Intelligens Rendszerek Elmélete

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Intelligens Rendszerek Elmélete"

Átírás

1 Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok Az nformácó feldolgozás új (?) paradgmája A bológa nsprácójú nformácó feldolgozás, a soft computng egyk területe, ahol modellként az degrendszer struktúráját és működését vesszük alapul. A tudományterület a kezdet stádumban van, mégs számos alkalmazás területen az egyszerűsített modellekkel s jobb eredmények érhetőek el mnt a hagyományos algortmkus megoldásokkal. IRE 7/2

2 A neuráls hálózatok általános jellemző 1. A neuráls hálózatok nagyon egyszerű processzorokból, az un. neuronokból épülnek fel. A processzorok változtatható súlytényezőjű összeköttetések hálózatán át kommunkálnak egymással. 2. A neuráls hálózatokat nem programozzuk, hanem tanítjuk. 3. A tárolt nformácók a hálózatban elosztottan, a súlytényezők közvetítésével ábrázolódnak. 4. A neuráls hálózatok hbatűrők. Az elosztott párhuzamos tudásreprezentácó matt a súlytényezők egy részének jelentős megváltozása sem befolyásolja alapvetően a hálózat működését. 5. A hálózat működését három fő tényező határozza meg: A processzorok átvtel függvénye, a hálózat összeköttetés sémája és a tanítás módszer IRE 7/3 Az első mesterséges neuráls hálózat: a Perceptron Frank Rosenblatt (1957) Vetített nyomtatott betűk felsmerése tanítás alapján 20 x 20 fotóérzékelő Mc. Culloch-Ptts neuronok Előrecsatolt egyrétegű hálózat I 1 O 1 O 36 I 400 IRE 7/4

3 Alkalmazás példa 1/1. Masa Péter Cenr 199x IRE 7/5 Osztályozandó mnták: Alkalmazás példa 1/2. IRE 7/6

4 Alkalmazás példa 1/3. Megkülönböztetendő mnták 3 dmenzó esetén IRE 7/7 Alkalmazás példa 1/3. Megkülönböztetendő mnták: IRE 7/8

5 A megvalósított áramkör Alkalmazás példa 1/4. IRE 7/9 Alkalmazás példa 1/5. A neuráls megoldás teljesítmény mutató IRE 7/10

6 Neuráls hálózatok alapfogalma Gyakor elnevezések: Neural Networks Neuráls hálózatok NN Artfcal Neural Networks Mesterséges neuráls hálózatok ANN Artfcal Neural Systems Mesterséges neuráls rendszerek ANS Connectonst Modells Konnekconsta modellek Parallel Dstrbuted Processng Páthozamos elosztott feldolgozás PDP Neural Computers Neuronszámítógépek ANN CNN Cellular Neural Network L.O. Chua, L.Yang, T. Roska 1988 Lokáls kapcsolatok Analóg áramkörök IRE 7/11 Természetes deg hálózatok kapcsolódása IRE 7/12

7 A természetes deg hálózatok tanulsága A feldolgozás nem unverzáls! (A hálózat típusa határozza meg a működést!) A működés párhuzamos és herarchkus (hagymahéj model) Brodmann agyterületek IRE 7/13 Az emlékezés kapcsolatrendszere Natonal Geographc 2007 november IRE 7/14

8 Az agyterületek működésének MRI + PET képe Írott szöveg olvasása Szöveg kmondása Szöveg értelmezése Mark Dubn, U. of Colorado Prncples of Neural Scence E. Kandel, J. Schwartz, T. Jessel IRE 7/15 A McCulloch és Ptts formáls neuron W. Mc Culloch és W. Ptts (1943) Először tekntették az agyat számításokat végző szervnek I 1 I 2 I n-1 I n w j1 w j2 w jn S j j T O j I ngerfelvevők (bemenet) w j súlytényezők T Árvtel (Transzfer) függvény S j = n = 1 w Oj = 0 ha Sj <= 0 Oj = +1 ha Sj > 0 j I I B IRE 7/16

9 Alapfeltevések a formáls neuron megfogalmazásakor Az degsejt működése mnden vagy semm jellegű Az degsejt ngerületbe hozásához bzonyos dőn belül néhány (legalább 2(!?)) bemenetet ngereln kell Az degrendszerben az egyetlen jelentős késleltetés a sznapszsoknál jön létre Bármely gátló sznapszs működése teljesen megakadályozza az degsejt ngerületbe kerülését Az degrendszer összeköttetés hálózata az dőben nem változk!? IRE 7/17 Logka műveletek McCulloch-Ptts neuronokkal O 1 O 1 O 1 O O 3 2 O O 2 (t) = O 1 (t-1) O 3 (t) = O 1 (t-1) O O 2 (t-1) 3 O 3 O O 2 3 O 3 (t) = O 1 (t-1) + O 2 (t-1) O O 3 (t) = O 1 (t-1) O O 2 (t-1) 1 1 O 3 3 O 3 (t) = O 1 (t-1) O 2 (t-1) 2 O 2 De Morgan!!! serkentés gátlás IRE 7/18

10 A neuráls hálózatok legfontosabb meghatározó tényező 1. A neuronok (processzorok) (neuron, artfcal neuron, node, unt, cell) 2. A hálózat topológa ( mt mvel kötünk össze, (súlytényező mátrx) 3. A tanító szabályokat alkalmazó algortmus ( súlytényezők beállítása, hangolása ) IRE 7/19 Az alap neuron (processzor) felépítése I 1 I 2 I O I n-1 w j1 w j2 wj w jn S j j T O j S j = W j n = 1 w j j I I n I B I bemenet), w j súlytényezők, T Átvtel (Transzfer) függvény IRE 7/20

11 Leggyakrabban használt átvtel függvények 1. Ugrás függvény: O j = 0 vagy -1, ha S <= 0, O j = 1 ha S > S 2. Korlátozott lneárs függvény -1 O j = 0, ha S <= 0, O j = S ha 0 <= S < 1 1 O j = 1 ha S > Szmod függvény O j = 1-1/(1+S) ha S >= 0 O j = 1/(1+e -Sj ) O j = /(1-S) ha S < S IRE 7/21-1 S S Tpkus neuráls hálózat összeköttetések 1. Előrecsatolt (rétegelt) neuráls hálózat (topológa) Bemenetek bemenet réteg rejtett réteg kmenet réteg Kmenetek súlytényező IRE 7/22

12 Az előrecsatolt hálóztok alternatív ábrázolása I 1 I 2 I I n-1 I n Súlymátrx w 11 w 12 w 1 w 21 w 22 w 2 w j1 w j2 w j w 1n w 2n w jn O 1 w m1 w m2 w m w mn O 2 O j O m súlytényező O = f (S) S = I * W Mátrx műveletek! IRE 7/23 Vsszacsatolt neuráls hálózat Rétegelt Teljesen összekötött I 1 I 2 I j k IRE 7/24 O O j O k O = I x W1+ O x W2

13 Benenő adatok A tanító adatok szerkezete Elvárt kmenő adatok célértékek Bemenetek 1-n C 1 C m n NH m c 1 c m Teszt adatok Tanító mnták 1-k IRE 7/25 Tanítás szabályok 1. Tanítás = súlytényezők (ks lépésekkel (?) való) beállítása Tanítás típusok: 1. Felügyelt (felügyeletes) tanítás 2. Felügyelet nélkül (önszerveződő) tanítás Alap tanítás szabályok: j O w j O j j O w j O j C j Hebb szabály (Donald O. Hebb) w j (t+1) = w j (t) + α* O * O j ahol α = tanítás tényező, 0 <= α <= 1 Delta szabály (Wdrow- Hoff) w j (t+1) = w j (t) + α * O * (C j O j ) ahol C j O j = Δ j IRE 7/26

14 A felügyeletes tanítás lényege, algortmusa Mottó: Addg változtatjuk a súlytényezőket, amíg a bemenő mntákra a hálózat a megfelelő-, előre kszámított válaszokat nem adja. Algortmusa: 1. Kezdet súlytényezők beállítása 2. A tanítómnta bemenet értéke alapján a hálózat kmenet értékének kszámítása. 3. A tanítómnta célértékének összehasonlítása a hálózat célértékével. 4. Szükség esetén a hálózat súlytényezőnek módosítása. 5. A tanítás folytatása mndaddg, amíg a hálózat az összes tanítómntára egy előre rögzített hbahatárnál ksebb hbával a célértéknek megfelelő kmenet értéket nem tudja előállítan. IRE 7/27

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.

Részletesebben

A neurális hálózatok alapjai

A neurális hálózatok alapjai A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.

Részletesebben

Fogalom értelmezések I.

Fogalom értelmezések I. Fogalom értelmezések I. Intelligencia értelmezések Köznapi értelmezése: értelem, ész, felfogó képesség, értelmesség, műveltség Boring szerint: amit az intelligencia teszt mér Wechsler szerint: Az intelligencia

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell)

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell) 90. Mi az MI program, tudásalapú rendszer, szakértıi rendszer és kapcsolatuk? MI program Olyan programok, amik a beérkezı információkat valamilyen logikus módszerrel képesek feldolgozni, még akkor is,

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Véletlenszám generátorok. 5. előadás

Véletlenszám generátorok. 5. előadás Véletlenszám generátorok 5. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

NEURÁLIS HÁLÓZATOK 1. eloadás 1

NEURÁLIS HÁLÓZATOK 1. eloadás 1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

1. Holtids folyamatok szabályozása

1. Holtids folyamatok szabályozása . oltds folyamatok szabályozása Az rányított folyamatok jelentés részét képezk a lassú folyamatok. Ilyenek például az par környezetben található nagy méret kemencék, desztllácós oszlopok, amelyekben valamlyen

Részletesebben

Egyenáramú szervomotor modellezése

Egyenáramú szervomotor modellezése Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Számítógép-architektúrák II.

Számítógép-architektúrák II. Várady Géza Számítógép-archtektúrák II. Pécs 2015 A tananyag a azonosító számú, A gépészet és nformatka ágazatok duáls és modulárs képzésenek kalakítása a Pécs Tudományegyetemen című projekt keretében

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:

Részletesebben

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

Eseményvezérelt szimuláció

Eseményvezérelt szimuláció Hálózat szmulácós technkák (BMEVITTD094/2005) október 3. Vdács Attla Dang Dnh Trang Távközlés és Médanformatka Tanszék Budapest Mszak és Gazdaságtudomány Egyetem Eseményvezérelt szmulácó DES Dscrete-Event

Részletesebben

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:

Részletesebben

Mesterséges intelligencia Szakértői rendszerek. Mesterséges intelligencia Szakértői rendszerek

Mesterséges intelligencia Szakértői rendszerek. Mesterséges intelligencia Szakértői rendszerek Gépgyártástechnológa Tanszék Dr. Mkó Balázs Mesterséges ntellgenca Szakértő rendszerek Technológa tervező rendszerek 2003/2004 I. BME GTT mko.balazs@freestart.hu Gábor Dénes Főskola Dr. Mkó Balázs Mesterséges

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

egy szisztolikus példa

egy szisztolikus példa Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Hálózati réteg. WSN topológia. Útvonalválasztás.

Hálózati réteg. WSN topológia. Útvonalválasztás. Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,

Részletesebben

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus

Részletesebben

IT jelű DC/DC kapcsolóüzemű tápegységcsalád

IT jelű DC/DC kapcsolóüzemű tápegységcsalád IT jelű DC/DC kapcsolóüzemű tápegységcsalád BALOGH DEZSŐ BHG BEVEZETÉS A BHG Híradástechnka Vállalat kutató és fejlesztő által kdolgozott napjankban gyártásban levő tárolt programvezérlésű elektronkus

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató

Részletesebben

3515, Miskolc-Egyetemváros

3515, Miskolc-Egyetemváros Anyagmérnök udományok, 37. kötet, 1. szám (01), pp. 49 56. A-FE-SI ÖVÖZERENDSZER AUMÍNIUMAN GAZDAG SARKÁNAK FEDOGOZÁSA ESPHAD-MÓDSZERRE ESIMAION OF HE A-RIH ORNER OF HE A-FE-SI AOY SYSEM Y ESPHAD MEHOD

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ire.html felhasználónév: ire jelszó: IRE06 IRE 3/1 A technikai érzékelők csoportosítása a beépített intelligencia alapján

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Forgalmi modellezés BMEKOKUM209

Forgalmi modellezés BMEKOKUM209 BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése

Részletesebben

Ideális műveleti erősítő

Ideális műveleti erősítő Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

A neurális hálózatok általános jellemzői

A neurális hálózatok általános jellemzői Mesterséges neurális hálóztok II. - A felügyelt tnítás prméterei, gyorsító megoldási - Versengéses tnulás Tudáskezelés fuzzy logikávl http:/uni-obud.hu/users/kutor/ IRE 7/50/1 2012. ősz Óbudi Egyetem,

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI

Részletesebben

AUTOMATIKUS KÉPFELDOLGOZÁS A HADITECHNIKÁBAN A CELLULÁRIS NEURÁLIS HÁLÓZAT

AUTOMATIKUS KÉPFELDOLGOZÁS A HADITECHNIKÁBAN A CELLULÁRIS NEURÁLIS HÁLÓZAT Buzási Tibor AUTOMATIKUS KÉPFELDOLGOZÁS A HADITECHNIKÁBAN A CELLULÁRIS NEURÁLIS HÁLÓZAT A következő bemutató témája a Celluláris Neurális Hálózat (CNN) technológiára épülő, a hagyományos képfeldolgozási

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA Napkollektorok üzem jellemzőnek modellezése Doktor (PhD) értekezés tézse Péter Szabó István Gödöllő 015 A doktor skola megnevezése: Műszak Tudomány Doktor Iskola tudományága:

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter

Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter TM Leca DISTO Leca DISTOTMD510 X10 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - - -

Részletesebben

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON Pintér István, pinter@gandalf.gamf.hu Nagy Zoltán Gépipari és Automatizálási Mûszaki Fõiskola, Informatika Tanszék Gépipari és Automatizálási

Részletesebben

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés

Részletesebben

Ismételt játékok: véges és végtelenszer. Kovács Norbert SZE GT. Példa. Kiindulás: Cournot-duopólium játék Inverz keresleti görbe: P=150-Q, ahol

Ismételt játékok: véges és végtelenszer. Kovács Norbert SZE GT. Példa. Kiindulás: Cournot-duopólium játék Inverz keresleti görbe: P=150-Q, ahol 9. elõaás Ismételt játékok: véges és végtelenszer történõ smétlés Kovács Norbert SZE GT Az elõaás menete Ismételt játékok Véges sokszor smételt játékok Végtelenszer smételt játékok Péla Knulás: ournot-uopólum

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató

Részletesebben

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz

Részletesebben

FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS

FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS EGY GYAKORLATI ALKALMAZÁSA Bakó Tamás, dr. Dabócz Tamás Budapest Mszak és gazdaságtudomány Egyetem, Méréstechnka és Informácós Rendszerek Tanszék e-mal:

Részletesebben

Szerelési útmutató FKC-1 síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára

Szerelési útmutató FKC-1 síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára Szerelés útmutató FKC- síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára 604975.00-.SD 6 70649 HU (006/04) SD Tartalomjegyzék Általános..................................................

Részletesebben

Standard cellás tervezés

Standard cellás tervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez

Részletesebben

Kapcsolja össze háztartási készülékét a jövővel. Quick Start Guide

Kapcsolja össze háztartási készülékét a jövővel. Quick Start Guide Kapcsolja össze háztartás készülékét a jövővel. Quck Start Gude 1 jövő mostantól az Ön háztartásában kezdődk! Jó, hogy a Home onnect alkalmazást használja * Gratulálunk a jövőbe mutató háztartás készülékéhez,

Részletesebben

The original laser distance meter. The original laser distance meter

The original laser distance meter. The original laser distance meter Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -

Részletesebben

II. LABOR Tanulás, Perceptron, Adaline

II. LABOR Tanulás, Perceptron, Adaline II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,

Részletesebben

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj

Részletesebben

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok Gingl Zoltán, Szeged, 2015. 1 2 Az előadás diasora (előre elérhető a teljes anyag, fejlesztések mindig történnek) Könyv: Török Miklós jegyzet Tiezte, Schenk, könyv interneten elérhető anyagok Laborjegyzet,

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

webalkalmazások fejlesztése elosztott alapon

webalkalmazások fejlesztése elosztott alapon 1 Nagy teljesítményű és magas rendelkezésreállású webalkalmazások fejlesztése elosztott alapon Nagy Péter Termékmenedzser Agenda Java alkalmazás grid Coherence Topológiák Architektúrák

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602)

Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasty Márk Mesterséges ntellgenca. (602, B602) kurzus nyolcadk előadásának jegyzete (2008. október 20-a) Készítette: Bóna Bence BOBNAAT.SZE NF-MAT V. Bayes-áló Ebben a részben egy szsztematkus módszert

Részletesebben

Intelligens Rendszerek Elmélete. Technikai érzékelők. A tipikus mérőátalakító transducer

Intelligens Rendszerek Elmélete. Technikai érzékelők. A tipikus mérőátalakító transducer Intelligens Rendszerek Elmélete A tipikus mérőátalakító transducer dr. Kutor László Technikai érzékelők http://mobil.nik.bmf.hu/tantargyak/ire.html Login: ire jelszó: IRE07 IRE 3/1 IRE 3/4 Mitől okos (intelligens?)

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Kiadványtervezés. 3. A főszöveghez kapcsolódó egyéb szövegelemek (hátsó jegyzet, bibliográfia, mutatók) szedése és tördelése.

Kiadványtervezés. 3. A főszöveghez kapcsolódó egyéb szövegelemek (hátsó jegyzet, bibliográfia, mutatók) szedése és tördelése. Kiadványtervezés 1. Milyen anyagokat venne számításba az arculatterv különféle nyomtatott elemeinek tervezésében? Milyen számítógépes programok támogatják ezek tervezését és kivitelezését? 2. Melyek a

Részletesebben

Hálózatok I. A tárgy célkitűzése

Hálózatok I. A tárgy célkitűzése Hálózatok I. A tárgy célkitűzése A tárgy keretében a hallgatók megismerkednek a számítógép-hálózatok felépítésének és működésének alapelveivel. Alapvető ismereteket szereznek a TCP/IP protokollcsalád megvalósítási

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

Intelligens Rendszerek Elmélete. Technikai érzékelők

Intelligens Rendszerek Elmélete. Technikai érzékelők Intelligens Rendszerek Elmélete Dr. Kutor László Technikai érzékelők http://mobil.nik.bmf.hu/tantargyak/ire.html Login: ire jelszó: IRE07 IRE 3/1 Mitől okos (intelligens?) egy technika? 1. Érzékelés (érzékszervek)

Részletesebben

Optimalizáció ESX-től View-ig. Pintér Kornél ügyfélszolgála3 mérnök pinter_kornel@mhm.hu

Optimalizáció ESX-től View-ig. Pintér Kornél ügyfélszolgála3 mérnök pinter_kornel@mhm.hu Optimalizáció ESX-től View-ig Pintér Kornél ügyfélszolgála3 mérnök pinter_kornel@mhm.hu MHM és referenciák MHM Computer Hungária Kft. 1996 óta Magyarországon Fókuszterületek: Adattárolás Adatmentés Archiválás

Részletesebben

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1.

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1. HÁLÓZATOK I. Segédlet a gyakorlati órákhoz 1. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék 2014-15. tanév 1. félév Elérhetőség Göcs László Informatika Tanszék 1.emelet 116-os iroda gocs.laszlo@gamf.kefo.hu

Részletesebben

Tanulmányok alatti vizsgák

Tanulmányok alatti vizsgák Tanulmányok alatti vizsgák 1 GAZDASÁGI ÉS JOGI ALAPISMERETEK...2 2 ÜGYVITELI ISMERETEK...3 3 ÜGYVITEL GYAKORLAT...4 4 ÁLTALÁNOS STATISZTIKA ÉS STATISZTIKA GYAKORLAT...5 5 PÉNZÜGYI ISMERETEK...6 6 ADÓZÁS...7

Részletesebben

Die Sensation in der Damenhygiene Hasznos információk a tamponokról www.123goodbye.com

Die Sensation in der Damenhygiene Hasznos információk a tamponokról www.123goodbye.com nokról tampo a k ácó form n s no Hasz Mért használnak tamponokat? A tampon szó francául és a szó szernt fordításban dugó. Már a szó s sokat mond. A tamponok körülbelül öt centméteres rudak, amely közel

Részletesebben