethető a potenciál másodi

3 Drótos G.: Fejezete az elméleti mechaniából 4. rész 3 deriváltjána az egyensúlyi pontban: = d2 V() d 2. (6) Azt találtu tehát, hogy egy tömegpontna valamely tipius stabil egyensúlyi pont örül végzett is amplitúdójú rezgése özelítőleg harmonius rezgőmozgás, amelyne a örfrevenciája a Függelé.0 (8) éplete szerint ω = m = m d 2 (7). Az egyetlen ivétel, atipius eset, amior ez nem így van, a /d 2 = 0 helyzet. Az (5) ifejezésben hallgatólagosan feltételeztü, hogy a másodi derivált nem tűni el az egyensúlyi pontban. Ha eltűni, aor a sorfejtésben tovább ell mennün, és az így adódó rezgőmozgás nem lesz harmonius. A tipius esetről mondottaat grafiusan a 3. ábrán övethetjü. A stabil egyensúlyi pontot a örnyezetében ialauló fázistérbeli strutúra miatt elliptius pontna is szoás nevezni. V() ẋ 3. ábra. Felső grafion: a V() potenciálfüggvényt (feete vonal) az stabil egyensúlyi pont örül parabolával özelíthetjü (világosé vonal). Ha az mechaniai energia nem túl nagy (övetezéséppen a rezgés amplitúdója sem), aor a tömegpont trajetóriája a fázistérben (piros vonal, alsó grafion) jól özelíthető ellipszissel (világosé vonal).

4 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4 Példa Teintsü a övetező, az [0,λ) intervallumon értelmezett potenciált: ( ) 2π V() = V 0 sin λ, ahol V 0,λ > 0. Adju meg az egyensúlyi ponto helyét, és vizsgálju meg a stabilitásuat! Határozzu meg a stabil egyensúlyi ponto örül ialauló is rezgése örfevenciáját! A potenciálfüggvény alaja a övetező: V() V 0 λ/4 λ/2 3λ/4 λ Az egyensúlyi ponto helyéne a meghatározásához i ell számítani a potenciálfüggvény deriváltját: ( ) dv() 2π 2π = V 0 d λ cos λ. Innen az egyensúlyi ponto: dv() d = 0, ( ) 2π 2π V 0 λ cos λ = 0. nne ét megoldása van: = λ π 2π 2 = λ 4, 2 = λ 3π 2π 2 = 3λ 4, összhangban az ábrával. A stabilitás vizsgálatához szüségün van a potenciál másodi deriváltjára: ( ) d 2 2 ( ) V() 2π 2π = V d 2 0 sin λ λ.

5 Drótos G.: Fejezete az elméleti mechaniából 4. rész 5 Az egyensúlyi pontoban: d 2 d 2 ( ) 2 ( 2π 2π = V 0 sin λ λ ( ) 2 ( 2π 2π = V 0 sin λ λ 2 ) ( ) 2 λ 2π = V 0 < 0, 4 λ ) 3λ 4 = V 0 ( 2π λ ) 2 > 0. Tehát instabil, 2 stabil, ahogyan az ábra alapján várhattu is. 2 örül ialaulhatna is rezgése, eze örfrevenciája: ( ) d ω = 2 V() 2 2π m d 2 = m V 0 = 2π V0 λ λ m. 2 Függelé: A harmonius oszcillátor örfrevenciája Az dimenziós harmonius oszcillátor (az előző összefoglaló idolgozott példája) iemeledő jelentőségű fiziai rendszer. Lényeges tulajdonsága, hogy a periódusideje (és így a örfrevenciája) egzatul iszámítható, a III. rész (4) épleténe a segítségével. A teljesség edvéért ezt a számítást az alábbiaban részletezem, de az anyag többi részéne a megértéséhez elegendő a potenciálalana és a levezetés eredményéne az ismerete. A harmonius oszcillátor potenciálfüggvénye általánosan a övetező alaú: V() = V ( a)2, (8) ahol > 0. A V 0 onstans potenciáltag és a parabola minimumpontjána az a helye nem játszi lényeges szerepet, a harmonius oszcillátor potenciáljából eze mindig eltüntethető, ha megfelelően választju meg a oordináta-rendszerün origóját és a potenciál nullszintjét. A továbbiaban ezért a övetező alaot fogju használni: V() = 2 2. (9) A periódusidő iszámításána érdeében először fel ell idéznün, hogy adott > 0 mechaniai energia mellett hol vanna a (9) potenciál fordulópontjai: fp,2 =. (0)

6 Drótos G.: Fejezete az elméleti mechaniából 4. rész 6 A periódusidőne a fentebb hivatozott éplete szerint: T p = 2m fp2 fp V( ) d = 2m 2 2 d = 2m d. () 2 Éljün a övetező változócserével: így u := arcsin ( ), (2) = sinu, (3) d = cosudu. (4) A határo így alaulna: ( ) ( ) u = = arcsin = arcsin( ) = π 2, (5) ( ) ( ) u = = arcsin = arcsin() = π 2. (6)

7 Drótos G.: Fejezete az elméleti mechaniából 4. rész 7 Behelyettesítve mindezeet ()-be: T p = = π 2 2m 2m m = 2 π 2 sin 2 u cosudu π 2 du cosu cosudu m = 2 [u]π 2 m ( π = π 2) m = 2π. (7) ljutottun tehát a harmonius oszcillátor periódusidejéne a jól ismert épletéhez. Figyelemreméltó, hogy a periódusidő nem függ az mechaniai energiától, és így, a (0) összefüggés értelmében, a rezgés amplitúdójától sem. A örfevencia innen már egyszerűen adódi: ω 2π T p = m. (8)

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

6. A Lagrange-formalizmus

6. A Lagrange-formalizmus Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

A NEM VÁRT RITMUS. Néda Zoltán 1, Káptalan Erna 2. Plenáris előadás. zneda@phys.ubbcluj.ro

A NEM VÁRT RITMUS. Néda Zoltán 1, Káptalan Erna 2. Plenáris előadás. zneda@phys.ubbcluj.ro A EM VÁRT RITMUS éda Zoltán, Káptalan Erna 2 Babeş-Bolyai Tudományegyetem, Elméleti és Számítógépes Fizia Tanszé, zneda@phys.ubblu.ro 2 Báthory István Elméleti Líeum, Fizia Katedra, aptalane@yahoo.om A

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Rugalmas inga Bevezetés T=2π CNC 100 khz 10 μs A mérési adatok értelmezése T[ms] m[g] hibás mérések

Rugalmas inga Bevezetés T=2π CNC 100 khz 10 μs A mérési adatok értelmezése T[ms] m[g] hibás mérések Rugalmas inga A feladat ajánlójána megoldása Bevezetés. A feladat iírásában nem fogalmaztá meg a övetelményeet, de a ísérlet bemutatásaor mégis adta egy ötletet: lehetséges, hogy az isolában tanult elmélete

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

A vegetatív működés modelljei

A vegetatív működés modelljei Tartalom 1 Motiváció 2 Decentralizált irányítási modellek 3 Működőképesség és stabilitás 4 Összehasonlítás 5 Következtetések Az Anti-Equilibriumtól a Hiányig Az Anti-Equilibriumban ígért konstruktív kritika:

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben Holtsáv és otyogás ompenzálása mechaniai irányítási rendszereben A mechaniai irányítására alalmazott lineáris vagy folytonos nemlineáris irányítási algoritmusoal megvalósított szabályozási rendszer tulajdonságait

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá

l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK ECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos tsz mérnök; Tarnai Gábor mérnök tanár; olnár Zoltán egy adj r Nagy Zoltán egy adj) Több szabadságfokú

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

Rezgő testek. 48 C A biciklitől a világűrig

Rezgő testek. 48 C A biciklitől a világűrig 48 C A biciklitől a világűrig Anjuli Ahooja Corina Toma Damjan Štrus Dionysis Konstantinou Maria Dobkowska Miroslaw Los Učenca: Nandor Licker és Jagoda Bednarek C Rezgő testek A biciklitől a Length világűrig

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK Bevezetés A mechanika történetében három nagy periódus különíthető el. Az első, átfogó kvalitatív vizsgálatokat jelentő hosszú periódus Kepler és Galilei munkásságával zárul. A második ún. kvantitatív

Részletesebben

Munka és energia. r 1

Munka és energia. r 1 TÓTH : Mecania/4 (ibővített óravázlat) Muna és energia mozgásegyenlet megoldásáoz a tömegpontra ató erő időfüggéséne ismerete szüséges ami igen omoly neézségeet ooz z erőatásoat megadó erőtörvénye ugyanis

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása.

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása. 6. HMÉRSÉKLETMÉRÉS A mérés célja: ismeredés a villamos elven möd ontathmérel; exponenciális folyamat idállandójána meghatározása. Elismerete: ellenállás hmérséletfüggése; ellenállás és feszültség mérése;

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Elektromos áramkörök és hálózatok, Kirchhoff törvényei

Elektromos áramkörök és hálózatok, Kirchhoff törvényei TÓTH : Eletroos ára/ (ibővített óravázlat) Eletroos áraörö és hálózato, Kirchhoff törvényei gyaorlatban az eletroos ára ülönböző vezetőrendszereben folyi gen fontos, hogy az áraot fenntartó telepe iseretében

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje.

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. ELMÉLET Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. Fogalmak, definíciók:

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Szervomotor pozíciószabályozása

Szervomotor pozíciószabályozása Szervomotor pozíciószabályozása 1. A gyaorlat célja Egyenáramú szervomotor pozíciószabályozásána tervezése. A pozíció irányítási algoritms megvalósítása valós iben. A pozíció szabályozás tranzienséne archiválása,

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6 1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Proporcionális hmérsékletszabályozás

Proporcionális hmérsékletszabályozás Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben