2. Potenciálos áramlások. Potenciálos áramlások. Alkalmazási példák Dr. Kristóf Gergely Department of Fluid Mechanics, BME 2015.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Potenciálos áramlások. Potenciálos áramlások. Alkalmazási példák Dr. Kristóf Gergely Department of Fluid Mechanics, BME 2015."

Átírás

1 . Potenciálos áramláso Dr. Kristóf Gergel Department of Fluid Mechanics, BME 05. Potenciálos áramláso Nugvó térből eredő áramlás potenciálos mindaddig, amíg a falon eletező örvénesség bele nem everedi. legtöbb analitius megoldás potenciálos áramlásora ismeretes. [H.Lamb, 93, első iadása 879] Egszeresen összefüggő tartománban a potenciálos áramlás mozgási energiája a legisebb a tartomán határán adott normális sebességomponensű áramláso özül. [Thomson, 849] lalmazási példá Áramlás az elszívás özelében Szárna Szivárgás, uta Ivóvíztároló

2 Sebességi potenciál (φ) Örvénmentes áramlás esetén: Definiálhatju φ sebességi potenciált, melre: Elég φ-t meghatároznun, abból u, v, w, már önnen számolható, tehát φ bevezetésével háromról egre csöentettü az ismeretlen salármező számát. v v = φ azaz: u = v = w = z örvénmentességen ívül más fiziai iötést nem tettün, íg φ alalmazható ompresszibilis áramláso esetén is. Szivárgó áramláso Porózus anagoban, például talajban, őzeteben, adszorber ágaban az egfázisú szivárgó áramláso általában igen jó özelítéssel leírható a Darctörvénnel. térfogatáram eg vízszintes tengelű porózus csatornában: L p p = L p melben a dinamiai viszozitás [Pa.s]=ρν, [m ] pedig a porózus anag áteresztőépessége. értéét legtöbbször Darc-egségben adjá meg: D 0 m. Darc-törvén általános alaja: v = Tehát a sebességi potenciál: φ = p + ρ g z ( p + ρ g z) ( ) p nomásmező meghatározása φ (és ebből v ) ismeretében a nomásmezőt utólag is iszámíthatju a Bernoulli-egenlet felhasználásával. Ideális foladéra (ν=0, ρ=áll.): ρ p p = p ( v v ) + ρ g( z z ) Szivárgó áramlás esetében a nomásmező más apcsolatban áll a mozgásállapottal: φ = ( p + ρ g z) ezért: ( φ φ ) + ρ g( z ) p = z

3 φ iszámítása ontinuitás szerint: v v 4r π ( φ) = φ φ tehát harmonius függvén, azaz megoldása a Laplace-egenletne. Eg fontos alapmegoldás a [m 3 /s] intenzitású pontforrás sebességtere: 4π r = e r φ = + áll. megoldáso szuperponálható. Bármel potenciálos áramépet megözelíthetün a határfelületen alalmasan fölvett forrásmegoszlással. Áramfüggvén (ψ) Def: v = ψ ψ vetorpotenciál. ψ automatiusan ielégíti a ontinuitási egenletet állandó sűrűségű foladéra, mivel: v = ψ 0... D-ben ψ saláris menniség, mivel: w és z u z v = v = z w ezért ψ = ψ z, továbbá u = and v = Tehát D áramlásoat egetlen ψ salármezővel leírhatun, 3Dben viszont 3 omponense van. d ψ fiziai értelmezése D-ben ψ ψ+dψ B u v d ψ az és B ponto özötti térfogatáram ( m széles tartománban): B =ψ B ψ z áramfüggvén teljes differenciálja: dψ = d + d = v = u d ψ = v d + u d ψ szintvonalain nem áramli át a foladé, ezért ψ szintvonalai áramvonala. és u v ψ ψ ontinuitás: + = D-ben is teljesül. 3

4 D örvénmentes áramlás ψ eddig leírt tulajdonságai örvénes áramlásra is érvénese. Szorítozzun mostantól örvénmentes áramlásora: v u ( ) = v z = v és = u ψ ψ + ψ Tehát áramfüggvén is lehet bármel harmonius függvén. Komple potenciál (w) ψ is és φ is harmonius függvéne: ψ és φ továbbá ielégíti a Cauch-Riemann összefüggéseet: u = = v = = Tehát épezheti eg omple függvén valós és épzetes részét: ( z) = φ ( z, ) + iψ ( ) w, z a omple helvetor: z=+i Bármel analitius omple függvén valós és épzetes részei állandó sűrűségű, stacionárius, potenciálos síáramlást írna le. Már csa a peremfeltételeet ell ielégítenün. Megvizsgálun néhán alapmegoldást (pl. ln(z), z stb.), majd ezeet összegezve, transzformálva próbálun bonolultabb peremfeltételeet ielégíteni. omple sebesség (c) sebesség eg omple számmal adható meg: c = u + i v sebesség omple onjugáltját w differenciálásával nerhetjü. differenciálás bármel iránban végezhető: dw w w = = = u i v = c dz i c c i v i v 4

5 Potenciálo ψ φ w Neve áramfüggvén sebességi pot. omple pot. Változó ρ esetén nincs ** van nincs Örvénes áramlásra van nincs nincs 3D-ben vetor salár nincs Definíció ψ = v φ = v w = φ + iψ ** D összenomható áramlásra is definiálható áramfüggvén. 5

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Numerikus módszerek 6. Parciális differenciálegyenletek numerikus megoldása

Numerikus módszerek 6. Parciális differenciálegyenletek numerikus megoldása Nmeris módszere 6. Parciális differenciálegenlete nmeris megoldása Vetoranalízis, összefoglaló Parciális differenciálegenlete és melléfeltétele Módszere elliptis egenletere Módszere időfüggő egenletere

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Zh-k összpontszáma Vizsga Zh+vizsga Jegy

Zh-k összpontszáma Vizsga Zh+vizsga Jegy Zh- összpontszáma 1 4 5 6 7 8 9 Vizsga Zh+vizsga Jeg Matematia A vizsga megoldása Név: 1 június 18, 9-11, Építőmérnöi BSc sza Neptun ód: Az utolsó három feladatból összesen el ell érni %-ot! 1 (a ( pont

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait. 9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31 Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

Szilárdtestek elektronszerkezete feladatok

Szilárdtestek elektronszerkezete feladatok Szilárdtestek elektronszerkezete feladatok Csősz Gábor 8. január.. feladat A feladatban az alábbi mátriot kell diagonizálni. ε B,F,G (k) V V H = V ε B,F,G (k) V V V ε B,F,G (k) Kihasználva a rács szimmetriáját

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

Áramlástan kidolgozott 2016

Áramlástan kidolgozott 2016 Áramlástan kidolgozott 2016 1) Ismertesse a lokális és konvektív gyorsulás fizikai jelentését, matematikai leírását, továbbá Navier-Stokes egyenletet! 2) Írja fel a kontinuitási egyenletet! Hogyan egyszerűsödik

Részletesebben

Egy feltételes szélsőérték - feladat

Egy feltételes szélsőérték - feladat Eg feltételes sélsőérté - feladat A most öveteő feladattal már régen találotam; most újra elővesem. Ami lepő, a a, hog a 80 - as éve elején történt találoás óta sehol nem uant fel, pedig jócsán hordo tanulságoat.

Részletesebben

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz

Részletesebben

Furfangos fejtörők fizikából

Furfangos fejtörők fizikából Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,

Részletesebben

Hogyan készüljünk fel? Az orvosi biofizika matema0kai és fizikai alapjai

Hogyan készüljünk fel? Az orvosi biofizika matema0kai és fizikai alapjai Hogan készüljünk fel? Az orvosi biofizika matemakai és fizikai alapjai. előadás A biofizikai törvének megértéséhez szükséges minimális matemaka. Fizikai menniségek és mértékegségeik 7. szeptember. AGÓCS

Részletesebben

Áramlástan feladatgyűjtemény. 4. gyakorlat Bernoulli-egyenlet

Áramlástan feladatgyűjtemény. 4. gyakorlat Bernoulli-egyenlet Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához. gyakorlat Bernoulli-egyenlet Összeállította: Lukács Eszter Dr. Istók Balázs Dr. Benedek

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

9. A RUGALMASSÁGTAN 2D FELADATAI

9. A RUGALMASSÁGTAN 2D FELADATAI 9 A UGALMASSÁGTAN D FELADATAI A D ( két dimeniós ) feladatok köös jellemői: - két skalár elmodulásmeő különöik nullától - minden mechanikai menniség két helkoordinátától függ 9 Sík alakváltoás (SA) a)

Részletesebben

1. feladat Összesen 16 pont

1. feladat Összesen 16 pont É 047-06//F. felada Összesen 6 pn Labraóriumi ülepíő készülékben mérés végzünk. Kréapr szuszpenzió ülepíünk, ahl a beáplálás 0 l/óra érfgaárammal örénik, sűrűsége 00 kg/m 3 kncenrációja, ömegszázalék.

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

PHD DISSZERTÁCIÓ. Az akusztooptikai kölcsönhatás komplex, 3D modellje és kísérleti vizsgálata. Mihajlik Gábor

PHD DISSZERTÁCIÓ. Az akusztooptikai kölcsönhatás komplex, 3D modellje és kísérleti vizsgálata. Mihajlik Gábor PHD DISSZERTÁCIÓ Az ausztooptiai ölcsönhatás omple, 3D modellje és ísérleti vizsgálata Mihajli Gábor Témavezet: dr. Barócsi Attila Budapesti Mszai és Gazdaságtudománi Egetem Atomfizia Tanszé BME 014 Tartalom

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Függvények. 1. Nevezetes függvények A hatványfüggvény

Függvények. 1. Nevezetes függvények A hatványfüggvény Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév) STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

Kvantummechanikai alapok I.

Kvantummechanikai alapok I. Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5.

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5. Henger körüli áramlás y/r.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R 4 r [ os

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x

következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x Tigonoetius egenlôtlensége II ész 7 90 a) a in = ezt ao veszi fel ha = Hozzun özös nevezôe alaítsu át a övetezô alaúa: a () = sin cos sin cos + = sin + sin bin = ezt ao veszi fel ha = Mivel b ()> 0 a egadott

Részletesebben

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony:

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony: Ventilátorok Jellemzők: Gáz munkaközeg Munkagép: Teljesítmény-bevitel árán kisebb nyomású térből (szívótér) nagyobb nyomású térbe (nyomótér) szállítanak közeget. Működési elv: Euler-elv (áramlástechnikai

Részletesebben

Y speciális feltételeket kielégítő függvények. Keressük azon y x peremeket kielégítő függvényt, melyre Φ y(x) = extrémális (minimális)

Y speciális feltételeket kielégítő függvények. Keressük azon y x peremeket kielégítő függvényt, melyre Φ y(x) = extrémális (minimális) .3. Variációszámítás.3.. A funcionál fogalma X tetszőleges halmaz f: X R leépezés funcionál.3.. Variációszámítás fogalma Y speciális feltételeet ielégítő függvénye f: Y R leépezéseivel foglalozi. egyen

Részletesebben

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra Aomfiika előadás 4. A elekromágneses hullámok 8. Sepember 9. 5vös 5km sepember 3. 7 óra Alapkísérleek Ampere-féle gerjesési örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada indukciós

Részletesebben

Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok

Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok Gakorló feladatok a. zárthelihez Kidolgozott feladatok. a) Határozzuk meg a függesztőrúd négzetkeresztmetszetének a oldalhosszát cm-re kerekítve úg, hog a függesztőrúdban ébredő normálfeszültség ne érje

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

Atomfizika előadás 4. Elektromágneses sugárzás október 1.

Atomfizika előadás 4. Elektromágneses sugárzás október 1. Aomfka előadás 4. lekromágneses sugárás 4. okóber. Alapkísérleek Ampere-féle gerjesés örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada ndukcós örvéne elekromos ér örvénessége mágneses

Részletesebben

7.4. A programkonstrukciók és a kiszámíthatóság

7.4. A programkonstrukciók és a kiszámíthatóság H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai (C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.

Részletesebben

A szilárdságtan 2D feladatainak az feladatok értelmezése

A szilárdságtan 2D feladatainak az feladatok értelmezése A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018. Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok

Részletesebben

7.GYAKORLAT (14. oktatási hét)

7.GYAKORLAT (14. oktatási hét) 7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Mértékegységek átváltása.

Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Mértékegységek átváltása. Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Mértékegségek átváltása. Fizika K1A zh1 anag 014 Adatok: fénsebesség, Föld sugara, Nap-Föld távolság, Föld-Hold távolság, a Föld és a Hold keringési

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

MŰSZAKI MECHANIKA II SZILÁRDSÁGTAN A legfontosabb fogalmak jegyzéke a fogalmak felsorolása (2009/2010)

MŰSZAKI MECHANIKA II SZILÁRDSÁGTAN A legfontosabb fogalmak jegyzéke a fogalmak felsorolása (2009/2010) MŰSZAKI MECHANIKA II SZILÁRDSÁGTAN A legfontosabb fogalmak jegzéke a fogalmak felsorolása (2009/2010) Műszaki Mechanika II Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A másodrendű tenzor transzponáltjának

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév) Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 30%.

100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 30%. T 2047-06//2 Az Országos Képzési Jegzékről és az Országos Képzési Jegzékbe örénő felvéel és örlés eljárási rendjéről szóló 33/200. (IV. 22.) Korm. rendele alapján. Szakképesíés, szakképesíés-elágazás,

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

A statika és dinamika alapjai 11,0

A statika és dinamika alapjai 11,0 FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort

Részletesebben

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont 1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI EMLÉKEZTET Termikus, mechanikai és anagátmeneti egensúl intenzív állaotjelzkkel kifejezett feltételrendszerét már kidolgoztuk! Alkalmazzuk több komonens és több

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Numerikus módszerek 5. Közönséges differenciálegyenletek numerikus megoldása

Numerikus módszerek 5. Közönséges differenciálegyenletek numerikus megoldása Nmer módere 5. Köönége derencálegenlete nmer megoldáa Kedet é peremérté eladato A Eler-móder A Eler-móder avítáa Rnge-Ktta-módere Lneár tölépée módere Peremérté eladato máodrendű derencálegenletere Kedet

Részletesebben

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3. 0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben