A dinamikus geometriai rendszerek használatának egy lehetséges területe

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A dinamikus geometriai rendszerek használatának egy lehetséges területe"

Átírás

1 Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, december 12.

2 A ruletták speciális, elsősorban műszaki alkalmazásaik miatt fontos síkgörbék, vizsgálatuk azonban számos geometriai érdekességet is tartogat számunkra. A ruletták ábrázolását, vizsgálatát jelentősen megkönnyítik a különféle geometriai szerkesztőprogramok. Ebben a cikkben szeretnék bemutatni néhány fontosabb rulettát, valamint rávilágítani azok egy szemléltetési lehetőségére a Geogebra dinamikus geometriai program segítségével. Vizsgálódásaim a mozgási geometria témakörébe tartoznak. A téma ugyan nem szerepel a közoktatás tananyagában, módszertani szempontból mégis hasznosnak és érdekesnek tekinthető. A mozgások megjelenítése, ábrázolása általában látványos animációkat eredményez, ezért módszertanilag alkalmas a tanulók érdeklődésének felkeltésére. A mozgások megjelenítéséhez a Geogebra program számos lehetőséget kínál. Mindezek tudatos felhasználásához azonban megfelelő rutinnal kell rendelkeznünk a választott geometriai szerkesztőprogram használatában. A rutin megszerzéséhez szükséges ismeretek elsajátításában kívánok segítséget nyújtani úgy, hogy részletesen ismertetem néhány ruletta előállításának technikai lépéseit a Geogebra program segítségével a dinamikus geometriai rendszer erre alkalmas eszközeinek szemléltetésével párhuzamosan. Legyenek adottak a g 1 és a g 2 síkgörbék! Rögzített g 1 mellett g 2 -t úgy mozgassuk el g 1 mentén, hogy mozgás közben a két görbe mindig érintkezzen egymással, azaz az érintkezési pontban közös legyen az érintőjük, valamint az érintkezési pont mindkét görbén állandó irányban haladjon! Ekkor, ha g 1 bármely két P 1 és P 2 pontjára és a g 2 -n nekik megfelelő P 1 és P 2 pontokra teljesül, hogy a P 1 P 2 ív egyenlő hosszú a P 1 P 2 ívvel, akkor azt mondjuk, hogy a g 2 görbe a g 1 görbe mentén csúszás nélkül gördül. Ha g 1 és g 2 két egymást fedő közös síkban van, g 1 síkját rögzítjük, g 2 -é viszont gördülés közben g 2 -vel együtt mozog, akkor a mozgó sík minden pontja egy pályagörbét ír le. Ezeket a görbéket nevezzük rulettáknak. A ruletták természetesen a g 1 és a g 2 görbék megválasztásától függően nagyon sokfélék lehetnek. Én most csak néhány, a gyakorlati alkalmazások szempontjából lényeges görbét szemléltetek. Példáimban g 1 és g 2 minden esetben kör, illetve egyenes lesz. Ha a g 1 görbe egyenes, a g 2 pedig kör, akkor gördülés közben g 2 síkjának pontjai cikloisokat írnak le. Cikloist ír le pl.: a mozgó kerékpár kerekének egy rögzített pontja is. Erre a rulettára néha a trochoid elnevezést is használjuk. Cikloisív szerkesztése a Geogebra program segítségével: A munkalapon vegyünk fel egy a gördülő kör sugarát definiáló szakaszt, és egy - a g 1 görbét reprezentáló, A és B pontokra illeszkedő egyenest (1. ábra)! 2

3 1. ábra. Ezek után vegyünk fel egy félegyenest és azon egy mozgó pontot (M) az elmozdulás mértékének manuális módosításához (2. ábra)! 2. ábra. 3

4 Az F 1 pont fix objektummá való átdefiniálása, és az F 2 pont elrejtése után határozzuk meg a gördülő kör középpontját! Ehhez körözzünk az A pontból a d(f 1, M) sugárral, és jelöljük ki a kör, illetve a g 1 egyenes metszéspontját (T)! Adott sugarú kör rajzolására a Circle[középpont, sugár] parancs input mezőbe való beírásával, és az ENTER billentyű leütésével utasíthatjuk a rendszert, ahol a középpont és a sugár formális paraméterek értékét a megfelelő aktuális paraméterértékekkel kell helyettesítenünk. A létrejött metszéspontban állítsunk merőlegest a g 1 egyenesre! A keresett kör középpontja (O) ezen az egyenesen fog elhelyezkedni a metszésponttól (T) d(r 1,R 2 ) távolságra (3. ábra). 3. ábra. A szerkesztés folytatása előtt a továbbiakban nem használt objektumokat az átláthatóság segítésére elrejthetjük! Szerkesszük meg a g 2 görbét reprezentáló O középpontú, d(r 1,R 2 ) sugarú kört! Nézzük meg, mi történik akkor, amikor a g 2 kör a g 1 egyenes mentén csúszás nélkül gördül! A gördülés kezdetén a kör az A pontban érinti a g 1 egyenest. Ha a gördülés csúszásmentes, és a kör egy későbbi helyzetében a kezdeti érintési pont (A) aktuális helyzetét P jelöli, akkor szűkségképpen d(a,t) = TP, ahol T jelöli az aktuális érintési pontot, TP pedig a kör megfelelő ívének hosszát. Ezt úgy is megfogalmazhatjuk, hogy a kezdeti érintési pont annyit fordul el a körvonalon, amennyit az érintési pont a g 1 egyenesen halad. A körvonalon mozgó P pont szerkesztéséhez a Geogebra beépített utasításként tartalmazza egy objektum forgatását, ha ismerjük a forgatás centrumát és az elforgatás szögét radiánban megadva. Ezt a szolgáltatást a Command 4

5 utasításcsoporton belül a Rotate[] utasítással érhetjük el, amelynek formális paraméterezése: Rotate[objektum, szög, centrum] (4. ábra). 4. ábra. A cikloisív megjelenítéséhez a P pont nyomvonalát kell kirajzoltatni az M pont mozgatása közben (5. ábra). 5. ábra. 5

6 További cikloisokat is megjeleníthetünk, ha nem kötjük ki, hogy a d(o,p) távolság egyezzen meg a gördülő kör sugarával. Ha a P pont a körrel együtt gördül, de nem illeszkedik annak körvonalára, akkor a mozgás során P hurkolt vagy nyújtott cikloist ír le, attól függően, hogy P a körön kívül, vagy azon belül helyezkedik-e el (6. ábra). 6. ábra. Legyen most a g 1 és a g 2 síkgörbe is kör! Ha g 2 a g 1 -et kívülről érintve gördül, akkor g 2 síkjának pontjai epicikloist írnak le. Ha a fix g 1 kör és a gördülő g 2 kör belülről érintkeznek, a létrejövő ruletták a hipocikloisok. Természetesen sokféle epiciklois és hipociklois elképzelhető attól függően, hogy a g 1 és a g 2 körök sugara hogyan aránylik egymáshoz, illetve a g 2 kör síkjának mely pontját tekintjük. Hipocikloisív megjelenítése a Geogebra program segítségével: Első lépésként vegyünk fel két szakaszt (r 1, r 2 ) a g 1 és a g 2 körök sugarának definiálására! A körök sugarát a későbbiekben interaktív módon a megfelelő szakaszok végpontjainak mozgatásával módosíthatjuk. Ezek után jelöljük ki a g 1 kör középpontját (O 1 ), mint fix objektumot, és szerkesszük meg a kört r 1 sugárral (7. ábra)! 6

7 7. ábra. Vegyünk fel egy félegyenest és azon egy mozgó pontot (M) az elmozdulás mértékének manuális módosításához (8. ábra)! 8. ábra. 7

8 Adjuk meg a két kör kezdeti érintési pontját (ábránkon az A-val jelölt pont), majd határozzuk meg az M pont F 1 -től mért távolságának függvényében az aktuális érintési pontot! Nézzük meg, mi történik akkor, amikor a g 2 kör a g 1 kör mentén csúszás nélkül gördül! A gördülés kezdetén a g 2 kör az A pontban érinti a g 1 kört. Azt szeretnénk, ha az M pontnak az F 1 ponttól mért d(f 1,M) távolsága esetén a g 1 és a g 2 körök aktuális érintési pontjára az alábbi összefüggés teljesülne: d(f 1, M) = AA, ahol A jelöli az aktuális érintési pontot, AA pedig a g 1 kör megfelelő ívének hosszát. Ezt úgy is megfogalmazhatjuk, hogy a kezdeti érintési pont annyit mozdul el a g 1 kör körvonalán, amennyit az M pont a félegyenesen halad. Az A pont megszerkesztéséhez határozzuk meg az elforgatás szögét, majd forgassuk el a kezdeti érintési pontot az O 1 pont körül a megadott szöggel negatív irányban! Használjuk a Geogebra korábban ismertetett beépített objektum forgató utasítását (9. ábra)! 9. ábra. Az aktuális érintési pontból (A ) állítsunk félegyenest a g 1 kör középpontján keresztül! A gördülő kör aktuális középpontja erre a félegyenesre fog illeszkedni az érintési ponttól r 2 távolságra. Szerkesszük meg a g 2 kör aktuális középpontját (O 2 ), majd a g 2 kört (10. ábra)! 8

9 10. ábra. A szerkesztés folytatása előtt a továbbiakban nem használt objektumokat az átláthatóság érdekében elrejthetjük (11. ábra)! 11. ábra. 9

10 A ruletták definíciója alapján a hipociklois aktuális P pontja úgy helyezkedik el a g 2 körvonalon, hogy a g 2 körön mért A P körív hossza megegyezik a g 1 körvonalon mért AA körív hosszával. Mivel a g 1 és a g 2 körök sugarának aránya és az A P, valamint az AA körívekhez tartozó középponti szögek aránya megegyezik, ez lehetőséget biztosít a P pont elforgatáson alapuló szerkesztésére. A P pontot úgy kapjuk meg, hogy A t elforgatjuk az O 2 pont körül az A O 1 A szög r 1 /r 2 -szeresével pozitív irányban (12. ábra). 12. ábra. A hipocikloisív megrajzolásához a P pont nyomvonalát kell megjeleníttetni az M pont mozgatása közben (13. ábra). 10

11 13. ábra. 11

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

Kinematikus geometria. Strommer: Ábrázoló geometria 469. o. Petrich: Ábrázoló geometria o. Dr. Vaskó Lászlóné: Ábrázoló geometria o.

Kinematikus geometria. Strommer: Ábrázoló geometria 469. o. Petrich: Ábrázoló geometria o. Dr. Vaskó Lászlóné: Ábrázoló geometria o. Kinematikus geometria Strommer: Ábrázoló geometria 469. o. Petrich: Ábrázoló geometria 28-30. o. Dr. Vaskó Lászlóné: Ábrázoló geometria 263-30. o. Az olyan geometriai alakzatokat, melyek pontjainak egymástól

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN. Gabika és a Slepp július 25. Miskolci Herman Ottó Gimnázium

CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN. Gabika és a Slepp július 25. Miskolci Herman Ottó Gimnázium CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN Gabika és a Slepp 2016. július 25. Miskolci Herman Ottó Gimnázium Tartalomjegyzék Kausztikus görbék Ruletták, Cikloisok Egy kis tudománytörténet A cikloisok alapvető csoportosításai

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg.

A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 894 11.4. Kör és körív 11.4. Kör és körív A program a köröket és köríveket az óramutató járásával ellentétes irányban rajzolja meg. 11.4.1. Kör/Körív tulajdonságai A kör vagy körív létrehozása előtt állítsa

Részletesebben

Középpontos hasonlóság szerkesztések

Középpontos hasonlóság szerkesztések Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen

Részletesebben

Bevezető. Mi is az a GeoGebra? Tények

Bevezető. Mi is az a GeoGebra? Tények Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Alapszerkesztések 2. (Merőlegesek szerkesztése, nevezetes szögek, háromszög három oldalból) Merőleges szerkesztése egyeneshez külső pontból

Alapszerkesztések 2. (Merőlegesek szerkesztése, nevezetes szögek, háromszög három oldalból) Merőleges szerkesztése egyeneshez külső pontból 1 Merőleges szerkesztése egyeneshez külső pontból Egy egyeneshez szerkessz egy adott ponton átmenő merőlegest! 1.Végy fel a síkon egy egyenest 2.Végy fel a síkon egy olyan pontot, amely nem az egyenesen

Részletesebben

Egybevágóság szerkesztések

Egybevágóság szerkesztések Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes

Részletesebben

Dinamikus geometriai rendszerek jellemzõi

Dinamikus geometriai rendszerek jellemzõi Dinamikus módszerek alkalmazása a geometriaoktatás különbözõ területein Árki Tamás SzTE JGYTFK Matematikai Tanszék Ebben a cikkben a dinamikus geometriai rendszerek tipikus szolgáltatásainak módszertani

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét. Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. 11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

Feuerbach kör tanítása dinamikus programok segítségével

Feuerbach kör tanítása dinamikus programok segítségével Feuerbach kör tanítása dinamikus programok segítségével Buzogány Ágota IV. Matematika-Angol Fejezetek a matematika tanításából Kovács Zoltán 2004-12-10 2 A Feuerbach körnek többféle elnevezése is van,

Részletesebben

2. Síkmértani szerkesztések

2. Síkmértani szerkesztések 2. Síkmértani szerkesztések Euklidész görög matematikus (i. e. 325 körül) szerint azokat az eljárásokat tekintjük szerkesztésnek, amelyek egy egyenes vonalzóval és egy körz vel véges számú lépésben elvégezhet

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

1.Háromszög szerkesztése három oldalból

1.Háromszög szerkesztése három oldalból 1 Szerkessz háromszöget, ha három oldala: a=3 cm b=4 cm c=5 cm 1.Háromszög szerkesztése három oldalból (Ugye tudod, hogy az a oldallal szemben A csúcs, b oldallal szemben B stb. van!) (homorú, hegyes,

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Kerék gördüléséről. A feladat

Kerék gördüléséről. A feladat 1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Matematikai, informatikai, fizikai kompetenciák fejlesztése

Matematikai, informatikai, fizikai kompetenciák fejlesztése ÚJBUDAI PETŐFI SÁNDOR ÁLTALÁNOS ISKOLA Matematikai, informatikai, fizikai kompetenciák fejlesztése Petőfi-MIF műhely Oktatási segédanyag Szerkesztők: Dr. Pereszlényiné Kocsis Éva, Almási Klára, Gáspár

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2010. szeptember 18. Ebben a vázlatban arról írok, hogyan válhatnak a dinamikus geometriai programok a matematika tanítás hatékony segítőivé. Reform mozgalmak a formális matematika megalapozását az életkjori

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

Feladatok Házi feladat. Keszeg Attila

Feladatok Házi feladat. Keszeg Attila 2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon

Részletesebben

Geometria I. Vígh Viktor

Geometria I. Vígh Viktor Geometria I. Vígh Viktor Kivonat Jelen jegyzet az SZTE osztatlan matematikatanár-képzésében szereplő Geometria I. tantárgyhoz íródott. A kurzus a tanulmányok első félévében kötelező. Ezért a tárgyalásban

Részletesebben

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometriai gyakorló feladatok I ( vektorok ) Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

11.5. Ellipszis és ellipszisív

11.5. Ellipszis és ellipszisív 11. Geometriai elemek 907 11.5. Ellipszis és ellipszisív Egy ellipszist geometriailag a fókuszpontjaival, valamint a nagy- és kistengelyei hosszának és irányának megadásával, egy ellipszisívet pedig ugyanezekkel

Részletesebben

Egybevágósági transzformációk

Egybevágósági transzformációk Egybevágósági transzformációk Párhuzamos eltolás Geometriai transzformációk Egybevágósági transzformációk (9. osztály) Helybenhagyás Tengelyes tükrözés Középpontos tükrözés Pont körüli forgatás Párhuzamos

Részletesebben

A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA. Írta: Hajdu Endre

A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA. Írta: Hajdu Endre A LECSÚSZÓ KÖR ÁBRÁZOLÓ GEOMETRIÁJA Írta: Hajdu Endre Geometriai, kinematikai tankönyvekben gyakran találkozhatunk annak az AB szakasznak a példájával, melynek végpontjai egy derékszöget bezáró egyenes

Részletesebben

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Dinamikus geometriai programok

Dinamikus geometriai programok 2011. február 19. Eszköz és médium (fotó: http://sliderulemuseum.com) ugyanez egyben: Enter Reform mozgalmak a formális matematika megalapozását az életkjori sajátosságoknak megfelelő tárgyi tevékenységnek

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Mechatronika segédlet 3. gyakorlat

Mechatronika segédlet 3. gyakorlat Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34.

MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34. MINTAFELADATOK 1. feladat: Két síkidom metszése I.33.,I.34. 2. feladat: Testábrázolás képsíktranszformációval Gúla ábrázolása (a magasságvonalának transzformálásával) Adott az m egyenes, a ráilleszkedő

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Mechatronika segédlet 2. gyakorlat

Mechatronika segédlet 2. gyakorlat Mechatronika segédlet 2. gyakorlat 2017. február 13. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 3 Y-forma kialakítása... 3 Nagyítás... 3 Y forma kialakítása abszolút koordinátákkal... 4 Dinamikus

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA. BSc szakdolgozat. tanári szakirány. Budapest, 2013.

Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA. BSc szakdolgozat. tanári szakirány. Budapest, 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA BSc szakdolgozat Készítette: Somlói Zsófia matematika BSc tanári szakirány Témavezető: Dr. Moussong Gábor adjunktus

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén

Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén Módszertani különbségek az ábrázoló geometria oktatásában matematika tanár és építészmérnök hallgatók esetén Pék Johanna Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Építészeti Ábrázolás

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

GEOMETRIA 1, alapszint

GEOMETRIA 1, alapszint GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:

Részletesebben

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat

Részletesebben

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2) 55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) +

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben