egy szisztolikus példa

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "egy szisztolikus példa"

Átírás

1 Automatikus párhuzamosítás egy szisztolikus példa

2 Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet

3 Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet

4 Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet

5 Motiváció Növekvő igény a gyors adatfeldolgozásra Pl. néhány számításigényes feladatra: időjárás modellezés kép- illetve jelfeldolgozás szeizmológiai számítások tengeri áramlatok modellezése... megoldási lehetőségek: a hardver tökéletesítése fizikai korlátok párhuzamos programozás

6 Gyorsítás n processzor = n-szeres sebességnövekedés? pl. Proc. száma Idő Feladat 1 tyúk 10 nap alatt 10 tojás 10 tyúk 1 nap alatt 10 tojás (10-szer gyorsabban)

7 Gyorsítás n processzor = n-szeres sebességnövekedés? pl. Proc. száma Idő Feladat 1 tyúk 10 nap alatt 10 tojás 10 tyúk 1 nap alatt 10 tojás (10-szer gyorsabban) 1 nő 9 hónap alatt 1 gyerek 9 nő 1 hónap alatt...

8 Párhuzamosság párhuzamosság megvalósítása: a feladatot kisebb részekre bontjuk az egyes részfeladatokat szétosztjuk a processzorok között, melyek párhuzamosan dolgozhatnak szükség van a processzorok munkájának az összehangolására a részfeladat megoldása lehetőleg ne tartson rövidebb ideig, mint ami szükséges a feladat kiosztásához felmerülő kérdések: hogyan kapcsolódnak egymáshoz a processzorok (milyen párhuzamos architektúra) hogyan osszuk szét a feladatokat az egyes processzorok között

9 Különböző osztályozási kritériumok... Szorosan összekapcsolt rendszerek (shared memory) Gyengén összekapcsolt (szét)osztott rendszerek (distributed memory)

10 processzorok kapcsolatrendszere különböző topológiák Figure: Az összekötő hálózatok tengere [Par:02]

11 Szisztolikus architektúrák jellemzők: azonos (általában egyszerű) műveleteket végző processzorok (PE) szabályos struktúra, lokális kapcsolat a szomszédos PE-k közt szinkron működés (globális órajelre) globális be-/ kimenet (a szélen levő PE-ken keresztül) PE PE PE PE PE Memória Figure: Lineáris szisztolikus architektúra

12 Példa Hosszú egészek szorzása (szekvenciális alg.) Feladat: Adott két egész szám: A = a m 1 a m 2... a 1 a 0, illetve B = b n 1 b n 2... b 1 b 0. Számítsuk ki: C = c m+n 1 c m+n 2... c 1 c 0 = A B. a b c a b + c (a + b + c) Figure: Processzor, mely képes elvégezni két számjegy átviteles szorzását (illetve összeadását) Pl. A = 321, B = 987: A szekveciális algoritmus bonyolultsága: O(m n)

13 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: $ $ y, r = d[1 7] = 7, 0 Eredmény: $ $ $ $ $ $ $, $... y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[xa xb], if s = $ xa $, $, if s = $ = xa Alg. bonyolultsága: O(m + n) Processzorok száma: Max{m, n}/2 d[a] = a mod β, a β

14 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: $ $ 1 $ $ 7 $ y, r = d[ ] = 2, 2 Eredmény: 7 $ $ $, $... y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[r + hb 0 xa + + ha 0 xb], if s = 1 $, $, if s = $ = xa Alg. bonyolultsága: O(m + n) Processzorok száma: Max{m, n}/2 d[a] = a mod β, a β

15 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: $ $ 1 2 $ 7 8 y, r = d[ ] = 8, 4 Eredmény: 27 $ $ $, $... y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[r + ha 1 hb hb 0 xa + + ha 0 xb], if s = 2 $, $, if s = $ = xa Alg. bonyolultsága: O(m + n) Processzorok száma: Max{m, n}/2 d[a] = a mod β, a β

16 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: $ $ y, r = d[ ] = 6, 4 Eredmény: $ d[3 9] = 7, 2 y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[r + hb 1 za + + ha 1 zb + + hb 0 xa + + ha 0 xb], if s = 3 d[xa xb], if s = $ xa Alg. bonyolultsága: O(m + n) Processzorok száma: Max{m, n}/2 d[a] = a mod β, a β

17 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: $ 7 8 y, r = d[ ] = 1, 1 Eredmény: 6827 Alg. bonyolultsága: O(m + n) $ d[ ] = 2, 0 Processzorok száma: Max{m, n}/2 y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[r + hb 1 za + + ha 1 zb + + hb 0 xa + + ha 0 xb + y ], if s = 4 d[r + hb 0 xa + + ha 0 xb], if s = 1 d[a] = a mod β, a β

18 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: y, r = d[ ] = 3, 0 Eredmény: Alg. bonyolultsága: O(m + n) d[ ] = 0, 0 Processzorok száma: Max{m, n}/2 y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb y, r = d[r + hb 1 za + + ha 1 zb + + hb 0 xa + + ha 0 xb + y ], if s = 4 d[r + ha 1 hb hb 0 xa + + ha 0 xb], if s = 2 d[a] = a mod β, a β

19 Példa Hosszú (tetszőleges pontosságú) egészek szorzása (online szisztolikus alg.) Lépés: y, r = y y s r za xa zb xa xb ha 0 ha 1 hb 0 hb 1 xb Eredmény: Alg. bonyolultsága: O(m + n) Processzorok száma: Max{m, n}/2 d[a] = a mod β, a β

20 Automatikus párhuzamosítás ötlet Figure: Lineáris szisztolikus rács induktív (rekurzív) felépítése hasonlóság a szisztolikus rács induktív felépítése, illetve a feadat rekurzív megfogalmazása (funkcionális program argumentumának induktív dekompozíciója) között

21 Automatikus párhuzamosítás ötlet Két lépés: konkrét architektúra típus előzetes tanulmányozása cél: találni egy rekurzív összefüggést, mely az illető típusú architektúra működését jellemzi ugyanezt a logikát alkalmazzuk fordítva: ha sikerül a feladatnak egy olyan rekurzív leírását megadni, ami megfelel egy (vagy több) bizonyos architektúra működését jellemző leírásnak a feladatot (viszonylag) egyszerű levetíteni az illető típusú architektúrára.

22 Egy konkrét architektúra típus tanulmányozása Adatfolyam egy online szisztolikus tömbben, mely a bemenetet k = 2 lépést követően kezdi továbbítni. az Y = F [X ] eredménylista (az első 4 elem kivételével) kiszámolható rekurzívan X 4 illetve F [X 2 ] függvényében

23 A B kifejezés kifejtése kifejtés szabályai (polinomok szorzása esetén): skaláris elem hozzádása egy polinomhoz: két polinom összeadása: a + (b B) = (a + b) B (a A) + (b B) = (a + b) (A + B) skaláris elem szorzása egy polinommal: a (b B) = (a b) (a B) két polinom szorzása: (a A) (b B) = (a b) ((a B) + (b A) + (0 (A B)))

24 A B kifejezés kifejtése (polinomok szorzása esetén) A B = = (a 0 A1 ) (b 0 B1 ) a 0 = a 0 b 0 + = a 0 b 0 + B1 b 0 A1 0 (A 1 B 1 ) a 0 (b1 B2 ) = a 0 b 0, a 0 b 1 + b 0 b 0 (a1 A2 ) 0 A 1 B 1 a 0 a 1 + b 0 A 1 B 1 B2 A2

25 =... = a 0 b 0, a 0 b 1 + b 0 a 1, a 2 b 0 + a 1 b 1 + a 0 b 2 ), a 3 b 0 + a 2 b 1 + a 1 b 2 + a 0 b 3 ((a 0 B4 ) + (b 0 A4 )+ +(a 1 B3 ) + (b 1 A3 ) + (A 2 B 2 )) a kapott rekurzív összefüggés: H 0 [A] T 4 [B] H 0 [B] T 4 [A] T 4 [A B] = + H 1 [A] T 3 [B] H 1 [B] T 3 [A] T 2 [A] T 2 [B]

26 Az átmenetfüggvény meghatározása a kapott rekurzív összefüggés alapján a kifejezés elemeinek megfeleltetése az egyes regisztereknek: T 2 [A] T 2 [B] y T 4 [A B] y T 4 [A] xa, T 4 [B] xb T 3 [A] za, T 3 [B] zb H 0 [A] ha 0, H 0 [B] hb 0 H 1 [A] ha 1, H 1 [B] hb 1 Az első négy elem kiszámítását megadó összefüggésből hasonló módon kapjuk az átmenetfüggvény y kiszámítására vonatkozó részét az első négy lépésben (amikor a jobboldali szomszéd PE még nem szolgáltat semmiféle részeredményt).

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

Szűrő architektúrák FPGA realizációjának vizsgálata

Szűrő architektúrák FPGA realizációjának vizsgálata Szűrő architektúrák FPGA realizációjának vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Szántó Péter, 2013. Bevezetés Az FPGA-ban megvalósítandó jelfeldolgozási feladatok közül a legfontosabb

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

Elosztott rendszer architektúrák

Elosztott rendszer architektúrák Elosztott rendszer architektúrák Distributed systems architectures Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 12. Andrew S. Tanenbaum, aarten van Steen: Distributed Systems: rinciples

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Algoritmusok. Dr. Iványi Péter

Algoritmusok. Dr. Iványi Péter Algoritmusok Dr. Iványi Péter Egyik legrégebbi algoritmus i.e. IV század, Alexandria, Euklidész két természetes szám legnagyobb közös osztójának meghatározása Tegyük fel, hogy a és b pozitív egész számok

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Algoritmusok pszeudókód... 1

Algoritmusok pszeudókód... 1 Tartalomjegyzék Algoritmusok pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 2 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok... 2 3 Orosz szorzás...3 Minimum

Részletesebben

GPU-k a gravitációs hullám kutatásban

GPU-k a gravitációs hullám kutatásban GPU-k a gravitációs hullám kutatásban Debreczeni Gergely MTA KFKI RMKI (Gergely.Debreczeni@rmki.kfki.hu) e-science Cafè 2011. november 14. Óbudai Egyetem Neumann János Informatikai Kar Á.R.: Megfigyelhető

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Algoritmusok pszeudókód... 1

Algoritmusok pszeudókód... 1 Tartalomjegyzék Algoritmusok pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 2 Minimum

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum

Részletesebben

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58 Tartalomjegyzék Algoritmusok - pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

Algoritmusok - pszeudókód... 1

Algoritmusok - pszeudókód... 1 Tartalomjegyzék Algoritmusok - pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 2 Minimum

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Nyilvántartási Rendszer

Nyilvántartási Rendszer Nyilvántartási Rendszer Veszprém Megyei Levéltár 2011.04.14. Készítette: Juszt Miklós Honnan indultunk? Rövid történeti áttekintés 2003 2007 2008-2011 Access alapú raktári topográfia Adatbázis optimalizálás,

Részletesebben

Architektúra, megszakítási rendszerek

Architektúra, megszakítási rendszerek Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép

Részletesebben

Oktatási segédlet 2014

Oktatási segédlet 2014 Oktatási segédlet 2014 A kutatás a TÁMOP 4.2.4.A/2-11-1-2012- 0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások

3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások 3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

Biztonsági folyamatirányító. rendszerek szoftvere

Biztonsági folyamatirányító. rendszerek szoftvere Biztonsági folyamatirányító rendszerek szoftvere 1 Biztonsági folyamatirányító rendszerek szoftvere Tartalom Szoftverek szerepe a folyamatirányító rendszerekben Szoftverek megbízhatósága Szoftver életciklus

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Digitális elektronika gyakorlat. A VHDL leírástípusok

Digitális elektronika gyakorlat. A VHDL leírástípusok A VHDL leírástípusok 1. A funkcionális leírásmód Company: SAPIENTIA EMTE Engineer: Domokos József Create Date: 08:48:48 03/21/06 Design Name: Module Name: Logikai es kapuk funkcionalis leirasa- Behavioral

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Programozási segédlet DS89C450 Fejlesztőpanelhez

Programozási segédlet DS89C450 Fejlesztőpanelhez Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Excel 2010 függvények

Excel 2010 függvények Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT

Részletesebben

Podoski Péter és Zabb László

Podoski Péter és Zabb László Podoski Péter és Zabb László Bevezető Algoritmus-vizualizáció témakörében végeztünk kutatásokat és fejlesztéseket Felmértük a manapság ismert eszközök előnyeit és hiányosságait Kidolgoztunk egy saját megjelenítő

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Programozás II. 4. Dr. Iványi Péter

Programozás II. 4. Dr. Iványi Péter Programozás II. 4. Dr. Iványi Péter 1 inline függvények Bizonyos függvények annyira rövidek, hogy nem biztos hogy a fordító függvényhívást fordít, hanem inkább az adott sorba beilleszti a kódot. #include

Részletesebben

CUDA haladó ismeretek

CUDA haladó ismeretek CUDA haladó ismeretek CUDA környezet részletei Többdimenziós indextér használata Megosztott memória használata Atomi műveletek használata Optimalizálás Hatékonyság mérése Megfelelő blokkméret kiválasztása

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Informatikai alapismeretek szóbeli felkészülési témakörök

Informatikai alapismeretek szóbeli felkészülési témakörök Informatikai alapismeretek szóbeli felkészülési témakörök Minden tétel két feladatból ( A és B ) áll: Az A feladat az adott témakör általános bemutatását és a témakör meghatározott részeinek részletesebb

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel)

Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) 1. tétel: Neumann és Harvard számítógép architektúrák összehasonlító

Részletesebben

Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon

Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon Magic xpi 4.0 vadonatúj Architektúrája Gigaspaces alapokon Mi az IMDG? Nem memóriában futó relációs adatbázis NoSQL hagyományos relációs adatbázis Más fajta adat tárolás Az összes adat RAM-ban van, osztott

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

Számítógép architektúrák. A mai témák. A teljesítmény fokozás. A processzor teljesítmény növelése

Számítógép architektúrák. A mai témák. A teljesítmény fokozás. A processzor teljesítmény növelése Számítógép architektúrák A processzor teljesítmény növelése A mai témák CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Alaplap: közös kapcsolódási felület a számítógép részegységei számára

Alaplap: közös kapcsolódási felület a számítógép részegységei számára Alaplap: közös kapcsolódási felület a számítógép részegységei számára AGP-csatlakozó alaplapi vezérlő chip PCI-csatlakozók rögzítőkeret a hűtőhöz FDD-csatlakozó tápegységcsatlakozó S.ATAcsatlakozók P.ATAcsatlakozók

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

Számítógép architektúrák 2. tétel

Számítógép architektúrák 2. tétel Számítógép architektúrák 2. tétel Elemi sorrendi hálózatok: RS flip-flop, JK flip-flop, T flip-flop, D flip-flop, regiszterek. Szinkron és aszinkron számlálók, Léptető regiszterek. Adatcímzési eljárások

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2005/2006 tanév 2. szemeszter. Készítette: Markó Imre 2006

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2005/2006 tanév 2. szemeszter. Készítette: Markó Imre 2006 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2005/2006 tanév 2. szemeszter Bevezetés A tantárgy oktatásának célja: a számítógép hardverének megismertetése A tantárgy által tárgyalt témakörök:

Részletesebben

Adatstruktúrák, algoritmusok, objektumok

Adatstruktúrák, algoritmusok, objektumok Adatstruktúrák, algoritmusok, objektumok 2. Az objektumorientált programozási paradigma 1 A szoftverkrízis Kihívások a szoftverfejlesztés módszereivel szemben 1. A szoftveres megoldások szerepe folyamatosan

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Az utasítás-pipeline szélesítése Horváth Gábor 2015. április 23. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Aktuális 2. ZH jövő csütörtök Memória technológiák, virtuális

Részletesebben

Széchenyi István Egyetem, Műszaki Tudományi Kar SZOLGÁLÓ PÁRHUZAMOS ALGORITMUSOK VIZSGÁLATA SOKPROCESSZOROS KÖRNYEZETBEN.

Széchenyi István Egyetem, Műszaki Tudományi Kar SZOLGÁLÓ PÁRHUZAMOS ALGORITMUSOK VIZSGÁLATA SOKPROCESSZOROS KÖRNYEZETBEN. Széchenyi István Egyetem, Műszaki Tudományi Kar VARJASI NORBERT NAGY SZÁMÍTÁSIGÉNYŰ FELADATOK MEGOLDÁSÁRA SZOLGÁLÓ PÁRHUZAMOS ALGORITMUSOK VIZSGÁLATA SOKPROCESSZOROS KÖRNYEZETBEN doktori tézisek témavezető:

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

AVR-Stamp1.0F_USB Leírás, használati útmutató. Rev.B

AVR-Stamp1.0F_USB Leírás, használati útmutató. Rev.B AVR-Stamp1.0F_USB Leírás, használati útmutató. Rev.B A Stamp1.0F_USB egy olyan panel, ami kettős célt szolgál. Egyrészről, kialakításából adódóan alkalmas tanuló, fejlesztő eszköznek, másrészről kész berendezésbe

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Horváth Gábor (szerk.) Számítógép Architektúrák 2012.09.27. 2 A szerzők elérhetőségei: Név E-mail cím Szoba Horváth Gábor ghorvath@hit.bme.hu I.B.116. Lencse Gábor lencse@hit.bme.hu I.B.118. Tartalomjegyzék

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

8. Mezőutasítások. Schulcz Róbert schulcz@hit.bme.hu. 8. Mezőutasítások. v2013.10.24.

8. Mezőutasítások. Schulcz Róbert schulcz@hit.bme.hu. 8. Mezőutasítások. v2013.10.24. Schulcz Róbert schulcz@hit.bme.hu A tananyagot kizárólag a BME hallgatói használhatják fel tanulási céllal. Minden egyéb felhasználáshoz a szerző engedélye szükséges! 1 Mezőutasítások (1) A Word lehetőségeit

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

RECOWARE XP-R 16 RISC alapú, multiprocesszoros célszámítógép újrakonfigurálható akcelerátorral

RECOWARE XP-R 16 RISC alapú, multiprocesszoros célszámítógép újrakonfigurálható akcelerátorral RECOWARE XP-R 16 RISC alapú, multiprocesszoros célszámítógép újrakonfigurálható akcelerátorral A RECOWARE XP-R 16 egy speciális erőforrással, akcelerátorral kiegészített, az alkalmazások széles területén

Részletesebben

Informatikai alapismeretek Földtudományi BSC számára

Informatikai alapismeretek Földtudományi BSC számára Informatikai alapismeretek Földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Titkosítás,hitelesítés Szimmetrikus DES 56 bites kulcs (kb. 1000 év) felcserél, helyettesít

Részletesebben

Szelekció. Döntéshozatal

Szelekció. Döntéshozatal Szelekció Döntéshozatal Elágazásos algoritmus-szerkezet Eddig az ún. szekvenciális (lineáris) algoritmust alkalmaztunk a parancsok egyenként egymás után hajtüdnak végre. Bizonyos esetekben egy adott feltételtől

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):

Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében): Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2003/2004 tanév 2. szemeszter. Készítette: Markó Imre 2004

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2003/2004 tanév 2. szemeszter. Készítette: Markó Imre 2004 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2003/2004 tanév 2. szemeszter Bevezetés A tantárgy oktatásának célja: a számítógép hardverének megismertetése A tantárgy által tárgyalt témakörök:

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Fejlett programozási nyelvek C++ Iterátorok

Fejlett programozási nyelvek C++ Iterátorok Fejlett programozási nyelvek C++ Iterátorok 10. előadás Antal Margit 2009 slide 1 Témakörök I. Bevezetés II. Iterátor definíció III. Iterátorok jellemzői IV. Iterátorkategóriák V. Iterátor adapterek slide

Részletesebben

VIRTUALIZÁCIÓ KÉSZÍTETTE: NAGY ZOLTÁN MÁRK EHA: NAZKABF.SZE I. ÉVES PROGRAMTERVEZŐ-INFORMATIKUS, BSC

VIRTUALIZÁCIÓ KÉSZÍTETTE: NAGY ZOLTÁN MÁRK EHA: NAZKABF.SZE I. ÉVES PROGRAMTERVEZŐ-INFORMATIKUS, BSC VIRTUALIZÁCIÓ KÉSZÍTETTE: NAGY ZOLTÁN MÁRK EHA: NAZKABF.SZE I. ÉVES PROGRAMTERVEZŐ-INFORMATIKUS, BSC A man should look for what is, and not for what he thinks should be. Albert Einstein A számítógépek

Részletesebben

Java. Java Message Service. ANTAL Margit. JMS API technológia. ANTAL Margit. Sapientia - EMTE

Java. Java Message Service. ANTAL Margit. JMS API technológia. ANTAL Margit. Sapientia - EMTE Sapientia - EMTE 2008 Az előadás célja Üzenetkommunikációs architektúrák JMS Példák Üzenet gyártó Szinkron üzenetfogyasztó Aszinkron üzenetfogyasztó Üzenetbab (message-driven bean) point-to-point modell:

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben